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It is a bittersweet experience for us to put the finishing touches on this
manuscript without our dear friend and colleague, Jim Kaput. Jim origi-
nated the volume and labored long and hard to turn the promise of early
algebra into reality. He found it rewarding to play a pivotal role in a book
that reflects the depth of children’s thinking while recognizing the chal-
lenges for educators and the importance of grounding the work in math-
ematical foundations. 

We offer this volume as evidence of his vision and leadership.
—David Carraher and Maria Blanton
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This book is the result of approximately 15 years of thinking, research,
and collective discussion about the role of algebra in school mathematics.
It originated in the context of the Algebra Working Group (AWG), an
early online discussion group led by the first editor and supported by the
National Center for Research in Mathematical Sciences Education
(NCRMSE) based at the University of Wisconsin Center for Education
Research. For 4 years, this group—which included approximately 40
researchers and leaders in mathematics education, some of whom were
members of the National Council of Teachers of Mathematics Standards
development committees—held vigorous discussions about the nature
and role of algebra in school mathematics. The question “What is alge-
braic reasoning?” was raised regularly, but it was never fully answered.
Nonetheless, many of the issues explored eventually became the basis of
research reported in the present volume, including our characterizations
of algebraic reasoning. 

As the AWG continued to hold small conferences, produce discussion
documents, and sponsor symposia and papers at research conferences to
further the discussions of algebra learning, it became clear to an AWG
subgroup that a long-term solution to the challenges of school algebra
required reconceptions of school mathematics in the early grades. This, in
turn, would require a major research and development initiative. In the
early to mid-1990s, a smaller group known as the Early Algebra Research
Group (EARG) began to meet to focus on research issues concerning alge-
braic reasoning in the elementary grades. The National Center for Student
Learning and Achievement (NCISLA), a successor to NCRMSE, sup-
ported EARG for the next several years as it began to investigate these
issues and share the results with the math education community. Some of
these appear, in revised form, as chapters in this book.

Indeed, the present volume contains echoes of previous conversations
from the algebra working groups, and we have tried to recognize here the
origins of ideas and findings in prior work as much as possible. Even so,
researchers today are still defining and mapping the space of possibilities
for developing algebraic reasoning in the elementary grades. Replication
and data refinement represent ongoing and future work. Because the
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important effects of early algebra are based on long-term longitudinal
change ranging across elementary grades to middle school and beyond,
this volume represents a starting point of a story that will be a long time
in the telling.

STRUCTURE AND ORGANIZATION OF THE BOOK

Our goal in this volume is to contribute to a comprehensive, research-based
“early algebra story” that helps answer such questions as: What is algebra,
mathematically and pedagogically? What is its curricular place in school
mathematics, especially elementary grades mathematics? How can it be
fruitfully taught and learned in the early grades? What are the important
cognitive and symbolization differences between arithmetic and algebra?
Are there developmental constraints to learning algebra? Which aspects of
algebra are especially learnable? Are some approaches to teaching algebra
to young learners more promising than others? How can teachers build
algebraic reasoning, especially if their own experience with the subject has
been deficient, and how can the institutional setting in which they work
support this?

The early algebra story offered in this book is only a beginning, and, in
fact, is the beginning of several stories with several starting points, alter-
native plots, and plausible happy endings. The contributions to the pre-
sent volume address different aspects of the story and offer diverse
scenarios of how it may play out. Some illustrate the potential of building
algebraic reasoning in the context of generalizing properties of numbers
and operations. Some emphasize the role of reasoning with physical
quantities, including quantities described initially with letters. At least
one contribution envisions geometry taking a leading role in early algebra
developments. Other chapters explore theoretical underpinnings of early
algebra or issues concerning implementing early algebra in districts,
schools, and classrooms.

Part I takes a foundational approach by examining the nature of alge-
bra and its roots in naturally occurring human powers. Chapter 1 defines
what we term the algebra problem and its historical roots and tackles the
problem of what we mean by algebra and algebraic reasoning. In particular,
it portrays algebra as both an inherited body of knowledge and as activ-
ity that people do. Further, it offers a content analysis, consistent with
most analyses of the past decade, of the key aspects and strands of school
algebra that can serve as a common reference across chapters. Chapter 2
attempts to deepen our analysis of what we mean by algebra by focusing
on how core aspects of algebra arise through symbolization processes.
Chapter 3 examines how children’s capacity for algebraic reasoning is
deeply connected to innate powers of generalizing as a human activity.
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Finally, chapter 4 discusses the implications of using physical quantities
and quantitative relationships as a springboard for algebraic reasoning,
and chapter 5 uses elementary teacher professional development as a con-
text for lifting out the role of argumentation in establishing personal and
social mathematical certainty. All chapters in Part I are intended to orient
the reader toward some of the foundational ideas that underpin the early
algebra enterprise.

By looking specifically at children as they reason algebraically, Part II
brings a classroom-grounded interpretation to the foundational ideas
described in Part I. This section, which some may view as the heart of the
book, evokes the question: Why aren’t similar mathematical discussions
and behaviors being promoted in classrooms more widely? or Why did-
n’t I get to learn algebra this way? Although its chapters may be regarded
as optimistic, it is an optimism grounded in concrete, documented class-
room experience. Chapter 6 looks at classroom stories of children
engaged in generalized arithmetic, particularly as they notice and gener-
alize about properties of numbers, whereas chapter 7 explores children’s
reasoning about changes over time and the generalizations inherent in
concepts of speed, distance, and time. Chapter 8 looks at children’s work
with arithmetic number sentences and the relationship between the
recognition and production of these sentences. In a departure from num-
ber and quantity, chapter 9 argues how visualization inherent in geome-
try can be used to leverage children’s algebraic thinking. Chapters 10 and
11 use functions as a context for pushing children’s algebraic thinking. In
particular, chapter 10 uses children’s work with functions to argue that
early algebra is not algebra early, whereas chapter 11 examines children’s
use of multiple representations to coordinate information about a func-
tion expressed in multiple ways. Finally, in chapter 12, the authors exam-
ine the mutually supportive relationship between negative numbers and
algebraic thinking and how negative numbers can be meaningfully
taught within a curriculum that integrates algebraic thinking.

The early algebra story is more than a story about foundational ideas
or student thinking and learning because it inevitably must confront the
matter of implementation. Who can enact the story and how? Can we get
there from here with the available resources, or must we find ways to
build capacity based on those resources, particularly the human resources
of teachers in elementary schools today? The optimism contained in this
volume regarding what children can do is tempered by the realizations
that large-scale implementation and professional development is complex
and the research basis for all aspects of early algebra, including its imple-
mentation, is still in its formative stages. Part III begins to address this by
examining issues of implementation involving teacher practices, profes-
sional development, and curriculum materials that support the kinds of
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mathematical work seen in Part II. It offers examples of the conditions and
materials that make algebraic reasoning in elementary grades possible. In
particular, chapter 13 examines student thinking as a way to leverage
teacher professional development in early algebra, whereas chapter 14
looks more broadly at how the institutional setting in which teachers
work constrains or supports their early algebra practice. In chapter 15, the
author uses insights from children’s work to discuss challenges of cur-
riculum and implementation in an early algebra approach that uses math-
ematical generality (rather than the particular of numbers) as a starting
point for developing children’s understanding of structure. Chapter 16
brings into relief issues of curriculum design, building the case that cur-
ricula should explicitly build on the generality inherent in arithmetic.
Finally, chapter 17 examines the algebraic trajectory through which
students evolve as they work in a particular curriculum, Math Workshop.

INTENDED AUDIENCES OF THE BOOK

The book deliberately encompasses diverse points of view that address dif-
ferent aspects of the early algebra story. Because it is intended for a diverse
audience, we did not enforce a single style of exposition or scholarly detail
in order that different readers might approach the book according to their
own interests and purposes. Those looking for an overall theoretical frame-
work for algebraic thinking may find Part I of particular interest. Teachers
and teacher educators may find Parts II and III especially useful.
Policymakers are likely to find Part III of particular interest. Overall, our
intent was that the book be useful and accessible to anyone who would be
a reader of the NCTM Principles and Standards and its support material, as
well as typical state curriculum frameworks.
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A SKEPTIC’S GUIDE TO ALGEBRA
IN THE EARLY GRADES

Some readers may wonder whether it is wise to introduce advanced
mathematical concepts and methods to young learners. They may doubt
whether young children are capable of learning algebra. They may ques-
tion whether the mathematics problems presented in the subsequent
chapters are truly about algebra. Some may consider it unrealistic to
expect teachers to fit algebra into an already bulging curriculum.

Here, we address several such doubts about early algebra.11 Hopefully,
this discussion helps the reader understand why the idea of introducing
algebra in the early grades often evokes strong feelings among educators
and parents. Indeed, the issues inherent to early algebra are complex, and
our understanding of these issues is evolving as we explore in more detail
what young children can do. We leave it to the reader to weigh the
evidence provided in this book regarding these matters. 

ARE YOUNG CHILDREN READY FOR ALGEBRA?

Developmental readiness is the notion that people can only learn certain ideas
and concepts when requisite mental structures or concepts are in place.
Clearly there is some validity to this idea. It seems obvious that 1-year-old
infants will not learn to read and write no matter how hard we try to teach
them. There is simply too much knowledge about spoken language skills
that children need to acquire before one can expect them to master reading
and writing. Similarly, one would expect that calculus, at least as we now
know it, would be out of reach for very young students. Many ideas from
algebra, especially those in the realm of abstract algebra, would also appear
to be inaccessible to young learners. We leave aside the question of whether
the ideas are inherently too abstract for young minds or whether they sim-
ply rest on a knowledge base too extensive to be acquired in a short time

A Skeptic's Guide

1See chapter 1 for a more formal treatment of what we mean by early algebra.
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span. However, we recognize that it is reasonable to assume that many
subdomains of algebra are going to be inappropriate for young learners. 

Instead of asking whether young children are ready for algebra, per-
haps we need to ask whether there are any algebraic concepts, ideas, and
methods within reach of young learners—at least enough to justify the sys-
tematic inclusion of algebra in early mathematics curricula. Said another
way: What kinds of algebraic concepts can children learn in instructional
settings that support algebraic thinking? These are important questions
that highlight differing psychological perspectives on teaching and learn-
ing. But, perhaps more importantly, these questions need to be considered
in light of the kind of algebra we want young children to experience.

Some people hold that students should only be taught things after they
have expressed interest in learning about them. As someone once com-
mented in a mathematics education conference: “Shouldn’t we wait [i.e.,
hold off algebra instruction] until students express a need for n?” 

Despite its romantic appeal, much of education involves the appropria-
tion of information, techniques, and concepts that evolved over long peri-
ods of time. Representational systems in mathematics—place-value
notation, graphs, tables, and algebraic script—took decades, if not cen-
turies, to evolve. Students can no more invent the tools of science and
mathematics than they can invent spoken language. Students will surely
make discoveries while they acquire existing knowledge, but on their own
they will not reinvent representational systems such as algebraic script. 

Much of the work described in this book is consistent with the
Vygotskian view that learning precedes and facilitates development. In the
present context, this stance corresponds to the view that instruction can
promote the development of children’s understanding of early algebra. As
a result, much of the empirical evidence presented here is gathered from
classrooms where the central aim is to understand what kinds of algebra
children can do from instruction that attends to algebraic thinking.

SHOULDN’T KIDS LEARN BASIC SKILLS FIRST?

Some people believe that, even if young children are not developmentally
hampered from learning algebra, algebra instruction should wait until ele-
mentary content such as arithmetic is well mastered. Their point makes
sense if one assumes that algebra necessarily follows arithmetic. No one
doubts that algebra-as-we-were-taught-it follows arithmetic-as-we-were-
taught-it. The question is whether this is the best way to parse mathematics.
A premise of early algebra research is that arithmetic and, more generally,
early grades mathematics have been approached in ways that downplay
generality. Proponents of early algebra question whether it necessarily
needs to be that way. They argue that children may be able to think about

A SKEPTIC’S GUIDE xviii



xix A SKEPTIC’S GUIDE

structure and relationships even before they have been instructed in the
use of literal symbols. For example, when children are asked to determine
whether the sum of two (very large) odd counting numbers will be even
or odd, they can make predictions and justify them in terms of algebraic
properties of numbers without the use of literal symbols. Empirical studies
such as those presented here can help us determine how young learners
come to grasp such ideas. 

In emphasizing the importance of higher order thinking skills such as
generalization, it is not necessary to diminish the importance of routine
skills such as computational proficiency. Computational fluency is impor-
tant, but it may be possible to master basic skills while developing more
advanced skills. Algebraic activities provide rich, meaningful contexts in
which children can practice computational fluency and even enjoy doing
so. Children exploring a version of the Handshake Problem that requires
generalization (How many handshakes are possible among a group of
n people if each pair shakes hands once?) encounter opportunities to prac-
tice basic skills such as multiplication and addition, as well as sophisti-
cated ones such as combinatorial reasoning. 

CAN TEACHERS ADD ALGEBRA TO AN ALREADY
BULGING EARLY MATHEMATICS CURRICULUM?

This question would appear to be rhetorical, based on the following
reasoning:

• The curriculum is presently full; there is no room for anything else.
• To add another topic, some existing topics must either be dropped

or covered in less depth.
• It is impossible to eliminate existing topics; it is inadvisable to cover

the present topics in less depth.

Thus, algebra cannot be added to the early grades mathematics curriculum.
However, early algebra does not necessarily make the elementary

school curriculum bigger. Instead, it tends to treat existing topics more
deeply, in ways highlighting generalization. On the face of it, this would
seem to require more time. However there are good reasons for believing
that algebra can unify much of the existing mathematics curriculum
under a smaller number of broad concepts. One might even argue that the
list of key topics in an “algebrafied” curriculum would actually be shorter
than that of existing curricula. In this sense, early algebra has the poten-
tial to make the existing curriculum—sometimes criticized as a “mile
wide and an inch deep”—into a more connected mathematical experience
for children. Yet, although this seems promising, we recognize that there



are real challenges to bringing about the necessary types of curricular,
instructional, and institutional changes to support this. 

TO BE TRULY ALGEBRAIC, SHOULDN’T THE ACTIVITY
INVOLVE THE SYNTACTIC RULES OF ALGEBRA?

By and large, the algebra in early algebra tends to overlap with (rudimen-
tary) algebra recognized by the mathematics community. However, some
mathematicians and mathematics educators will undoubtedly argue that
syntactical rules for manipulating symbolic expressions are not given
enough attention in early algebra. As a French mathematician once
remarked after reading an early algebra paper, “I liked it, but where’s the
algebra?” It happens that the 9-year-old students reported on in the paper
did not write out algebraic expressions and derive other expressions from
them. By that mathematician’s standards, the students were not doing
algebra.

Early algebra researchers tend to take a broad view of symbolic reason-
ing. For them, symbolic reasoning includes, but is not restricted to, reason-
ing with algebraic script. Consider a student who states: “For whatever
temperature you give me in degrees Celsius, I can find the temperature in
degrees Fahrenheit by multiplying by 5/9 and adding 32.” This student is
expressing, in the vernacular, a function that can be expressed as f (n) =
n(5/9) + 32, where n is the temperature in degrees Celsius. Both represen-
tations, the one in algebraic script as well as the one in natural language, are
symbolic. Both express generalizations. Without a doubt, algebraic script
has some distinct virtues over spoken language—it is succinct and well
suited to further analysis and derivations. However, the expression in nat-
ural language has its own merits: It conveys information about the thermal
context that is missing in the algebraic expression. In fact, natural language
typically serves as an important starting point for children to learn algebra
because it allows them to begin to make sense of and describe algebraic
concepts using a known language. 

The early algebra researcher is also likely to pay special attention to two
other systems of symbolic representation: tabular representations and
graphs. To be fair, all four of these symbolic systems (natural language,
algebraic script, tabular representations, and graphs) are recognized as
legitimate among research mathematicians as well as mathematics educa-
tors. Nonetheless, there are sometimes striking differences in the relative
weight given to the systems. Early algebra researchers sometimes intro-
duce algebraic script only after students have become well versed in using
the other representational systems. Whereas some experts may see this as
ill advised or even wrong, the underlying goal of early algebra is for
children to learn to see and express generality in mathematics. Initially, the
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language of generalization is often broadly defined and evolves toward
more specialized forms such as algebraic script and Cartesian graphs.

IS ALGEBRA THE SAME AS GENERALIZATION?
IF SO, ISN’T IT EVERYWHERE?

People have sometimes criticized inclusive views of algebraic reasoning on
the grounds that it becomes difficult to distinguish thinking algebraically
from thinking mathematically or (just plain) thinking. Certainly, mathematics
educators need to be clear about what they mean by algebraic thinking in
cases where students do not use algebraic notation. But it seems unreason-
able to restrict the expression algebraic thinking to occasions on which
students use notation such as “f (n) = 3n – 7.” A narrow conception of alge-
braic activity obscures the relations between algebra and early mathemat-
ical thinking, leaving mathematics educators with little insight into how
the learning of algebraic notation can build on existing skills. 

Mason (chap. 3) argues that children bring natural powers of generaliz-
ing to the elementary classroom that have long allowed them to discrimi-
nate, select, and generalize, in many (nonmathematical) contexts, as a
human activity. This is seen in how young children learn to differentiate
among species, or in the increasingly specialized verbal utterances they
use in the acquisition of language. Thus, rather than trying to parse precise
boundaries of algebraic generalization, the goal of elementary grades
mathematics should be to harness these innate powers in the particular
context of number, quantity, visualization, and so forth, so that children
engage in generalizing as a mathematical activity. 

We do not claim that there are easy answers to the previous questions.
What we hope to provide through this volume is evidence of children’s
mathematical thinking that will propel us beyond the arguments to craft
workable mathematical, curricular, and instructional solutions to what we
describe in chapter 1 as the algebra problem. Sometimes—often—this chal-
lenges us to reexamine deeply held beliefs about children’s mathematical
powers.
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I
THE NATURE OF EARLY

ALGEBRA

This part leads off the early algebra story with examinations of what algebra
and algebraic thinking are, how they relate to more general symbolization
processes, and their foundation in naturally occurring human powers
that appear at the very earliest stages of human development. Chapter
1 chronicles the history of what we term the algebra problem and defines,
from a content point of view, what we mean by algebra and algebraic
reasoning. Recognizing that algebra is both an inherited body of knowl-
edge and something that people do, it offers an explicit description of two
core aspects and three strands of school algebra that appear in virtually
all later chapters of the book. 

Chapter 2 describes where these essential aspects come from and how
they arise as two related types of more universal symbolization processes.
In particular, using examples from elementary mathematics, it discusses
how symbols and referents come into being as separate entities in our
experience, a deep and subtle constructive process of recording, reflecting,
and revising. The authors discuss the common phenomenon of attention
switching, where thinking sometimes is guided by what the symbols are
taken to stand for, and sometimes by the forms of the symbols
themselves (including syntax). They also offer a distinction between non-
algebraic and algebraic reasoning based on the purposeful expression of
and reasoning with generality, and a distinction between proto-algebraic
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reasoning and (mature) algebraic reasoning based on the latter’s use of
conventional symbol systems.

The two symbolization processes, and especially the first, can be seen
throughout the episodes described in the book. However, they come into
particular relief in chapter 5, where E. Smith, using the slightly different
language of representational thinking and symbolic thinking for the two core
aspects, applies them primarily in the context of Strands 2 (Function and
Variation) and 3 (Modeling). His classroom episodes are taken from
professional development work with elementary teachers and are
intended to suggest approaches to mathematics and algebraic thinking
that are common across age and grade levels. Of special note is his atten-
tion to the important and often neglected role of argumentation and the
establishing of certainty, both at the social and the personal levels. Given
the importance of generalization and the expression of generality in our
characterization of algebraic reasoning, the fact that he regards establishing
mathematical certainty as a driver of representational thinking adds a
major ingredient to our characterization. In this chapter, E. Smith focuses
explicitly on the role of argumentation in establishing generality, but the
reader will see argumentation playing this role across many chapters as
both a form of student mathematical activity and as a pedagogical goal in
teacher practice. Indeed, across virtually all cases, we see the importance
of active classroom discussion, where students can test the validity of
generalizations, the assumptions behind them, and their appropriate
range of applicability.

In chapter 3, Mason argues that children arrive at school in possession
of all the powers needed to learn how to think algebraically. He sees these
as including imagining and expressing, focusing and de-focusing,
specializing and generalizing, conjecturing and convincing, as well as
classifying and characterizing objects and processes. They have their roots
in the earliest recognition of patterns by infants and in their earliest stages
of language development. They continue to develop into the broad
cognitive and linguistic competencies that children possess when they
arrive at school, especially (but not exclusively) children’s ability to form,
argue for, and express generalizations using natural language. He
suggests that we would greatly improve our mathematics education
enterprise if we were to take these powers seriously as resources for math-
ematics teaching and learning. A key goal of his chapter is to convince us
that these student powers are indeed the same ones, in different contexts
and in nascent forms, perhaps, that are used in serious mathematics learn-
ing. He closes with a consideration of some of the reasons that these pow-
ers are not well tapped in elementary school, including the common
assumptions behind the rush to achieve certain topic coverage and proce-
dural skill development and, even more constraining, the low expectations
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regarding young students’ abilities to engage productively in mathematical
activities that we would describe as algebraic.

In chapter 4, J. Smith and Thompson take the point of view that, in
order for students to be able to learn and use algebraic statements, these
statements need to be experienced as being about something. They suggest
that whereas many researchers treat reasoning with and about numerical
relationships and operations as a basis for algebraic reasoning, an alterna-
tive is reasoning with and about physical quantities and quantitative
relationships—quantities such as lengths, weights, times, areas, speeds,
and so on, where measurement and units come into play—as opposed to
reasoning about numbers, operations, and their properties. By examining
a variety of problem situations, they show the depth and richness of
extended experience with quantitative reasoning across Grades K–8, how
it is of intrinsic value as a way of making sense of many different kinds of
situations and phenomena, how it is different from algebraic reasoning,
and how algebraic reasoning can be built on a foundation of quantitative
reasoning. Relative to the last point, they provide examples illustrating
the generality of quantitative reasoning and how it draws the student
toward ways of expressing that generality. Hence, it makes the power of
algebra immediately apparent once the stage is set. They point out that
the traditional elementary mathematics curriculum seldom puts students
in this position, where algebra really pays off. 

A goal of the chapters in this section is to orient the reader to the whole
enterprise of building algebraic reasoning in the contexts of elementary
grades mathematics. Although we see much commonality across the
chapters, especially in the functional respect given to children’s ways of
making sense of their world and the central place given to active student
expression of their ideas and processes, we also see that differences in the
context, reflected in different strands of algebraic reasoning, yield real
differences in how algebraic reasoning emerges.
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What Is Algebra? What Is
Algebraic Reasoning?

James J. Kaput
University of Massachusetts, Dartmouth

This introductory chapter provides a shared road map of algebra in the
elementary grades and an historical perspective on why we might need
such a road map. Because the landscape is quite varied, it is useful to
know where we are in relation to the larger territory and what has
brought us to this point. We begin with an account of what we have
termed the algebra problem and of the evolution in the research base on
learning algebra. 

THE ALGEBRA PROBLEM

The scholars in this book address what for at least 10 years we have termed
the algebra problem. It is especially acute in the United States where,
historically, the introduction of school algebra has awaited the completion
of a 6- to 8-year computational arithmetic curriculum that has been imple-
mented as independent of algebra. At the turn of the 20th century, with
universal elementary schooling already in place, shopkeeper arithmetic
was expected for all. Algebra was reserved for the elite, which amounted
to a scant 3% to 5% of the population who completed secondary school
at that time (National Center for Education Statistics, 1994). Thus, the
arithmetic-then-algebra curriculum structure was already well in place as
U.S. society evolved toward universal secondary education during the
20th century. The resulting late and abrupt approach to the introduction
of algebra was deeply institutionalized and regarded as the natural
order of things (Fey, 1984). But, by the dawn of the 21st century, this highly
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dysfunctional result of the computational approach to school arithmetic
and an accompanying isolated and superficial approach to algebra had led
to both teacher alienation and high student failure and dropout, especially
among economically and socially less advantaged populations. This is the
result of the convergence of two unprecedented forces: (a) in response to
societal needs for a deeper mathematical literacy, all students are now
expected to learn algebra under the “algebra for all” banner; and (b) this
expectation is legally codified in high-stakes accountability measures that
define academic success in terms of success in algebra.

Political agendas aside, there are some salutary reasons for rethinking
and reworking algebra in early grades mathematics. Solving the algebra
problem serves four major goals:

1. To add a degree of coherence, depth, and power typically missing
in K–8 mathematics.

2. To ameliorate, if not eliminate, the most pernicious and alienating
curricular element of today’s school mathematics: late, abrupt,
isolated, and superficial high school algebra courses.

3. To democratize access to powerful ideas by transforming algebra
from an inadvertent engine of inequity to a deliberate engine of
mathematical power.

4. To build conceptual and institutional capacity and open curricular
space for new 21st-century mathematics desperately needed at the
secondary level, space locked up by the 19th-century high school
curriculum now in place.

Changes of this magnitude require deep rethinking of the core algebra
enterprise and will not be achieved by minor adjustments such as attempt-
ing to fix a first algebra course, starting it a year earlier, or legislating 2
years of algebra for all. As Carraher and colleagues argue, early algebra is
decidedly not (traditional) algebra early. 

Solving the algebra problem involves deep curriculum restructuring,
changes in classroom practice and assessment, and changes in teacher
education—each a major task. Further, each must be achieved within the
capacity constraints of the teaching population, within the limited time
and resources available for in-service and preservice teacher develop-
ment, and within the constraints of widely used instructional materials.
Steps in this direction are underway on several fronts. The Principles
and Standards of School Mathematics (National Council of Teachers of
Mathematics, 2000) has advocated an increasingly longitudinal view of
algebra, that is, a view of algebra not as an isolated course or two, but rather
as a strand of thinking and problem solving beginning in elementary



school and extending throughout mathematics education. This perspec-
tive was reflected in the original Curriculum and Evaluation Standards for
School Mathematics (National Council of Teachers of Mathematics, 1989)
and now is expressed in curriculum and professional development pro-
jects and documents that exemplify the principles and standards high-
lighting the development of algebraic reasoning in the earlier grades
(Cuevas & Yeatts, 2001; Greenes, Cavanagh, Dacey, Findell, & Small, 2001).
Some of this groundbreaking work is described in the present volume.

THE STATE OF RESEARCH AND ITS EVOLUTION
OVER THE PAST 30 YEARS

The algebra problem has been brought to the fore in our thinking by
research that spans several decades. Through the 1980s, research in alge-
braic thinking and learning focused on student errors and constraints on
their learning, especially developmental constraints. A large body of
evidence was accumulated that showed students tended to have fragile
understanding of the syntax of algebra (e.g., Matz, 1982; Wenger, 1987) or
that they had difficulty in interpreting algebraic symbols (e.g., Clement,
1982; Clement, Lochhead, & Monk, 1981; Kaput & Sims-Knight, 1983) or
even coordinate graphs (Clement, 1989). Perhaps we should not be
surprised, given the curriculum that students experienced and the fact
that for many years most research either measured the given curriculum’s
affect on students under traditional classroom circumstances or took the
form of brief interventions aimed at teaching symbol manipulation tech-
niques based on the same narrow syntactical view of algebra that defined
the dominant curriculum (e.g., Lewis, 1981; Sleeman, 1984, 1985, 1986).
However, recent research on the status of student knowledge based in the
traditional arithmetic-then-algebra regime has pointed to specific obst-
acles to algebra learning that computational arithmetic creates for the
learning of algebra. For example, limited approaches to equality and the
“=“ sign in arithmetic as separator of procedure from result (Kieran, 1992)
are now known to interfere with later learning in algebra (Fujii, 2003;
McGregor & Stacey, 1997).

Davis’s work constitutes an early and noteworthy exception to the
forms and results of this early research. His work in the 1960s and 1970s
involved sustained and tailored interventions with students of various
ages, including elementary age students (Davis, 1975; Davis & McNight,
1978), and directly inspired some of the work reported in this volume
(e.g., Franke, Carpenter, & Battey, chap. 13). His work anticipated and set
the stage for the optimistic stance on learning algebra that appeared years
later and that is reflected in large part in the present volume.
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CHALLENGE IN DEFINING ALGEBRA AND
ALGEBRAIC REASONING

Recognizing the algebra problem and crafting a solution that spans
grades K–12 introduces another complexity, namely, defining “algebra”
and “algebraic reasoning,” especially as an object of thinking in the
elementary grades. What we think algebra is has a huge bearing on how
we approach it—as teachers, administrators, researchers, teacher-educators,
curriculum developers, framework writers, instructional material evalua-
tors, assessment writers, policymakers, and so forth. Although the views
of algebra offered here differ in focus across the chapters, they stress
algebra’s breadth, richness, and organic relation to naturally occurring
human cognitive and communicative powers. Indeed, the kind of narrow
view of algebra that has dominated school algebra for years in many
countries as primarily syntactically guided, symbolic manipulations not
only grossly understates the multiple sides of algebra historically as
mathematics, it is also an inadequate foundation for reconsideration of
algebra’s place in school mathematics. The editors share the view that we
need a broader and deeper view of algebra that can provide school math-
ematics with the same depth and power that the several aspects and
strands of algebra have provided mathematics as a theoretical and practical
discipline historically. Only by expanding our views of algebra can
we hope to use algebra to integrate mathematics across all grades and
all topics.

Mathematics as Something We Acquire
Versus Something We Do

Lee (2001) has identified several ways to approach answering the two
questions in this chapter’s title. We begin with two different ways of
describing mathematics in general and algebra in particular. First, mathe-
matics is a cultural artifact, something we receive as part of our cultural
heritage. This cultural artifact, particularly algebra, is embedded in edu-
cation systems across the world in very different ways, especially in terms
of when algebra is introduced and how tightly it is integrated with other
mathematical topics (Kendal & Stacey, 2004). Mathematics is also a set of
activities, something people do. For instance, it involves the production of
representations to express generalizations, and it involves transforming
those representations. It also uses these two kinds of activities in other
mathematical activities such as modeling (Bednarz, Kieran, & Lee, 1996;
Kieran, 1996, 2004).

The first question in the chapter’s title, “What is algebra?”, highlights
algebra as a self-standing body of knowledge—as a cultural artifact. The
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second, “What is algebraic reasoning?”, highlights algebra as human
activity. These differences in how we think about algebra show up in
many ways. For example, those who think of algebra as reasoning are
inclined to consider students’ ways of doing, thinking, and talking about
mathematics as fundamental. For them, algebra emerges from human
activity; it depends on human beings for its existence, not just historically,
but also in the present. Those who think of algebra as an inherited subject
matter are comfortable talking about it without thinking about people.
They might refer to the commutative law of addition, for example, without
having to establish how the law came to be or how students come to learn
it (or not). For them, commutativity is a property of mathematics itself.
Each view is useful, depending on our purposes, and we shall use both.

A Symbolization Perspective on Algebra
and Algebraic Reasoning

In order to provide some structure to the complex web of ideas, notations,
and activities that are involved in algebra and algebraic reasoning, we
take a symbolization perspective. We take the view that the heart of alge-
braic reasoning is comprised of complex symbolization processes that
serve purposeful generalization and reasoning with generalizations.
Although he did not take a broad symbolization view in his examination
of school algebra, Usiskin (1988) sought to characterize algebraic reasoning
in terms of the familiar uses of letters (as unknowns, variables, parameters,
etc.). Our goal, pursued further in the next chapter, is to understand not only
these kinds of traditional representational phenomena, but the phenomena
that occur as algebraic reasoning is being developed in the context of
elementary grades mathematics.

Another complication in describing algebra in a way that respects its
richness and subtlety is the fact that it is not a static body of knowledge. It
evolves as a cultural artifact in terms of the symbol systems it embodies
(most recently due to electronic technologies), and it evolves as a human
activity as students learn and develop. Hence, algebra needs to be
described both through a snapshot of its structure and function in mathe-
matics today and in mathematically mature individuals, and through a
dynamic picture of its evolution historically and developmentally. Detailed
descriptions of either type are not possible in a reasonably short book, let
alone a single preliminary chapter. Nonetheless, we include reference to the
evolving nature of algebra as artifact as we proceed. The next chapter deals
with how it evolves within individuals as a human activity.

Most attempts to define algebra historically, blending both a cultural
artifact and action perspective, tend to be oriented toward progress in
solving equations, where the origin of the equations might be problem
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situations or simply assertions about numbers or measurement quantities,
often surprisingly similar across the millennia (e.g., Katz, 1995). They then
turn to the solving of equations in the 16th and 17th centuries apart from
their status as models, and simply as mathematical objects of intrinsic
intellectual interest (Kline, 1972).1 And, from a modern perspective (18th
century and later), definitions of algebra refer to the use of literal symbols
as a central feature of the activity. Indeed, the earliest versions of “equa-
tion solving,” appearing almost 4,000 years ago in the Rhind Papyrus,
took place in stylized natural language rather than in the specialized
symbols of what has been termed “rhetorical algebra” (Harper, 1987;
Kline, 1972). Relatedly, another feature of algebra that is often taken as a
defining one (Usiskin, 1988) is its use of literal symbols, letters. This prac-
tice evolved over many centuries and stages and did not stabilize until
early in the 18th century (Boyer, 1968).

The next chapter takes a wider, symbolization view of algebra, beyond
the uses of letters, in order to accommodate both the variations in symbol-
ization activities that occur in early grades and the increasing
variety of symbol systems, including graphical ones, which extend what
the traditional systems once did for us. For now, we offer an initial content
analysis of algebra intended to respect its richness and diversity across
uses and age levels.2

A CONTENT ANALYSIS OF ALGEBRA

Two Core Aspects of Algebra

We regard one core aspect of algebraic reasoning to be generalization and
the expression of generalizations in increasingly systematic, conventional
symbol systems (Core Aspect A). The second core aspect of algebraic
reasoning is syntactically guided action on symbols within organized
systems of symbols (Core Aspect B). Each of these core aspects of algebra
appears in some form across all three strands of algebra as they are
defined next (see also Table 1.1). Our characterization merges algebra’s two
identities as a cultural artifact expressed mainly as conventional symbol
systems and as certain kinds of human activities. 

We now expand on these aspects and strands from the perspective of
school mathematics, with special focus on elementary mathematics. Core
Aspect B is typically thought to develop later than Core Aspect A because
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rule-based actions on symbols depend on knowing what the allowable
combinations of symbols are and on knowing how they relate to each
other, especially in terms of which combinations are equivalent to others.
The work by Carraher, Schliemann, and Schwartz (chap. 10, this volume)
and Brizuela and Earnest (chap. 11, this volume) suggests that we look
more closely at how students build understanding of syntax in algebra,
and that perhaps we should also look at actions on symbols from a more
linguistic perspective, attending to interactions between how symbols are
parsed visually and how they are constructed mathematically (Kirshner &
Awtry, 2004).

There is considerable diversity of opinion about the roles of the two
Core Aspects in early algebra learning. Mathematicians and mathematics
educators differ in their views of which of the two core aspects of algebra
is more central to defining algebra. Some treat rule-based actions on symbols
(Core Aspect B) as the hallmark of algebraic reasoning, whether or not
these actions serve generalization or modeling, and hence do not regard
much of the activity described in this book as truly algebraic. Others,
cautious about what Piaget (1964) referred to as premature formalism,
downplay conventional syntax in favor of the deliberate expression of
generalizations and models of situations through whatever means are
available, but especially natural language and drawings (Resnick, 1982).
Only after students are greatly experienced in expressing in these forms
would they be introduced to algebraic notation, graphs, and other classes
of conventional representations.

Still others hold the view that Core Aspect B deserves attention fairly
early in algebra learning. At the very beginning of algebra instruction,
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Table 1.1
Core Aspects and Strands

The Two Core Aspects

(A) Algebra as systematically symbolizing generalizations of regularities and
constraints.

(B) Algebra as syntactically guided reasoning and actions on generalizations
expressed in conventional symbol systems.

Core Aspects A & B Are Embodied in Three Strands

1. Algebra as the study of structures and systems astracted from computations
and relations, including those arising in arithmetic (algebra as generalized
arithmetic) and in quantitative reasoning.

2. Algebra as the study of functions, relations, and joint variation.
3. Algebra as the application of a cluster of modeling languages both inside

and outside of mathematics.



students are encouraged to note regularities and make generalizations
(Core Aspect A) using their own resources; but they are soon encouraged
to make conventional representational forms their own. The underlying
premise is that conventional forms (algebraic notation, graphs and
number lines, tables, and natural language forms) can not only express,
but also enrich and deepen algebraic reasoning in students. The chapters
by Carraher et al. (chap. 10, this volume) and Brizuela and Earnest
(chap. 11, this volume), examine how a growing familiarity with the syn-
tax of algebra contributes to students’ learning and reasoning. A similar
argument is advanced by Boester and Lehrer (chap. 9, this volume), who
remark that “spatial structure serves as a potentially important spring-
board to algebraic reasoning, but also that algebraic reasoning supports
coming to ‘see’ lines and other geometric elements in new lights.”

The next chapter looks more deeply at the Core Aspects A and B as
symbolization processes, their connections to the nature of mathematics,
how algebra evolved historically and how algebra comes into existence
for individuals.

Three Strands of Algebra

This section looks at each of the three strands and how the two core
aspects are embodied in each of them.

Strand 1. Building generalizations from arithmetic and quantitative
reasoning is taken by many educators and researchers as the primary
route into algebra. It includes generalizing arithmetic operations and their
properties and reasoning about more general relationships and their forms
(e.g., properties of zero, commutativity, inverse relationships, etc.). This is
the heart of algebra as generalized arithmetic. It includes building the
syntactic aspect of algebra from the structure of arithmetic—building
the basic idea that one can replace one expression by an equivalent one. It
involves looking at arithmetic expressions in a new way, in terms of their
form rather than their value when computed.

This strand also includes building generalizations about particular
number properties or relationships, for example, a sum of two odds is even,
properties of sums of three consecutive numbers, finding and expressing
regularities in the 100s table or the addition and multiplication tables,
examining why multiplying by 10 or 100 has the effect of appending zeros
to the number multiplied, and so on. This activity typically uses the gen-
eralizations of generalized arithmetic, although not always explicitly.

A third basic activity in this strand is the explicit expression of computa-
tion strategies (both conventional and student-invented), such as compen-
sation strategies wherein we add one to an addend and then subtract it
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from the total to facilitate a computation. These activities often occur in
mixed sequences and overlap. For example, when we use the fact that
addition is commutative to simplify the mental computation of 3 plus 18 to
18 plus 3, or when we use commutativity of multiplication to reduce the
number of multiplication facts to be learned, we are invoking this strand of
algebra. More accurately, our activity can be termed algebraic when we
are stating these properties explicitly and examining their generality—not
when we are using them tacitly.

All of the previous involve the critical step from arithmetic to algebra
of expanding the notions of equivalence associated with the “=” sign from
that of separator of operation and result to general equivalence (Kieran,
1981, 1994; MacGregor & Stacey, 1997).

Alternative approaches exist within this strand that are not based on
the arithmetic of numbers but rather are based on reasoning with physical
quantities (see Dougherty, chap. 15, this volume; Smith & Thompson,
chap. 4, this volume; and, to some extent, Carraher et al., chap. 10, this
volume). All of these approaches, based on number or on quantity, share
the central role of generalizing and expressing those generalizations
explicitly and systematically. The Dougherty approach is adapted from
earlier Soviet work (Davydov, 1975, 1982) and uses a fundamentally
different style of initial symbolization that avoids numerals and instead
uses letters to denote quantities, thereby embodying generality in the
symbolic expression of specific (but unmeasured) cases involving, say,
comparisons of lengths or heights or volumes.

Strand 2. The second strand involves generalizing of a fairly particular
kind, basically toward the idea of function, where expressing the general-
ization can be thought of as describing systematic variation of instances
across some domain. The syntactic aspect of algebra is usually applied
to change the form of expressions denoting regularities, in comparing 
different expressions of a pattern to determine whether they are equivalent,
or in determining when functions take on particular values (e.g., roots) or
whether they satisfy various constraints (building and solving equations).
This strand is often taken to begin with elementary patterning activities
that are often thought to be a necessary precursor to other forms of math-
ematical generalization3 (Cuevas & Yeatts, 2001; Greenes et al., 2001),
although patterning does not play a significant role in the work described
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in this book. Sometimes the patterns are generated geometrically, such as
in work with triangular or figurate numbers, patterns in areas of figures,
and so on. This strand has blurry boundaries in the sense that ideas
bound up with the idea of function are both very rich and wide-ranging.
They include, for example, the various kinds of change and hence involve
the ideas of linearity, rate, and so on. This strand also makes regular use
of a wide range of symbol systems beyond the usual character-string
based systems, including tables, graphs, and various pedagogical systems
such as “function machines.”

Strand 3. Modeling as an algebraic activity seems to be of three basic
types based on how the two core aspects of algebra are employed. A first
type of modeling is number-or quantity-specific, without pretense that
a general class of situations is being modeled. In effect, it is an arithmetic
problem that requires using the syntactic aspect of algebra to solve (see
Bednarz & Janvier, 1996). It typically takes the form of the statement of
a constraint, usually in the form of an equation, which then requires the
use of the syntactic aspect of algebra to yield a solution. Here the variable
is regarded as an unknown rather than as a variable representing a class
of situations.

A second type of modeling uses the first core aspect in generalizing and
expressing patterns and regularities in situations or phenomena, arising
either outside mathematics or from within mathematics (e.g., geometric
patterns). Here, the domain of generalization is the situation being modeled,
and often the expression of the generalization takes the form of using one or
more variables that may then express a function or class of functions. Of
course, working with such expressions to gain insight into the situation
being modeled usually involves the syntactic aspect of algebra.

A third type of algebraic modeling involves generalizing from solu-
tions to single-answer modeling situations of either the first type above or
from pure arithmetic word problems that did not require algebraic
maneuvers to solve (what Blanton & Kaput, chap. 14, this volume, 2004,
refer to as algebrafying an arithmetic problem). Here the algebra enters as
one relaxes the constraints of the given problem to explore its more
general form, scope, and deeper relationships—including comparisons
with other models and other situations. In this type of generalization
modeling, the introduction of variables expressing the generality of the
situation often takes the form of parameters.

Notes on the Aspects and Strands

Strand 1 at more advanced levels leads to abstract algebra, but can also be
regarded as including more elementary activities such as clock arithmetic,
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working with strings of letters or other symbols according to specified
rules, and so on. Strand 2, from the point of view of algebra defined as
a mathematical discipline, is not strictly algebra, but analysis. At its more
advanced levels, it leads to calculus and analysis. However, we treat it as
algebra because its content is a major part of school algebra, especially
from middle school onward, and it usually requires using the syntactic
aspect of algebra. Some (e.g., Schwartz, 1990) have argued that school
algebra be entirely constituted in terms of the idea of function. Strand
3 often involves Strand 2, and its different forms are distinguished on the
respective roles of the core aspects of algebra that in turn are reflected in
whether variables are treated as unknowns, variables, or parameters.
Both Strands 2 and 3 make use of multiple representation types.

The core aspects and strands emphasize algebra’s deep, but varied,
connections with all of mathematics. It is this web of connections that enables
algebra to play the key role across K–12 mathematics that we and others sug-
gest (Kaput, 1999). To this end, this content analysis is consistent with that
provided by the National Council of Teachers of Mathematics Algebra
Working Group and that appears in various reform documents (e.g.,
National Council of Teachers of Mathematics, 2000; see also Kieran, 1996).

The next chapter delves more deeply into how the core aspects of alge-
bra arise through symbolization: Core Aspect A through successive
processes of record making and actions on those records, and Core Aspect
B through the efficiency-driven “lifting of repeated actions on symbols”
into syntax. Finally, the next chapter offers a two-stage characterization of
algebraic reasoning that respects both core aspects, including the special
role of historically developed conventional symbol systems.
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We use the context of equation solving to examine the process of build-
ing structured ways of acting on symbols—the basis for a syntax and
the second core aspect of algebraic reasoning. We see this as a process
of “lifting out” of repeated equivalence statements. This is an efficient
way to substitute statements that are repeatedly seen as giving essen-
tially equivalent information. Through repetition and being made
explicit (which amounts to yet another process of generalization, but on
symbol-substitution actions), these gain status as a system of substitu-
tion rules—a syntax. Because the syntax arises from previously
accepted equivalences in the reference system for the symbols, it is
guaranteed to yield correct results when used appropriately. We examine
certain pedagogical issues associated with learning syntactically
defined procedures with and without conceptualizations based in
reference fields.

We close with a characterization, based on the centrality of generalization,
of which kinds of symbolizations deserve to be called fully algebraic (those
that use conventional symbol systems) and those that are quasi-algebraic
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(those with the same generalization and reasoning purposes as algebraic
but that use less conventional symbolizations—thereby extending the
notion of quasi-variables defined by Fujii, 2003). This characterization thus
distinguishes those symbolization activities that are not algebraic—those
not used in the service of generalization and reasoning with genera-
lizations. The characterization is applied to the three strands of algebra—
generalization of arithmetic and quantitative reasoning, functions, relations
and variation, and modeling.

ALGEBRA FROM A SYMBOLIZATION
POINT OF VIEW

We regard generalization and symbolization as being at the heart of
algebraic reasoning. Why are generalization and symbolization so
tightly linked? The answer is utterly basic. The only way a person can
make a single statement that applies to multiple instances (i.e., a gen-
eralization), without making a repetitive statement about each
instance, is to refer to multiple instances through some sort of unifying
expression that refers to all of them in some unitary way, in a single
statement. But, the unifying expression requires some kind of symbolic
form, some way to unify the multiplicity. Generalizing is the act of cre-
ating that symbolic object. This is where symbolization in the service
of generalization—and algebra—starts, both within individuals and
historically. Once a symbolization is achieved, it becomes a new plat-
form on which to express and reason with generality, including further
symbolization.1 This chapter attempts to flesh out these symbolization
ideas in a way that will help make sense of the development of alge-
braic reasoning phenomena reported throughout this book, and in so
doing, help clarify more deeply what we mean by “algebra” and how
it develops.2

Our discussion skirts on the edge of profound issues concerning the
nature of and relations among mathematics, language, and thought. This
is not the place to plumb them to great depth, but it is important to know
that they are close by.
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1We are oversimplifying here, of course, but particularly in the sense that in
order to serve as a platform for further generalization, the initial generalization
must become part of a coherent system of generalization expressions.

2The word algebra means both senses of algebra defined in the previous chapter,
as a cultural artifact and as something people do.



THE BIG PICTURE FROM A HISTORICAL AND
SYMBOLIZATION PERSPECTIVE

A Deep Mathematical Duality: Generalizing and Using
Symbols to Reason With Generalizations

Algebraic reasoning shares dual aspects with most of mathematics:
Mathematics is about generalizing and expressing generalizations, and it
is about using specialized systems of symbols to reason with the general-
izations.3 We regard these as the two underlying aspects of algebra that
are at the heart of all algebraic reasoning. The phrase “reason with gener-
alizations” includes both deducing and inducing structure from the
configurations of symbols whether or not one is actively and physically
transforming them. This, therefore, covers cases where one studies the
structure of a single expression or sequence of such, as well as cases
where one actively transforms them using rules for transforming symbol
complexes. This is a slight elaboration of what was called the second core
aspect of algebra in the previous chapter, which focused on syntactically
guided transformation of symbolic expressions. Our interest is in under-
standing how these symbolization processes and the capacity to engage
in them come to exist, particularly in individuals.

Although we have much to learn about the process of symbolization,
we do know that it cannot be separated from conceptualization. Ideas,
especially generalizations, grow out of our attempts to express them to
ourselves and others, and our attempts to express them give rise to sym-
bolizations that in turn help build and fill out the ideas, folding back into
those ideas so that conceptualization and symbolization become insepa-
rable. As Sfard (2000) put it, mathematical discourse and mathematical
objects create each other. Indeed, she argues, as do we, that this process
occurs at both the individual and classroom level as well as historically.
Moreover, it is a continuous process, not something that one does and
completes. We want to look more closely at it, with particular interest in
how symbol and referent come to be experienced sometimes as separate
and sometimes the same, and how actions on symbols become possible.

One can produce symbolizations of many kinds and with many different
purposes. One dimension along which they can vary is the extent to
which they are shared in some community, from being the entirely private
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3We say most because there are branches of mathematics where computation or
counting takes center stage—as in combinatorics, although even there the objects
are often abstract and the processes become subject to generalization, which
means they typically call on algebra.



construction of an individual dealing with a single situation to being fully
conventional in the sense that they are shared by a wide community of
people who are regarded as mathematically educated. The base 10 number
system, the standard algebraic symbol system, two-column tables and
coordinate graphs are all examples of the latter. And, of course, the main
reason that they have become conventional is that they are very useful
across wide varieties of situations. Each is powerful in its own way. Each
is a highly efficient way of symbolizing, the end result of an historic
process of refinement—contributing to algebra’s identity as a cultural
artifact.

But, once some symbolization of a generalization is established, conven-
tional or not, then the symbols themselves can help further the reasoning
process because they have packed within themselves some features of
the generalizations in a crystallized, materially stable and usually more
compact form. This enables us to compare generalizations by comparing
their respective symbolizations, to examine their range of applicability, to
deduce inferences by examining their form, and, most importantly for
algebra, by acting directly on the symbols themselves to systematically
manipulate their configurations into different forms. This action treats the
symbols as objects in their own right, without immediate regard for what
they might stand for. As we were told by Whitehead (1929) many years
ago, “Civilisation advances by extending the number of important opera-
tions we can perform without thinking about them” (p. 59).

The evolution of the symbol system that we now take for granted as the
most visible, material aspect of algebra as a cultural artifact took place
over millennia, including the idea of unknown, the explicit expression of
it using special words and then symbols, the idea of representing numer-
ical variables as letters, the idea of representing general classes of mathe-
matical statements using literal coefficients, writing equivalences (which
eventually became equations), the idea that it is possible to enumerate
sets of special canonical forms that can be handled by established methods,
and most especially the substitution rules that constitute a syntax for
acting on symbols (Boyer & Merzbach, 1989; Kline, 1972). As we illustrate
in the next section, these rules capture and crystallize mental actions as
rules for operating on physical symbols. It may be worth remembering
that Descartes titled his famous book, in which he lays out what he
referred to as his own algebra, Rules for the Operation of the Mind (written
in the first half of the 17th century and published posthumously in 1701;
see Puig & Rojano, 2004, for a detailed discussion).

Bochner (1966), a mathematician and historian, wrote about the pro-
found importance of the emergence of algebra in the 17th century, the
compact and systematic use of symbols to represent generalizations and
abstractions:
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Not only was this algebra a characteristic of the century, but a certain feature
of it, namely the “symbolization” inherent to it, became a profoundly distin-
guishing mark of all mathematics to follow. . . . (T)his feature of algebra has
become an attribute of the essence of mathematics, of its foundations, and
of the nature of its abstractness on the uppermost level of the “ideation” a
la Plato. (pp. 38–39)

In a deep, long-term sense, the process of symbolization allows a kind of
lift-off from the bounds of concretely referenced thinking even more pow-
erfully than did the invention of writing (Donald, 1991), because not only
does it enable us to overcome the memory and processing limits of raw
human cognition (if, indeed, such has ever existed), it introduces new
possibilities for abstraction away from the specifics of experience and,
most importantly, the creation of new forms of symbol-mediated experi-
ence. Historically, in mathematics, this happened many times and in
many ways. For example, arithmetic freed itself from its geometric refer-
ents in Alexandria (Kline, 1972) and, over an extended period, algebra
gradually did the same, completing the separation in the years following
Descartes when the operations on numbers became free of the constraints
of geometric dimensionality.

Not only can we make symbolized generalizations, but the resulting
symbolizations enable us to treat these symbolized generalizations as
objects and relations in their own right that can serve as ingredients of
further generalizations in an upward spiral of abstraction and mathemat-
ical power that was not possible previously. In this way, the algebraic sys-
tem itself gave birth to new entities such as negative and what we now
know as complex numbers. Symbolization in connection with generaliza-
tion, as pointed out by Mason in chapter 3, begins at a very early age.
Indeed, as argued by Werner and Kaplan (1962), these symbolization
processes are an integral part of human development. But, when the sym-
bolizations become algebraic, new mathematical worlds become possible.
This is the epistemological basis for algebra often being referred to as a
gateway to higher mathematics. Next, we turn to the second aspect of
algebra to account for—its operational aspect.

The Idea of Acting on Physical Symbols—Operative
Symbol Systems

Bochner (1966) also identified a critical new ingredient of modern mathe-
matical symbolism:

Various types of “equalities,” “equivalences,” “congruences,” “homeomorphisms,”
etc. between objects of mathematics must be discerned, and strictly
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adhered to. However this is not enough. In mathematics there is the second
requirement that one must know how to “operate” with mathematical
objects, that is, to produce new objects out of given ones. (p. 313)

Mahoney (1980) points out that this development made possible an
entirely new mode of thought “characterized by the use of an operant
symbolism, that is, a symbolism that not only abbreviates words but
represents the workings of the combinatory operations, or, in other words,
a symbolism with which one operates” (p. 142).

This helps us pin down further the second core aspect of algebra, the
syntactically guided (rule-based) transformation of symbols while
holding in abeyance their potential interpretation. This aspect is both a
source of mathematics’ power and a source of difficulty for teachers and
learners. In a fairly narrow form as manipulating expressions and solving
equations, it has dominated school algebra since entering the U.S.
secondary school curriculum during the 19th century. Surprisingly,
perhaps, much of the practical content of the algebra texts was set by
Euler in the mid 1700s (Kline, 1972) and has survived.4

The algebraic system was not the first operative system, and, indeed,
the idea of a symbolic calculus of reasoning goes back at least to Descartes
and Leibniz (Kline, 1972). The standard base 10 placeholder number
system supports an operative symbolic system in the form of all the usual
algorithms for multidigit addition, subtraction, multiplication, and long
division that were invented in the 14th and 15th centuries (Swetz, 1987).
When one is using, say, the usual algorithm for multiplying multidigit
numbers (think of the vertical algorithm for the product of 376 and 1,287),
one is acting on the marks on paper according to their position and shape,
and not on specific meanings for the numerals involved. This is different
from non-rule-based writing interspersed with thinking as when one
sketches a diagram while developing an idea or building an argument or
presentation. The latter involves alternating actions on physical inscrip-
tions and interpreting their meanings, but the actions are not determined
by strict syntactically defined rules.

But operating on physical numerals as a way of number-specific calculat-
ing is different from rule-based operating on strings of algebraic literals. The
numeric calculation is directed toward producing a single number result
represented unambiguously by a string of digits. A rule-based algebraic
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school algebra. It was not invented and consolidated as a concept until well into
the 19th century, although it had been present implicitly well before then, and the
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1959).



operation (factor, simplify, combine like terms, solve, etc.) typically involves
changing the visible form of the symbols under some equivalence const-
raint, where the starting configuration may or may not be representing
a generalization and where the ending configuration is usually some visible
form that is more convenient to the purpose at hand (although in equation
solving it may also yield a single numerical result).5

A CLOSER LOOK AT SYMBOLIZATION AS A PROCESS

Looking at Versus Looking Through Symbols

As you read this chapter, you are undoubtedly looking through the marks
on the page to build in your mind some version of what we are attempting
to express. You were not noticing the page itself or the specific marks on
it. But, you could just as well stare at the marks on the page and notice
their visuographical properties—the horizontal blank spaces, the little
hooks that reach down into these spaces, the occasional extra large open
spaces with odd shapes, and so forth (squinting helps). Try to look at the
marks on your windshield while driving. You are likely to feel a bit
endangered as you, quite literally, lose sight of the road. Don’t do this in
traffic!

As the windshield experience suggests, it is probably impossible to
look at and look through symbols simultaneously. This perceptual differ-
ence is analogous to a deep epistemological distinction between mathe-
matics as an object of study in its own right versus mathematics as an
intellectual tool, as a means of seeing, organizing, and reasoning about
experience, including the highly structured experience that takes the form
of science and the ever-widening areas of human endeavor where math-
ematics is applied. This difference is sometimes stated as the difference
between mathematics as something to think about versus mathematics as
something to think with. This distinction is especially interesting in algebra,
because algebra is often used as something to think with, but where the
thing that algebra is used to think about is frequently mathematics itself.
A simple example is using algebraic symbols to represent general proper-
ties of arithmetic, such as a + b = b + a, for commutativity of addition of
(some class of) numbers a and b.
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The Separation of Symbol From Referent

We begin with a simple diagram, intended to illustrate the difference
between looking at versus looking through symbols that in turn lead us into
a closer look at what we mean by symbol and referent.6 At times, we are
working with the symbols as opaque objects in their own right, perhaps
inspecting them for patterns or, in the case of arithmetic algorithms or
algebraic character strings, operating on them according to rules that
apply to the symbols themselves. Or, in computer environments, we
might be acting on spreadsheet cells, simulation controls, or graphical
objects—coordinate graphs or geometric constructions. These are depicted
in Figure. 2.1 as actions in symbol system D that relate in some way to
actions in what we are taking as its reference field A (much more on this
later). By action, we mean both physical and mental actions. Now, at some
points, we might find it useful to look beyond the symbol D to what they
might “mean”7—what they and actions on them might stand for in A, the
situation at hand.

A word of clarification on what we refer to as attention lines emanating
from the stickfigure’s head: These are not intended as sight lines, as vision
lines as Aristotle used them, or even as they are used in optics. Rather, they
are a notational element intended to help us talk about the role of attention
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6Many readers might recognize the similarity of this perspective to the classic
sense and denotation framework developed by Frege (1984) to describe the
process of interpreting and making meaning with symbols (see the excerpts and
account by McGuinness, 1984). Although compatible in a general way, ours
focuses more intently on actions, and the continuing constructive processes
involved—as applied to the work of elementary school.

7The reader may notice that the word meaning makes relatively few appear-
ances in this chapter. This is quite deliberate because quite often meaning is taken
as a primitive, undefined root term, whereas here we are attempting to explore
how meaning is built.
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FIGURE 2.1. “Looking at versus through symbolization”—Attentional focus.



and how we switch attentional focus from one kind of thing to another.
Nonetheless, the visual metaphor is useful, but, as with all metaphors, we
need to be careful in how we use it—and be certain that it does not (ab)use us!

But this figure presumes a separation between symbol and referent—
what the symbol is taken to stand for. Where did that separation and
referential relation come from? To begin to answer this question, we need
to take a closer look at the process of symbolization. We then return to
diagrams of this type to review from a symbolization perspective some
commonly occurring situations in elementary mathematics that are bases
for the development of algebraic reasoning.

Setting the Stage—The Classroom-Based Starting Point

We begin our analysis of symbolization with Figure 2.2. The goal is to
capture essential features of what we have seen across many instances of
the development of algebraic reasoning, including those described in
several chapters of this volume, and that reflect many others’ accounts of
symbolization processes (e.g., Cobb, Gravemeijer, Yackel, McClain, &
Whitenack, 1997; Gravemiejer, Cobb, Bowers, & Whitenack, 2000). Whereas
the analysis is framed quite broadly in terms of symbolizing activity, we are
most interested in those cases where the symbolization is in the direction of
the kinds of symbols and uses usually taken as “algebraic.” We should note
that the majority, but not all such symbolizations described in the literature,
turn out to be character string-based symbol systems. But, as seen in
Brizuela and Earnest (chap. 11, this volume) and Carraher, Schilemann, and
Schwartz (chap. 10, this volume), algebraic symbolization can also include
coordinate graphical representations, among others. 

We begin with a classroom situation A that the students come to be
engaged in, to explore, describe, and discuss mathematically. You are
invited to refer to any of many classroom episodes throughout this book
to find this kind of activity underway. All initial engagement with A is
already and inevitably mediated by the students’ cultural, linguistic,
bodily (e.g., kinesthetic, haptic, tactile) resources, their social capacities
and inclinations to share experiences, and any prior experience with situ-
ations of that type. Importantly, the situation might already be mathemat-
ical in the sense that it is about, for example, numbers and operations,
sequences of numbers, geometric arrays of dots, or a verbally described
sequence of actions on numbers. Alternatively, it might be at least partially
mathematized as, for example, being about measured heights of classmates
or properties of regular geometric figures or counts of embedded figures.
Or, A might be a situation that has yet to be mathematized, such as a toy
car rolling down a ramp, a cliff eroding, a quilt being sewn, the story of
a (real or imaginary) school store’s operations, groups of people shaking
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hands, or a vase being filled with water. A may be presented in more or less
mathematical terms—a table, a diagram, or perhaps simply in words, orally
or written, or even by enactment, as with handshakes. As is clear, this
depiction intends to encompass a wide variety of situations.

We assume that the students are in the kind of classroom that appears
across most chapters of this book, a classroom where mathematical
discussion is nurtured and supported. (We take the Vygotskian point of
view that, later, a student working alone will be able to utilize important
aspects of the socially constituted symbolization processes that were
internalized during the social process.) Hence, when mathematically
confronted with and engaged in A, students begin to build oral, written,
and drawn descriptions of the situation—records of those aspects of the
situation that are accessible to them at the time. These are again mediated
by what students bring to the situation, including what they bring by way
of symbolization resources, which of course will vary a great deal across
grades and students. In this way, students build informal descriptions as
depicted by B.8 Because every situation has a history of some kind in the
experience of students and teacher, at least in the sense of triggering recall
of other situations and analyses, we could have added other As and Bs that
feed into the bidirectional “Analyzed and Communicated”arrow connecting
A and B. (To keep things schematically simple at the outset, we didn’t.)

B might initially consist of rough pictures of the situation, with much
extraneous detail or sketchiness that misses critical factors, or both
(Lesh & Doerr, 2003; Lesh, Landau, & Hamilton, 1983). It might consist of
measurements or counts recorded in preliminary, informal ways. Or, it might
initially simply take the form of informal discussion (including gesture,

28 KAPUT, BLANTON, MORENO

88We have oriented our diagram right to left, in part, to be consistent with our
first diagram and, in part, to give a sense of pulling back or pulling out of, rather
than “processing through” along a left-to-right timeline.
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FIGURE 2.2. Beginning the process of symbolization.



mimicry, etc.) in reference to students’ coming-to-be-shared view of A.
Indeed, this is the most likely first symbolization step because natural lan-
guage is already present as a symbolization resource and, as Mason
points out (chap. 3, this volume), it is already well developed as a vehicle
for expressing generality.

In all cases, the physical9 symbolization B is built from and tested against
observations about A in the social context of discussion and interaction.
B is in the process of being constructed as a new chunk of experience that
is separate from A. But, as referenced to Sfard earlier (and as classically
described by Vygotsky, 1965), the symbolization process is helping the
students create a new conceptualization of A. They are coming to think of
A in a somewhat new way. Let’s call it AB because it depends on B. So we
have a newly mediated conceptualization of A, related to B, that can
support the continuation of the symbolization process (see Fig. 2.3).
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9Note that speech and gesture, although not yielding permanent inscriptions,
are nonetheless intended to be included here as physical inscriptions. Note also
that we use the term inscription when we deliberately want to emphasize that we
are treating a symbol as a physical object independent of how or whether it may
be interpreted, and independent of its potential participation in a larger system of
symbols. We would use the term notation if we were regarding it as part of a larger
system of symbols, but at the same time independent of issues of interpretation
and reference. We use the term symbol when we are discussing the use of a nota-
tion in a referential context—where the notation may stand for something.
Whereas there is no real standard set of terms for these usages, the ones we have
chosen seem close to the norm as we have seen it. We have deliberately minimized
our use of the term meaning because its usage is so broad and so variably defined.

B
A

AB

MEDIATED BUT RAW
REPRESENTATIONS

(ORAL, WRITTEN, DRAWN, ETC.)

ANALYZED AND COMMUNICATED

MEDIATED EXPERIENCE
IN THE WORLD

(OF PHENOMENA OR MATH)

Y
i
e
l
d
s

FIGURE 2.3. Building newly mediated conceptualization of A.



So, to continue our description of the dynamic symbolization process,
we will add a new snapshot (see Fig. 2.4, which includes a refined
symbolization C, which in turn yields a refined conceptualization of
A, denoted AC in Fig. 2.4). This process has been described in terms of devel-
oping a “chain of signification” (Cobb et al., 1997) and, as illustrated
by Cobb and colleagues, it is a powerful design principle for organizing
curriculum.

The process continues toward, and perhaps reaches, a symbolization
D that is conventional (at least for the class) and compact and that
supports a conceptualization AD. Figure 2.5 depicts a nested description of
the conceptualizations to emphasize that a record, or trace, of all the
previous conceptualizations (taken individually or socially, depending
on the perspective) and their associated symbolizations remain (depending
on how much overwriting has taken place physically—in the case of
spoken symbolizations, this is a matter of memory). Such records them-
selves often act as resources in further symbolization, either within a given
episode or across episodes. 

We do not delve here into the level of detail needed to analyze
these kinds of symbolization processes in depth. However, we note that
systematic unpacking of the process through intermediate notations will
reveal the kinds of stages found by other researchers, especially the icon-
index-symbol stages formulated initially by Peirce (1955), used by Bruner
(1973), and examined in detail by Goodman (1968/1972) (iconicity
especially), by Deacon (1998) in his account of the evolution of language,
by McGowen and Davis (2001) in their Deacon-referenced analysis of
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algebraic symbol interpretation and use, and the broadly eclectic study of
mathematical symbol interpretation offered by Drouhard and Teppo
(2004). We simply suggest that ours is a common visual framework for
reading such analyses.10

Another reason for including the nested set of conceptualizations is to
emphasize the constructive, additive nature of the process of symboliza-
tion, as opposed to the view often taken that it is abstractive and subtractive.
We see the abstractive/subtractive view as resulting from a confusion of
the visible product, which is often an idealized schematic and simplified
description of A, with the constructive and often very creative process by
which the symbolization product is built. Indeed, a more accurate view of
the reflexive and recursive nature of the process would be provided by
a nesting of the entire process, whereby each new stage envelops all the
prior ones, and the reader is invited to think of the diagrams in this
way. This view of symbolization is also very consistent with the notion of
concrete abstraction as a constructive, additive process described by
Wilensky (1991) and Noss and Hoyles (1996), among others.

One other point regarding the symbolizations: Although we have
concentrated on early symbolization and the processes of building a con-
ventional notation system, it is usually the case in students’ development
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that several notation systems are already present. Thus, the student may
be in the position of coordinating more than one such system—as occurs
in those episodes, for example, where students are using physical manip-
ulatives in coordination with written and spoken notations for numbers
and operations, or in the case of certain of E. Smith’s examples (chap. 5,
this volume), coordinating verbal, tabular, and graphical notations. From
the notational perspective being offered here, students’ conceptualiza-
tions can be regarded as being elaborated and enriched as additional
notations are incorporated into their available symbolization resources. In
effect, a preexisting B is being brought into play and elaborated to help
make sense of A.

Of course, in a classroom, with multiple active participants, there are
multiple conceptualizations11 occurring simultaneously. Over the course
of the socially mediated conversation based on perceptually shared
phenomena and symbolizations that is orchestrated by the attention-
directing activity of the teacher, these tend to converge—or, if you
prefer—emerge. We see evidence of both the convergence/emergence, as
well as the irregularity and unpredictability, of the symbolization process
in the many classroom episodes described in this book. Often, the varia-
tion across students is a source of progress toward more effective
symbolizations as the insight or symbolization of a more advanced stu-
dent provides the means by which other students come to see the situa-
tion in a more productive way and appropriate the symbolization,
particularly under the deliberate influence of the teacher (van Oers, 2000).
The classroom episodes (especially in Bastable & Schifter, chap. 6, this
volume; Schifter, Monk, Russell, & Bastable, chap. 16, this volume;
van Oers, 2000) also reveal how the teacher’s agenda plays out in the
orchestration of the symbolization process. This includes the degree to
which the teacher wants to shape the students’ symbolizations toward
conventional ones, where the symbolizations might only be conventional
relative to previously established classroom language (see the “turn-
arounds” in Schifter et al., chap. 16, this volume, and later).

Finally, one can see how argumentation associated with justifying and
refining the scope of generalizations interacts with and drives the 
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11By use of the term conceptualization, we do not mean to imply a cognitivist
view of the situation. Instead, we prefer to leave this part of the analysis open to
multiple perspectives, including social constructivist and other perspectives
because we feel that our framework for analyzing symbolization is consistent with
more than one (see Cobb & Bowers, 1999; Cobb, 1994). In effect, the conceptual-
ization may be a distributed entity, distributed across participants and their
symbolizations (this is actually our preferred view).



symbolization process, including the chapters by Franke, Carpenter, and
Battey (chap. 13, this volume), Blanton and Kaput (chap. 14, this volume),
Schifter et al., (chap. 16, this volume), and especially the chapter by
E. Smith (chap. 5, this volume), where argumentation toward the devel-
opment of experienced certainty is shown to be central. Discourse and its
social context pull toward explicitness regarding the range of application
of an asserted generalization—if it holds for this, does it hold for that? In
effect (again, from a Vygotskian perspective), the social context supplies
the doubters and those needing convincing more readily than situations
where the students working alone must supply these themselves. It also
triggers the engagement of the social and conversational resources that
are typically readily available to children.

Returning to the Matter of Reference: So Where Did the
Separation of Symbol From Referent Come From?

Our general descriptions of symbolization processes are intended to help
answer the earlier question: Where did the separation of symbol from
referent come from (see Fig. 2.1)? It is the result of a chain-of-signification
symbolization process driven by communication that reformulates the
initial situation. At each stage, a process of externalization and re-expression
are simultaneously underway that creates a separate physical entity. This
material product is typically a set of physical inscriptions depicted in the
window that the symbolizer metaphorically looks at or through depending
on the needs of the situation. Less metaphorically, it is a matter of atten-
tional focus, to the physical inscriptions or their conceptual referents. But
the window also acts as a mirror because any reconstituted formulation
of the situation reflects back to guide actions, both mental (interpretive
actions) and physical (elaborations) on the inscriptions.

A Note on Our Symbolization: Actor Versus Observer, the Flow of Time, the
Limits of Static Diagrams, and the Relative Nature of Reference. The astute
reader has long realized that the authors are involved in a symbolization
process in this chapter. We have introduced two kinds of diagrams, the
window type in Figure 2.1 and the process type depicting the process of
symbolization in Figures 2.2 through 2.5. In the former, we have a place for
the actor, or agent, and emphasize the shifts in attention as well as action,
where time is mainly implicit. In the latter diagrams, the flow of time is
expressed via the introduction of sequences of new symbolizations.

More important, as a static two-dimensional diagram, each type under-
represents both the transformative effect of symbolization and its continual
nature by maintaining the identity of A as a reference field when, in fact,
as a conceptualization, it changes as it is symbolized—hence the nesting in
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Figure 2.5. This process of transformation is especially underrepresented
in the window diagrams that we use to track symbolization and symbol
use, so the reader is forewarned to take this into account. A better repre-
sentation would be dynamic, where each symbolization stage would
change the reference field in some visible way and do so in a less discrete,
less unidirectional and more recursive way.

In our choices of letters, we have deliberately straddled the boundary
between being entirely arbitrary in our choices of letters and repeatedly
using the same letters for reference field and endpoint symbolizations. We
should emphasize that the nature of reference is relative at its core, and
what is referent in one description is the result of a prior symbolization,
and so where we take up the description has a lot to do with what is
symbol and what is referent. It is inevitable that when we undertake the
description of a continual process, we make choices about where to begin,
which in turn imply choices regarding what is assumed to be in place.
This is discussed further later when we examine symbolization associated
with algebra.

Remember that these kinds of diagrams only make sense from an
external observer’s point of view. From an actor’s point of view, the
window/mirror and the conceptualization are experienced as aspects of
the same event. It is in this actor point-of-view sense that Nemirovsky and
colleagues (Cobb, 2000; Nemirovsky, 1994; Nemirovsky & Monk, 2000)
refer to as fusion of symbol and referent, which they deliberately contrast
with the transparency view that is implicit in Figure 2.1.

Finally, the framework is deliberately intended to be applicable at
multiple time scales, ranging from the minute-to-minute changes of an
individual or small group at work solving a problem, to the lesson-long
changes of a classroom, to the longer term changes of students involving
sequences of classes within a grade level (Cobb et al., 1997; Gravemeijer,
2000), to student developmental-level changes, to the development of
ideas in the context of research laboratories (Roth, 2003), to long-term his-
torical time-scale processes to help frame accounts of the evolution of
symbol systems and their related mathematical concepts and practices
(Puig & Rojano, 2004; Sfard, 2000).

TRANSITIONS FROM ARITHMETIC TO ALGEBRA
FROM A SYMBOLIZATION PERSPECTIVE

We now look more closely at those situations A that are already mathe-
matical and where the symbolization is directly in the service of gener-
alization. This is often where algebraic symbolization is learned initially
and where most instances in the book appear. Because of the central
place of arithmetic in elementary school, we look more closely at those
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situations where A involves arithmetic statements or number patterns.
In this case, A already utilizes the results of prior mathematical symbol-
ization (which is one reason the word mediated appears in the earlier fig-
ures). We make repeated heuristic use of the attentional focus diagrams
based on the window metaphor because they provide a simple notation
(perhaps too simple for strongly theoretical purposes) for tracking sym-
bolization phenomena that seem to occur across many familiar situa-
tions. The reader is invited to imagine a process diagram associated
with constructing each new layer of a window diagram: a sequence of
receding windows.

Generalizing Properties in Arithmetic: Variations
in Attentional Focus

Simple examples of generalizing come from arithmetic as children build
concepts of number and operations and isolate their properties: When
students notice that they get the same result no matter the order in which
they add two natural numbers, they are free to switch their order. Prior to
this, as they move from counting all to counting on, they realize, as a mat-
ter of efficiency, that it is easier to count on from the bigger of the two
numbers, so they switch order to accommodate this strategy. It is this
switching that symbolically comes to be instantiated as a substitution.
(From an actor’s perspective) I can replace 3 + 5 with 5 + 3 if I desire.
Thinking in terms of the A and D in the earlier diagrams, where A is
regarded as a numeric reference field for the symbol system of numerals
and operation signs D, this is an action on symbols, in D. If it is guided by
my understanding that both sums are 8 as numbers, then I am treating the
numerals transparently, looking through D to act in my conceptualization
of A, guided by the properties that I already have constructed for them in
A. This action in A might also be supported with actions on another nota-
tion system, for example, counting manipulatives of the sort depicted as
a B and C in Figure 2.4—reflecting the fact that prior symbolizations are
still available (see Mason, chap. 3, this volume, for a discussion of this
case). We depict in Figure 2.6 this kind of typical arithmetic situation in
elementary school mathematics. The action is guided by attention to and
conceptualization of A, not D. But its results can be recorded in a physical
inscription, in a D, which could be oral or written (as shown in Figure 2.6).
And, in general, such a record might vary in character, from iconic to
indexical to symbolic (see McGowen & Davis, 2001).

In contrast, I may already have generalized this switchability property
in the system of numerals and operations and expressed it symbolically
as a property of the symbols, replacing 3 + 5 by 5 + 3. Here I am guided by
my knowing that I can always switch the order of the addends, treating it
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as a figural symmetry about the “+” sign. That is to say, it is guided
directly by my knowledge of the configurations of inscriptions in D, not
by my knowledge of the size, decomposability, and so on, of the numbers,
which has already been compacted into my knowledge of D. This atten-
tion to D, rather than A, is depicted in Figure 2.7.

Outwardly, the difference between action driven by knowledge of and
attention to A versus knowledge of and attention to D may not be obvi-
ous to an observer, especially in a simple case such as that mentioned pre-
viously. It might be more obvious if, say, a student who needed to add 11
and 9, aligned 11 and 9 vertically and talked about “carrying the 1” to get
20. Here we are in the position of Figure 2.7. This would be clearly differ-
ent from an approach where the student spoke of “subtracting one from
the 11 to add it to the 9 to get 2 10s.” This would be depicted by Figure 2.6.

Much of what are often referred to as student-invented algorithms are
based in a reference field for the numerals (in an A), but come, through
symbolization, to be expressed in terms of operations on numerals (in a D),
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or, more often, in an oral (rather than written) D. These would be depicted
by Figure 2.8, where attention alternates between D and A, coordinating the
two systems of thinking. Indeed, there is considerable pedagogical leverage
in symbolizing such strategies (e.g., compensation strategies), because, as
with most physical inscriptions, this makes them explicit, discussable, and
sharable. Such might take place in multiple stages, beginning first with
numerical statements and then statements using literals: For example state-
ments such as 19 + 5 = (19 + 1) + (5 – 1) = 20 + 4 = 24 would be written before
a more general statement such as a + b = (a + 1) + (b – 1). Note that a very
similar compensation strategy saves the “correction subtraction to the last
step (ignoring associativity for the moment): 19 + 5 = (19 + 1) + 5 – 1 = 20 +
5 – 1 = 25 – 1 = 24. In each case, the strategy is based on reasoning about
numbers and operations that is then recorded in symbols.

By contrast, traditional algorithms learned only as procedures in D with-
out active symbolization based in A lack the referential connection to A and
hence cannot support the kinds of attentional coordination afforded by a
notational system that is the product of active symbolization. Hence, there
is a difference between actions in D, where D is a result of active symbol-
ization, which allow the potential for coordination with their referential
roots, versus actions in a D, which is not the result of an active symboliza-
tion and where there is no ready access to a referential field. In this latter
case, actions in the notation system must be guided strictly by the rules of
that notation system, unguided by the previously learned structure of the
reference field. See Figure 2.9 where no A is present.

In effect, there has been no reconceptualization of A in terms of D, what
was termed AD earlier (see Fig. 2.3). Indeed, if we were to include a
conceptualization it would need to be described as DD. The lack of
conceptual links to the structure renders such a DD very fragile. This provides
another perspective on the difference between purely procedural knowledge
and conceptual knowledge as described by Hiebert (1986) and Silver
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(1986), where it is argued that conceptual knowledge is more connected
and hence more stable. A similar point is made by Carpenter and Lehrer
(1999). E. Smith (chap. 5, this vol.) provides an example of a student (actu-
ally, an elementary teacher in a summer course) whose pattern develop-
ment work in a tabular D is disconnected from its blocks-based reference
field A and so is unable to make sense of irregularities in the table.

The Origins of Algebraic Reasoning Part I: Expressing a
Generalization Using an Explicit Variable

Symbolizing Generalizations Beginning in Mathematics: Generalizing Arithmetic or
Quantitative Reasoning. Now, what does the emergence of algebraic rea-
soning look like in terms of our framework? Let us examine a typical case
of a student (or classroom) generalizing and expressing a generalization
based in arithmetic. We join the action after the students have already
developed an ability to write and discuss numbers and operations using
the usual numeral symbols and words, and at least some of them can write
number sentences in some form. This situation reflects many episodes
throughout this book and published elsewhere (e.g., Bastable & Schifter,
chap. 6, this volume; Brizuela & Earnest, chap. 11, this volume; Carpenter,
Franke, & Levi, 2003; Carraher et al., chap. 10, this volume; Schifter et al.,
chap. 16, this volume). The students have a multiplicity of specific experi-
ences subject to generalization, but they need a compact way to express
them as a unity, as a general statement that covers the multiplicity of
instances; indeed, it’s not only a multiplicity, it’s an infinity of instances.
They are in need of a symbolization.

38 KAPUT, BLANTON, MORENO

D

d1

d2

action

FIGURE 2.9. Operating in a notationally and conceptually isolated system.



In the simple case already mentioned, commutativity of addition, the
students have already written and discussed sums and perhaps have a
name for the process of reversing their order (see e.g., Schifter et al., chap.
16, this volume). These verbalizations could count as an intermediate
symbol system as discussed earlier, reflected in Figure 2.2. They have also
recorded such reversals in their number sentence symbol system D, as
depicted in Figure 2.6.

But this now provides the opportunity for another round of symboliza-
tion, one that is clearly more algebraic in cultural artifact terms. In partic-
ular, now that they have a generalization to express—actually, to
re-express—they are ready, and in most cases more than willing, to write
a generalization using literals rather than numerals, a statement such as
“a + b = b + a” that carries the visual structure of their previous numeri-
cal statements. In effect, with the likely guidance of the teacher (we must
recall how much effort this step took historically), the students are
(re)creating a new symbol system E based on actions and equivalences
experienced in the numerical statements of D, likely in concert with ver-
balizations. The situation is depicted in Figure 2.10.

They are now using regularities in the shape of the symbols in D, the
visual symmetry of symbols such as 5 + 6 and 6 + 5 across the “+” sign in this
case, based in prior numerical experience in A. They are likely also
applying their experience inherited from the culture at large in using
letters as shorthand abbreviations and as labels, as well as to denote indeter-
minate things.12 The result is some sort of conventional expression of
a generalization. Work by Fujii (2003) indicates that appropriate arithmetic
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error (Clement, 1982; Kaput & Sims-Knight, 1983b).



experiences can make this symbolization a natural transition, but that if such
experiences are not provided, then students’ understanding of literals as
variables is limited (see later where we extend his notion of quasi-variables).

This symbolization migrates existing D inscriptions such as the opera-
tion sign “+” and the equal sign to subtly different roles in E (Kieran, 1981).
For this to happen as described, the symbols need to have been used in a
mutually compatible way in arithmetic, especially in unexecuted number
sentences, or as shown in J. Smith and Thompson (chap. 4, this volume), in
explicit expression of quantitative relationships. It is a clear message of
much prior research that a strictly procedural use of these signs does not
provide a foundation for this critical symbolization step, but appropriately
designed and executed instruction does indeed support such a step
(Carpenter et al., 2003; Carraher, Schliemann, & Brizuela, 2001; Fujii, 2003;
Fujii & Stephens, 2001; Kieran, 1992; MacGregor-Stacey, 1997). We should
also note that students’ conceptualization of addition is enriched and view-
able from a more abstract level by this new symbolization in E in a kind of
retroactive way. Further, it sets the stage for potential generalizations to
other number types or to other operations because they can now be stated
succinctly in E. Finally, it depends on an appropriate symbolization activity
in D, which is the building of a series of written expressions that can serve
the semiotic move of replacing the numerals by literals in analogous
expressions. This activity is in support of the second core aspect of algebra,
reasoning from the forms of inscriptions. The fact of visual analogues
between the arithmetic and the algebraic systems suggests that, rather than
being a discrete or discontinuous symbolization jump, the process is better
understood as a continuous, analogic process of the substitution of visually
similar forms.

For young students whose symbolic resources are limited, the general-
ization may need to be expressed using their available techniques of
discourse based in natural language, including intonation and gesture. In
this case, students express generality in the form of particular instances
intended to be seen as typical of a range of possibilities where the actual
range of the generalization is often tacit. Such a particular instance might
also reference physical materials, which can embody generality only if
used in this way. See Mason (chap. 3, this volume), Bastable and
Schifter (chap. 6, this volume), and Blanton and Kaput (2003) for examples
of this type. Argumentation associated with clarifying the range and
nature of the generalization pushes students toward more explicit
expression of generality and hence the symbolization that makes this
possible (E. Smith, chap. 5, this volume).

Symbolizing Generalizations That Begin Outside of Mathematics. The
situation here is structurally similar except for the role of A, where A is not
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fully mathematized as it was in the previous situation. In the current case,
one or more intermediate representations (B, C, . . . ) typically need to be
constructed before the key generalization step to some representation E
that captures the essential generalization(s) needed to solve the problem
at hand. These will involve counting, measuring, organizing, and apply-
ing perhaps some previously developed way of symbolizing, such as
a two-column table or perhaps sequences of number sentences. Note that
E need not be a version of the character string algebraic system but could
instead be a coordinate graph or, depending on the level of the students,
it could be a two-column table from which generalizations are made
orally and tested numerically. The factor that makes it algebraic is that it
is a deliberate expression of a purposeful generalization to serve further
reasoning. It embodies the first core aspect of algebra.

As was the case in our commutativity example, it pays to build sufficient
experience in one symbolization before moving to another symbolic
expression of the generalization. Consider, for example, an algebrafied
version of the well-studied Handshake Problem, which asks a question of
the type: If I have 50 people at a party, how many handshakes are needed if
everyone is to shake everyone else’s hand exactly once? We can regard the
problem situation as an A in the previous descriptions. In this form, the 50
amounts to a number being treated algebraically, because it is very difficult
to achieve a numerical answer without creating a general functionlike rule
for determining the number of handshakes for a variable number of people.
It pulls us to create a model that embodies a generalization using another
system of representation B. One style for achieving this goal is to generate a
set of data on the total number of handshakes for a manageable number of
people (perhaps organized in a table) and determine a function that outputs
the number of handshakes given the number of people (either in efficient
closed form, or in far less efficient recursive form and requiring much more
labor to yield an answer). This style combines the generalization core aspect
and the function strand (2) to form B in which to compute a solution.

Another style, far less common but more algebraic in its treatment of the
numbers and operations involved, more directly applies Core Aspect 2, rea-
soning from the form of expressions. This approach expresses the number
of handshakes for a given number of people as an unexecuted number sen-
tence that yields the sum of handshakes of all the people up to and includ-
ing the last person added to the group. Such a sequence, based on
repeatedly incrementing the group by 1 and noticing that each new person
must shake hands with all the people who previously shook hands, takes
the form of 0 for 1 person, 1 for 2 people, 1 + 2 for 3 people, 1 + 2 + 3 for
4 people, 1 + 2 + 3 + 4 for 5 people, and so on. This then suggests that the
total for 50 people is the sum of positive integers up to 50 – 1 = 49. Here the
form of the computation more directly reflects the structure of the situation
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than the prior approach. The B produced here is of a very different kind
from that in the other table function style approach, which actually
obscures the computational structure. The actual computation is the same
as the recursive one, of course, but is expressed somewhat more explicitly
(Kaput & Blanton, in press). Indeed, the approach is entirely the same for
the symbolically general case with “50 – 1” replaced by “n – 1”—so that the
step to a literal-based expression is quite direct (an E in the previous
description). The power and range of such reasoning with sums is nicely
illustrated in Bezuszka and Kenney (2004).

Transitions to Algebra II: A “Lifting Out” of Schematized
Actions on Symbols to Build an Operative Notation System:
A Symbolization Example Involving Equations

Next, consider the second core aspect of algebra, reasoning from the
syntactically defined forms of symbols, especially syntactically guided
transformations of symbols. We have previously discussed the historical
development of two primary operative notation systems, the numerical
algorithm system founded on the base 10 placeholder system, and the
algebraic system that uses literals to stand for variables. Let us now take
a classroom-learning look from a symbolization perspective at one aspect
of the algebraic system, one that involves equation solving.

Consider a situation where students have been working with open num-
ber sentences such as 8 + _ = 13 or, after introducing literals representing
variables as discussed earlier, using a literal, 8 + x = 13. After solving and
discussing some number of these kinds of sentences, it is noticed that the
answer always seems to be of the form 13 – 8, that is, in verbal terms, “you
subtract the left-hand number from the right-hand number to get the
answer.”13 The students can be thought of as working within a number-sen-
tence symbol system D, depending on their arithmetic prowess, perhaps
making occasional use of other systems such as counting chips, fingers, or
marks on paper. In this way, they are in the process of building a rule, a gen-
eralization that applies to a parallel set of additive number sentences writ-
ten in the D system. It almost always passes through a “theorem-in-action”
stage (Vergnaud, 1982), where the action can be done, but not articulated
(see also Mason, chap. 3, this vol.). It also occurs in the form of students
being able to predict the next number in a pattern without being able to
explicitly articulate the pattern as a formula of some kind.
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This is another example of the symbolization process as already
described, where children’s intermediate step could be in form of the
verbal version of the rule as given—a B in the sense of Figures 2.3
through 2.5. Mathematically, we could regard this as a generalization
over a subset of the expressions writable in D. As is discussed further
later, arguing the range of the generalization is a main driver in building
a new symbolization.

At some point, again as the result of a combination of discussion and
perhaps the teacher-led cataloging and recording of cases, the rule gets
extended to cover cases where the unknown is in the first position, as in
“_ + 6 = 15.” To ensure that the rule covers all such cases and will extend
to more cases in the future, the teacher suggests that they think of it as
“subtracting the same number from both sides (of the equation).”
Although it need not be written in what we would recognize as algebraic
form, this new verbally described operation on the number sentence
objects of D is another, and major, contribution to building a new symbol
system which consists of expressions of generalizations about actions on
number sentences in D. It is a distinct representation of general actions in
D, and as such is part of a new operative symbol system E being lifted out
of D to serve as a new, more general way of thinking about and operating
on the number sentence objects of D.

This is an algebraic move, as reflected in Figure 2.10, but it is a different
kind of move. Whereas the previously described move involved express-
ing variation across statements in D, the new one expresses actions on the
inscription objects of D. These two kinds of symbolizations embody the
two core aspects of algebra both as a cultural artifact and as mathematics
that people do, one to express generalization and the other to operate on
those generalizations symbolically (the key aspect of algebra emphasized
by Bochner earlier).

A common next step in the algebraic symbolization of equation solving
involves the action of transposition of symbols as a shortcut for “subtract-
ing the same thing from both sides.” At some point in working with such
simple additive number sentences, and solving those with the subtraction
technique, someone inevitably says that this is the same as moving the
known number from the left side to the right side and either subtracting
it or changing its sign (so x = 14 – 6 or x = 12 – 5 in the previous exam-
ples). In effect, this introduces another operation in the symbol system for
equations.14 Indeed, it is usually quickly extended to broader kinds of
equations, particularly linear equations.
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This is an important step for two reasons. First, it is pragmatic in that
the procedure makes very efficient use of computational knowledge
(subtraction), and second, it simplifies the equation solving by reducing
cognitive load to the management of simple actions on a small number of
symbols (in the spirit of the Whitehead quotation). And, importantly, this
new action is further removed from the referent field D because it is no
longer expressed in language that applied to the original number sen-
tence objects of D. This then adds some error risk, however, due to the
potential for misapplication of the operation, which is now more isolated
from previously symbolized and conceptualized actions.

The symbolization process of moving from a study of number sen-
tences in symbol system D, whose referents are numbers and operations
on them with some cognitive reference field AD, to equation solving of the
sort described yields a new symbol system E, which supports actions that
can be carried out independently of D and its conceptualizations AD. This
could be illustrated in a diagram similar to Figure 2.10.

REFLECTIONS ON THE SYMBOLIZATION FRAMEWORK:
GENERALIZING AND EXTENDING OUR EXAMPLES

The Two Kinds of Algebraic Symbolization: Generalizing
and Action Lifting

Expressing generalizations in compact and stable external form using
some kind of notation for variables and then lifting frequently used and
wide-scope actions out of symbol systems are the two central ingredients
in the development of algebraic reasoning. They are repeated across many
contexts and many levels. As we saw in our equation examples, they
interact in a deep way. Actions on symbolizations are not possible or
fruitful until the generalizations they express are compacted and crystal-
lized by those symbolizations. In an interesting way, the symbolization
results in both a separation of symbol from referent and a close connection
between the two. Frye (1987) points out that this is an essential
feature of symbolization in general. He uses the words displace and con-
dense and identifies other philosophers of symbolization who discuss
this same issue. Productive use of the separation and connection turns out
to be a critical skill in algebra, especially when actions on symbols are
involved.

But not just any actions are worth lifting out. They must make good use
of existing mental function, provide conceptual and linguistic economy,
serve a useful purpose across a wide range of cases, and, most impor-
tantly, they must be logically coherent with respect to the existing struc-
ture of the system on which they are applied. Indeed, this is the essence
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of being “syntactical.” The action needs to produce objects that fit with
existing ones in some acceptable way. But, if the symbol system is well
built from its reference field, this coherence is built in. This is one aspect
of what Wigner (1960) calls the unreasonable effectiveness of mathematics. It
is also the reason why we can ignore the reference field as we manipulate
symbols according to syntactical rules and be assured that the result
will be both consistent with the configuration of symbols that we started
with and a logical basis for thinking about the reference field. Of course,
if the reference field is nonmathematical as in the modeling context, then
the new configuration may or may not fit the realities of the reference
field. The judgment at that point is an empirical matter and is usually the
central concern of the activity.

Some of the lifted actions based in arithmetic can be represented
directly in terms of the structure of the system, such as the distributive
law of multiplication over addition in the usual number systems, which
allows the substitution of a * (b + c) by a * b + a * c or vice versa. The action
is an equivalence-preserving substitution, which has parallels in the other
basic properties of operations as well as substitution actions such as
factoring and expanding polynomials that are built directly on them. Other
substitution actions, such as the various laws for exponents or adding frac-
tions, are more complicated but follow from the basic ones. Other actions
are those less directly related to basic structure, such as the operations on
equations we introduced earlier, or more complicated ones that depend on
some special starting configuration, such as the quadratic formula or oper-
ations such as addition or multiplication of rational expressions.

Some actions are less explicitly specifiable and, as anyone who has
worked on defining a computer algebra system will attest, embody some
ambiguity, such as simplify or combine like terms. But all of these actions
require attention to the form, the configuration, of the symbols—the sense
in Frege’s terms. It is here where adjustments to approaches to arithmetic
are especially important because, as pointed out by Fujii (2003), Livneh
and Linchevski (1999), in our own work (Blanton & Kaput, 2004), and by
J. Smith and Thompson (chap. 4, this volume), most arithmetic statements
are read as instructions to compute and are indeed executed as such, typ-
ically leading to a numerical result. Because in algebra they need to be
thought about in a fundamentally different way (as illustrated in our ear-
lier Handshake Problem discussion), students have particular difficulty
making the transition unless their work with arithmetic treats arithmetic
statements in a more algebraic way. In particular, it is important for
students to work with unexecuted arithmetic expressions, building
sequences of them, transforming them, comparing them with others, and
so on. Fujii (2003) refers to substituting different numbers into sequences
of unexecuted number sentences as using the numbers as quasi-variables.
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This is another aspect of the process of bringing out the algebraic charac-
ter of arithmetic as suggested by Carraher et al. (chap. 10, this volume).

An Essential Pedagogical Tension

The increased risk for error as one moves away from the original reference
fields is repeated across many mathematical contexts and levels. It is one
way of viewing the inevitable pedagogical tension between the increase
in mathematical power deriving from cycles of symbolization that pull
ever farther from concrete reference fields and the resulting decrease in
learnability for students.

Our earlier comments about introducing the numeric algorithm system
without a symbolization process to ground it in numeric experience apply
a fortiori here in algebra. If the algebraic system is not introduced via a
well-grounded symbolization process in the context of both expressing
generality and the lifting out of previously established actions, then it is
based only in rules about itself and is symbolically and conceptually iso-
lated from foundations in what the student knows and can do (as in Fig. 2.9).

There is, we feel, an important lesson in the equation example. The
action on the numerical-expression-objects of D to be lifted out to become
an action in a new system E is useful across a wide range in D, it is impor-
tant, and it is often repeated. As noted earlier, it is representational econ-
omy and efficiency, measured in cognitive15 terms, and communicative
power measured in terms of argument and justification that together
drive the symbolization process. One can recognize most of these factors
at work in the previous example (although for brevity’s sake we did not
use classroom data) and in virtually every classroom episode described in
this book. But when argument and justification are not present, and the
symbolization process is cut short as is so often the case, one can expect
the kinds of algebra learning difficulties that were once the staple of
research in algebra (e.g., Booth, 1984; Clement, Lochhead, & Monk, 1981;
Hart, 1984; Matz, 1982; Wenger, 1987).

Historical Symbolization in Terms of the Framework

As is commonly known (see most any history of mathematics book
covering the period from 1400–1800), there have been many episodes across
history where actions regarded as legitimate in a symbol system D yielded
results that violated expectations in the accepted reference field A that in
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turn, provided a rationale for enlarging or modifying A. For example, this
occurred when equation solution methods yielded negative roots, or when
simply squaring an unknown, adding one, and setting the result equal to
zero, one can find oneself trying to take the square root of a negative num-
ber.16 To make things more problematic, the arithmetic of such imaginary
numbers can be made consistent with the previously known arithmetic of
rational numbers (for an accessible account, see Jones, 1954, reprinted in
Swetz, 1994). The same is, of course, true of negative numbers. However,
there may be a well-developed notation system D and an accepted refer-
ence field A containing objects that, at one point, are not represented in D,
but where D is extended in a natural way (in hindsight) to represent them,
as Stevin extended the base 10 placeholder system for whole numbers to
decimals by allowing digits representing negative powers of 10 (Kline,
1972; Moreno & Waldegg, 2000). A similar situation occurred when the idea
of fractional exponent, which was seen simply as another, more computa-
tionally efficient way to write powers of roots, was extended to arbitrary
real numbers. This, of course, required a limit process and helped generate
new issues of continuity of the real numbers (Boyer, 1959).

These kinds of historical phenomena remind us that the process of
symbolization in school mathematics has a deeply transformative effect on
what is known—ideas of numbers and ideas about operations on numbers
are transformed during the process, a process that is almost never
a matter of re-representing what was known. Noble, Nemirovsky, Dimattia,
and Wright (2004) draw an analogy with getting to know a person; as one
gets to see individuals in new circumstances, our knowledge of those
people change, and for us, they are experienced differently from the first
meeting. Our knowledge is richer, deeper, and more generative. We can
predict future behaviors across wide varieties of circumstances, relate those
individuals to other people we know, and so on. It is in this sense that the
process of symbolization, particularly in the service of generalization in the
development of algebraic reasoning, can deepen, enrich, and make cohe-
rent the experience of elementary school mathematics.

Errors in Terms of the Framework

There are two broad classes of errors. One involves mistakes in using the
rules of a symbol system within a symbol system, as when one mishandles
a carrying across zero in the standard multidigit addition algorithm or
makes erroneous manipulations of algebraic expressions (Matz, 1982).
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The other involves cross-system interpretation errors, as when a correct
action is performed in one system and is then misinterpreted in another
(Wenger, 1987). The latter is most likely to occur in the context of modeling
nonmathematical situations where the interpretation in either direction
is subject to error (Booth, 1984; Clement, 1982; Kaput & Sims-Knight,
1983a, 1983b). The table blocks symbol-referent breakdown described by
E. Smith (chap. 5, this volume) and mentioned earlier is of this type.

The Actor Versus Observer Perspectives: Fusion
Versus Transparency

The type of notation system that is involved in symbol use is likely to be
a factor in the experience of fusion, or the extent to which the symbolizer
experiences the notation as something separate from what is being repre-
sented. In particular, a key difference may result from the difference between
analogue and iconic notations on the one hand and character-based
notations on the other (Goodman, 1968/1972). In the former case, the nota-
tion embodies physical features that can be mapped directly onto its pre-
sumed referent, especially when discussed in a language that applies
both to the situation/phenomenon and the symbols used to describe it.
A coordinate graph whose height may be increasing over an interval being
used to describe some phenomenon, which is taken to have some quanti-
tative aspect that is likewise increasing is an example of this duality
phenomenon. In this and many cases (Roth, 2003), the features of the sym-
bol and those of its referent are experienced and discussed univocally, as
essentially the same thing by sophisticated users such as scientists.

This is a different kind of notation–referent relationship and is more
iconic than that which occurs when the notation involves an arbitrary
visual shape as with alphanumeric characters (e.g., algebraic expressions),
where the relation between the configuration of the notation and the
phenomenon is far less direct and in need of much more interpretation (i.e.,
symbolic as mentioned earlier). Knowing for which values of the domain
that a polynomial is increasing can involve some very fancy mathematics
compared to knowing, based on visual inspection, where its graph is poin-
ting upward or downward. It is our sense that the process of working
through the behavior of a highly indirect symbol system, and hence living
in it, focuses attention on the symbols and hence away from the represented
phenomena. As the studies by Roth (2003) of scientists working to represent
complex phenomena have shown, this would tend to make fusion harder
but not impossible. An important feature of the cases Roth studies is the
deep engagement of the scientists in the process of symbolizing the pheno-
mena that they are studying; their representations of the phenomena and
their understandings of those phenomena co-evolve, as was the case of the
elementary school children studied by Lehrer and Pritchard (2002) building
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understanding of two-dimensional space, and Lehrer, Schauble, Carpenter,
and Penner (2000) building understanding of various science concepts.

We feel that it is useful to have both the actor and the observer perspec-
tives available when describing symbolization. We take the view that ver-
sions of this symbolization process need to be repeated all across
mathematical schooling in order to build both a rich web of representa-
tional resources and the habits of mind that enable students to continue
to extend and apply these resources.

So Which Symbolization Processes Are Algebraic and
Which Are Quasi-Algebraic?

The previous chapter offered a content analysis of algebra: the two core
aspects, expressing generalizations and operating on the resulting
symbolizations, and three strands, generalizing from arithmetic and
quantitative operations and their structures and properties, functions/
variation, and modeling. This chapter describes how this content arises
from a symbolization perspective. But symbolization occurs across all
mathematical activity ranging from primitive counting and recording to
the most esoteric advanced mathematical research. Operating on and rea-
soning with symbols, including common arithmetic, are likewise ubiqui-
tous. So which symbolizations among the three strands deserve to be
called algebraic? Whereas some arbitrariness in choices is unavoidable, we
have a sufficient framework in place to offer a principled characterization
of which kinds of symbolization activity are algebraic, which are quasi-
algebraic (defined in the next section) and which are not algebraic.

Deliberate Generalization Is at the Core. We regard a symbolization
activity as algebraic if it involves symbolization in the service of expressing
generalizations or in the systematic reasoning with symbolized general-
izations using conventional algebraic symbol systems (including more
recent graphical and dynamic systems). Extending Fujii’s (2003) idea of
quasi-variables, we define an activity as quasi-algebraic if it satisfies the
same conditions except that it may use any symbols, including traditional
arithmetic ones, informal ones (including oral speech and physical
manipulatives), or idiosyncratic ones. Thus, the use, in support of delib-
erate generalization of quasi-variables in this sense, as well as the alge-
braic use of numbers, both qualify as quasi-algebraic activity. Indeed,
most of the classroom-based activities depicted in this book qualify as
quasi-algebraic. Note that algebraic use of numbers refers to engaging
students in reasoning with numerical statements that are being analyzed
not for purposes of computation but for their structure, as when a teacher,
attempting either to get across or diagnose an understanding of some
general property about numbers, asks whether the sum of two odd
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numbers is even by asking about the sum of 327 and 459, or whether 327
+ 459 is the same as 459 + 327, where the computation is beyond the cur-
rent capacity of her students.

In contrast, manipulation of conventional algebraic symbols apart
from acts of generalization (e.g., multiplying polynomials for the sake of
practice) does not qualify as algebraic activity according to our character-
ization, despite the fact that it may be of educational value—in the same
way that playing the scales does not qualify as musical activity, despite
the fact that it may be necessary in order to be musical later. Also, arith-
metic problem solving in pursuit of one-answer arithmetic solutions is
neither algebraic nor quasi-algebraic. On the other hand, doing a
sequence of arithmetic computations in pursuit of a pattern or general-
ization is quasi-algebraic.

Hence, we see that use of conventional symbol systems plays an
important role in distinguishing algebraic from quasi-algebraic symbolizing
activity. However, our characterization involves a more subtle matter con-
cerning the mental activity of the symbolizer, one that may make the
distinction difficult to determine in certain cases. For example, consider a
student building a traditional algebraic expression or equation while
solving a one-answer word problem. Is the student engaged in an activity
that we would term algebraic? We suggest that this depends on whether
the student is writing the expression or equation deliberately to express a
general statement about a range of possibilities generated by substituting
specific values for the variables in the expression or equation or, alterna-
tively, simply repeating a rehearsed procedure that leads to an answer for
the given kind of problem. In the former case, we would regard the activity
as algebraic and, in the latter, lacking the crucial ingredient of the intent
to express generality, we would deem it as nonalgebraic activity.

The use of conventional symbol systems is a necessary condition for an
activity to be algebraic, but it is certainly not sufficient. And, in the case of
quasi-algebraic activity, the diagnosis may be even more subtle because,
for instance, a student may be attempting to state the general through the
use of a specific case, as Mason points out, and where the intent might be
evident only in the student’s vocal intonation. The key here is not to be
able to diagnose every student activity to determine which category it
falls within, but rather to outline some guidelines that help distinguish
between those kinds of tasks and those kinds of responses to tasks that are
on the path to algebraic reasoning from those that are not.

Quasi-Algebraic Reasoning Across the Three Strands of School Algebra. In
our content analysis of the three strands of school algebra in chapter 1
(this volume), the role of generalization is most salient in the first strand,
which centers on building generalizations from arithmetic and quantitative
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reasoning. We wish to emphasize that this strand is meant to encompass
higher order algebraic symbolizations—generalizations on systems of
symbols. This includes abstract algebra. But in its quasi-algebraic forms,
it could involve the properties of clock arithmetic, for example.

In the case of the Joint Variation and Functions strand, again, quasi-
algebraic activity is marked by building generalizations of specific
quantitative relationships across a wide variety of notations, including
physical concrete materials such as sequences of blocks or colored rods.
Good examples can be found in chapters 5, 10, and 11 (this volume),
particularly in the analyses by E. Smith (chap. 5, this volume). In effect,
the move from quasi-algebraic to algebraic activity is determined by the
use of conventional notation systems for the representation of variables
and functional relationships (both character-string and graphical), where
the generalization that renders it quasi-algebraic or algebraic is a statement
that embodies a joint-variation relationship.

In the Modeling strand, the situation is a bit more complex because
certain kinds of modeling situations force the use of some sort of (conven-
tional) algebraic approach, whereas others are more sensitive to the back-
ground of the problem solver and might readily be the subject of
quasi-algebraic approaches. In particular, explorations, especially systematic
ones, using sequences of arithmetic statements usually mark a quasi-
algebraic approach. See Bednarz and Janvier (1996) for a discussion of this
issue framed in terms of the difference between arithmetic and algebraic
problems.

Much more could be said regarding the details in each strand, includ-
ing the interactions between the use of conventional notation systems and
the thinking that is involved in each strand. For example, see Usiskin
(1988), where the different uses of notations for variables are outlined.
However, this chapter is intended to introduce rather than exhaustively
examine symbolization in algebra.
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Making Use of Children’s Powers to
Produce Algebraic Thinking

John Mason
The Open University

By the time children get to school, they have already displayed enormous
powers for making sense of the worlds they inhabit: the material world of
things, the mental world of images, the symbolic world of labels and
words, and the social world of practices. They know what food to expect
at different meals, they know about getting dressed, and they know about
different rules of behavior applying in different situations. The 7-year-old
who, after multiplying 45 by 8 in her head through repeated doubling,
suddenly observes “Hey dad, every number is half another number;
(pause) and every number and every number and a half is half of another
number” (Sue Johnston-Wilder, personal communication, June 3, 2002);
the 4-year-old who observes “if the canal floods we will get wet”; the 3-
year-old who, sometime after being told he was in the outskirts of Paris,
asked, “Are we in the out-trousers yet?” (Noticeboard, 2004); and the 2-
year-old who responds to the sound of a car in the drive in the evening
with “daddy!” beautifully display pattern-generated expectation, as does
the child who is learning to walk, crawl, or roll over, or the newborn rec-
ognizing mother from smell and feel as well as sight, despite her different
perfumes, clothes, and hairdo. 

The claims made in this chapter are that the central problem of teach-
ing is to get learners to make use of those powers and to develop them,
and that algebraic thinking is what happens when those powers are used
in the context of number and relationships. When textbook authors and
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teachers are tempted to do for learners what the learners could already
do for themselves by using their own powers, they increase rather than
decrease learner dependency. They actually contribute to the gradual
atrophy of those powers, at least within the context of mathematics, and
this in turn contributes to growing disaffection and disinterest in school
mathematics. Nowhere is the need for those powers more evident than
in the teaching of algebra, and, as is argued here, this means in arithmetic
as well.

Algebra is and has been for a long time, the mathematical watershed
for most adults, in the sense that it is when they meet algebra that they
decide that mathematics is not for them and so cut themselves off from
a vital part of their cultural heritage and their mathematical potential.
Brandford (1908) observed that “the radical mistake of algebraical teaching
for many generations was in passing by a jump from Particular
Arithmetic to purely Symbolic Algebra, and thereby omitting a sufficient
training in Generalized Arithmetic . . . the simplest type of significant
symbolic algebra” (p. 253).

When does algebraic thinking begin? A traditional answer based on
current curricula would suggest that it begins in secondary school with
courses labeled algebra. My answer, building on suggestions of Gattegno
(1973, 1987), is that the powers necessary for algebraic thinking are being
used by children as soon as they leave the womb, if not before. The child
lying in his or her crib making sounds is not simply rehearsing the tonal-
ities of phrases and sentences before using words. Babies are experiencing
pausing and hence associating (the basis for associativity), ordering (the
basis for commutativity), and perhaps even distributing (“ah” pause “mm
bb” and “ah mm” pause “ah bb”). Instead of seeing arithmetic as the
necessary prerequisite for algebra as generalized arithmetic, it is possible,
and pedagogically effective, to see both as arising from the use of the
same powers. 

Put another way, to learn arithmetic beyond memorizing a counting
poem and a few number-name facts, it is actually necessary to think
(pre-)algebraically. Both algebra and arithmetic are natural outcomes of
the application of human powers to counting and calculating. Algebraic
thinking is required in order to make sense of arithmetic, rather than just
performing arithmetic instrumentally. It is also necessary whenever some
calculation is to be repeated many times, especially when there might be
variations, such as when an entrepreneur is developing pricing policies. 

To substantiate these claims, the chapter begins with a quick summary
of some of the most important powers possessed by all children who can
walk and talk. The use of these powers is briefly illustrated in the domain
of arithmetic, before illustrating how algebra emerges from the use of
these powers, ending with consideration of what those unaccustomed
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to making use of learners’ powers might put forward as objections or
obstacles to this perspective.

POWERS

Human beings make sense of their experience. The word sense is perti-
nent, because as philosophers have proposed and debated for centuries,
the senses are the basis for our contact with the material world (Buchdal,
1961; Whitehead, 1911/1948). Although words connected with sight
dominate English idioms (“I see what you mean,” “a little foresight
would have helped”), many people reject the frozen metaphor of “under-
standing is seeing.” They prefer to use metaphors involving sound
(“I hear what you are saying”), the visceral (“I don’t feel you are listening
to me.”), and touch, both in its physical and its emotional sense (“I was
touched by your saying . . .”).

Sense is made by using natural powers to collect, classify, assimilate,
accommodate, and even reject sensations, whether physical or imagined,
remembered or constructed, literal or metaphoric. Thinking in terms of
natural powers is certainly not new. According to Dewey (1897), “The
child’s own instincts and powers furnish the material and give the starting
point for all education” (p. 77).

The following powers are some that are relevant to mathematics, and
particularly to algebraic thinking.

Imagining and Expressing

Everyone has the power to imagine, where imagine and imagery are taken
in the broadest sense, encompassing any or all of the senses. Recall some
particular detail of a scene on a recent holiday, and really be there in your
mind. You can do this even while reading or driving, and the vividness of
your recall assists you in describing vividly to others. It also provides
access to details that don’t come immediately to mind at first. Imagery
and imagination are the means by which people direct the energies
produced by their emotions. For example, several of the 3,000-year-old
Upanishads use the metaphor of the human psyche as a chariot with
horses, driver, and owner (Rhadakrishnan, 1953): Mental imagery (the
reins) is the means for the intellect (the driver) to control and direct the
emotions (the horses) that pull (provide the motive power for) the chariot
(the body). 

Watching a baby in the cot moving and gurgling, or an older child
playing house, it is clear that children have a rich world of imagination.
Klein (Torretti, 1978) described the faculty of forming images as naive
intuition” proposing that physical experience develops into mechanical
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(material) intuition and optical experience develops into projective,
geometric intuition. To imagine what is not physically present, and to
dwell in that world while remaining physically present in the material
world is a fundamental power, which is crucial to the development of
mathematical thinking. It is, after all, the basis for modeling: moving from
the material (or other world) through the imagined to a symbolic world,
resolving the problem there, then reinterpreting results via the world of
imagery back into the original world (Open University, 1978). 

Charles Saunders Peirce found it difficult to decide between mathe-
matics as “the science of necessary conclusions” (quoting his father
Benjamin Peirce, 1870) and as “the study of the hypothetical states of
things” (Peirce, 1902/1956, p. 1778). By augmenting the imagination,
mathematizing these images, and deducing necessary conclusions, he
emphasised how valuable it is to try out conjectures imaginatively or
symbolically through mathematics, rather than performing dangerous
or catastrophic experiments in the material world. Young children are
adept at using their power to imagine as part of modeling, using old
boxes and cartons to stand in for cars and trains, caves and tents, secret
chests, and make-believe presents.

Young children love to have someone read to them. Being read to is an
important way of receiving adult attention, and it has the effect of stimu-
lating powers of imagination. In the safety of adult presence, children
can let themselves go into a world of fantasy. Later, they will be called on
to express the products of their imagination in speech, sound, pictures,
movement, and writing, as well as in mathematical symbols. Learning to
control mental imagery is an important precursor to all forms of thinking,
whether in images, diagrams, or symbols. It is not enough to acknowl-
edge that learners possess these and similar powers: The power to imagine
and to express needs to be invoked in the classroom, frequently and effec-
tively, by encouraging students to express perceived generalities, relation-
ships, connections, properties, and so on.

Everyone also has the power to express themselves, by which is meant
to express something of their mental world. The urge to express is clear:
Children running, jumping, and shouting is just one manifestation.
Different people prefer different media but, as many people are currently
pointing out (Bruner, 1991, 1996; Chamberlin, 2003; Donald, 1991), human
beings are narrative animals: They have a deep-seated need to tell (por-
tray, display, act out) stories that account for their experiences and their
history, and a strong need to recount these to others as the basis for social
interaction. Not all young children express themselves coherently at first
(Freudenthal, 1991). To learn to tell stories, to learn to write essays, they
need to become explicitly aware of the fact that other people’s inner
worlds are different from their own, and that the contents of their own
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inner world are not directly accessible to others. They need to learn to
describe explicitly what they are seeing, hearing, feeling, or touching to
someone who does not share their world. Consciousness emerges
through learning to tell stories about oneself. 

Focusing and De-Focusing

Very young children somehow learn to discern details in what they are
seeing and hearing. By focusing their attention, they actually create objects
out of their sensations through stressing some features as foreground, and
ignoring others as background. This power enables them to distinguish
between different objects, and to detect relationships between objects or
between features of objects. They could not learn language without this
discernment, nor could they distinguish food from non-food, or parents
from themselves. They teach themselves how to focus their attention on
some detail, to shift from one detail to another, and also to defocus in
order to take in a larger whole. For example, at the end of this sentence,
pause and become aware of the individual alphabetic characters, perhaps
comparing and contrasting the m and the w; then de-focus until you are
aware of the page as a whole and the flow of white spaces down the
page between the words. This power is possessed by everyone (see
Kaput, Blanton, & Moreno, chap. 2, this volume, who describe it in terms
of attentional focus).

Speaking of powers possessed by children, Gattegno (1970) suggested
that “a child brings the ability to notice differences and to assimilate
similarities” (pp. 25–26). If people did not constantly discern some details
while ignoring others, then experience would either be flat and dull
through being undifferentiated, or intensely and even unbearably sharp
and particular through being distinguished in every detail, as C. S. Lewis
(1945) suggested in The Great Divorce: A Dream. It is not sufficient to dis-
cern detail, however. Children naturally detect relationships between
details, and they shift their attention from specific elements to relation-
ships between elements, and from relationships between specific details
to relationships as properties that objects may or may not have. Pierre and
Dina van Hiele used different language for essentially the same observa-
tion (van Hiele, 1986), although they tend to treat discerning, relating, and
property making as levels of understanding and types of reasoning rather
than as moment-by-moment shifts in the structure of human attention.
Pirie and Kieren (1989) use similar ideas expressed differently in their
onion-layer model of understanding. 

The issue for teaching lies in getting learners to discern details and
recognize relations that the teacher knows are fruitful to discern and to
recognize. Shifting to seeing relationships as possible properties of objects
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is nontrivial but often expected and assumed in mathematics classrooms;
going further and declaring a definition or assuming a property as an
axiom from which to make deductions is another important but nontriv-
ial shift. For example, recognizing that subtracting 1 from 7 and from 16
gives a multiple of 3 in both cases is one thing; identifying “subtracting
one and getting a multiple of 3” as a property is quite another; focusing
attention only on numbers that are 1 more than a multiple of 3 and dedu-
cing facts about all of them involves a further significant shift in how one
attends, and to what.

It has been suggested that one of the major contributions made by Isaac
Newton is the dual perspective of, on the one hand, using axioms from
which to deduce explanations of natural phenomena as in his Principia,
while at the same time basing his optics deductions on experimental evi-
dence (Buchdahl, 1961).

Learning to ignore is also an important part of learning to focus, but
not easy to work on explicitly. The learner desperately wanting to work
with a particular number rather than with an as-yet-unspecified number
needs to let go of the particular. This comes with time and experience, and
with having attention drawn away from particulars. Similarly, the child
fixated by the miraculous act of making a mark with a pencil cannot
attend to drawing “some thing” and, if pestered by adults asking
“What is it?”, is likely to lose the opportunity to focus on mark making.
The young child entranced by building towers out of rods and blocks
intended for number work is unlikely to appreciate another “use,” and so
may simply not hear or make sense of what the teacher is trying to
demonstrate or get the child to do. The adult stuck in a pattern of using
a mnemonic to remember some formula has attention diverted to the
mnemonic that could be more usefully directed toward the problem at
hand. These all illustrate the hazards of attention focused on one thing
while the teacher wants the learner’s attention on something else. They
demonstrate the inappropriate direction of attention and use of powers
by the teacher. Each fixation can play an important role for a time, but
later has to be subordinated or transcended to enable more sophisticated
development. 

Specializing and Generalizing

Just to make sense of language, children have to generalize because lang-
uage is essentially general, as Vygotsky (1965) and others suggested:

At any age, a concept embodied in a word represents an act of generalization.
But word meanings evolve. When a new word has been learned by the child,
its development is barely starting; the word at first is a generalization of
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the most primitive type; as the child’s intellect develops, it is replaced by
generalizations of a higher and higher type—a process that leads in the end
to the formation of true concepts. . . . (p. 83)

Nouns such as cup and chair, which are used in a wide variety of situations
and for a variety of objects depending on the circumstances, are inherently
general. To specify a particular cup or chair, it is necessary to modify with
adjectives, or to point physically. Numbers, such as 3 or –3.7 seem concrete
to an adult, but they too are abstracted generalizations. Counting numbers
arise from stressing the count and ignoring what is being counted, general-
izing across contexts. Negatives and decimals are generalized extensions of
counting in order to extend arithmetic operations such as subtraction and
division so that all possible questions using those operations can be
answered (or, as with division by zero, are outlawed). 

Focusing on one aspect is a form of stressing. Stressing some feature
necessarily implies an ignoring of other details or aspects and, as
Gattegno (1970) pointed out so forcefully, this is the basis of generaliza-
tion and abstraction, which are in turn the basis for language: “Without
stressing and ignoring, we cannot see anything. We could not operate at
all. And what is stressing and ignoring if not abstraction? We come with
this power and use it all the time” (p. 11). 

Generalizing also lies at the very heart of mathematics: “Another char-
acteristic of mathematical thought is that it can have no success where it
cannot generalize” (Peirce, 1902/1956, p. 1778). But, hand in hand with
generalizing goes the opposite, particularizing, or “specializing,” as Polya
(1957, 1962) referred to it: “We need to adopt the inductive attitude
[which] requires a ready ascent from observations to generalizations, and
a ready descent from the highest generalizations to the most concrete
observations” (1957, p. 7).

For example, to make sense of a statement such as “the sum of an even
number of consecutive odd numbers is divisible by double the number
of numbers,” it is necessary to specialize to some confidence-inspiring
objects: These may be particular numbers, or they may be generalities
expressed in symbols. But, the purpose of the specializing is to make
sense, to enable a re-construction of the general, expressed in a more
familiar language and a more manipulable symbolism. 

When children discern a particular object, they have to “ascend,” to “see
through the particular to the general” in order to be able to speak about it.
Doing this explicitly as part of an overt practice is part of what it means to
think mathematically. As Whitehead (1911/1948) observed, “To see what is
general in what is particular and what is permanent in what is transitory is
the aim of scientific thought” (p. 4). For example, from the fact that 5 + 7 and
9 + 11 are both divisible by 4, and that 5 + 7 + 9 + 11 is divisible by 8, and
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choosing to see these facts as generic rather than particular, gives rise to
conjectured generalizations that can then be tested and generalized. 

When children hear someone else speaking, they have to be able to “see
the particular in the general”—that is, to specialize to particular instances.
But then that is what everyone has to do in order to make sense. The sen-
tences you are reading are necessarily general, being cast in language, and
you are probably trying to instantiate them from your experience, trying
to locate specific or particular examples and counterexamples. This too is
a natural power every child possesses. Exercising a little imagination at
the same time leads to seeking extreme or special cases, which might chal-
lenge or test a general assertion in a particular case, leading to a conjec-
ture or counterexample. Looking for counterexamples is a practice, which
develops with encouragement, although parents may not always appreciate
this behavior at home. Looking intentionally for examples and counter-
examples are practices that are vital to mathematical thinking and need
constant encouragement so that learners can refine their techniques. 

We know that young children learn from particular instances through
generalizing; what does not seem to be very common is to call on those
powers explicitly when we try to instruct young people. For example,
despite young children readily contradicting an assertion such as that “all
cats are striped” by referring to a counterexample (O’Connor, 1998), this
power is rarely seen being used in school, presumably because of social
pressures and implicit contracts. Rather, as teachers we often try to do the
work for them: We provide particular cases, we display methods, and we
provide worked examples. We then expect them to generalize, yet rarely
do we explicitly and intentionally prompt them to use their powers to
generalize, nor display that power being used. As Branford (1908) put it:
“Beware, my fellow teacher, lest you unconsciously and incautiously sup-
ply the children with a generalization, which they have not as yet of them-
selves perceived and reached . . . such a blunder I find myself repeatedly
committing, so easy a trap is it to fall into” (p. 43). The issue, then, is not
whether learners can generalize, but what teachers can do to stimulate
them to use and develop that power effectively and appropriately.

Conjecturing and Convincing

Piaget (1971) promulgated the notion that children are essentially explor-
ers, constructing meaning from their experiences. They do this by making
conjectures and modifying these as and when they run into counterexam-
ples. Lakatos (1976) analyzed mathematicians going through similar
processes historically. Of course, none of this is overt for the young child,
but the challenge for teachers is to create an atmosphere in which this
natural power is called on and developed, because it is essential to the
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proper functioning of mathematical thinking, in general, and algebraic
thinking, in particular. 

Vygotsky promoted the view that higher psychological processes are
acquired through participation in and exposure to practices of relative
experts who display those processes. For example, exposure to others who
overtly simplify in order to understand and then re-complicate, who spe-
cialize in order to re-generalize, who construct examples and nonexam-
ples to illustrate and exemplify, is much more likely to influence learners
than lack of such exposure. In other words, it helps if teachers are mathe-
matical with, and in front of, the people they teach. This includes
displaying their own use of the powers that learners are expected to employ,
not to “try to do the work for them,” but exposing learners to mathematical
practices. 

An important feature of each classroom is the atmosphere and ethos aris-
ing from the ways of working valued and promoted by the teacher. Things
that are said and done that seem to work all too readily become assertions
and habits. In ordinary life, these turn into the stories that people tell them-
selves in order to justify their actions. Mathematics is more rigorous about
its stories: They have to convince other people. Mathematicians work best
in a conjecturing atmosphere in which conjectures are articulated in order
to try them out, see how they sound and feel, to test them and so to see how
to modify them as and when necessary. Mathematicians try to convince
colleagues, who try to find counterexamples to their assertions. Everyone
recognizes that things are said in order to “get them out,” to use the attempt
to articulate in order to stop ideas and possibilities from tumbling around
like clothes in a drier, getting more and more tangled. Those who disagree
offer counterexamples and suggestions for modifications, rather than acting
in ways that could be taken as criticism of the person making the conjec-
ture. Mathematical thinking is deepened by periods of individual work to
specialize and generalize, to rehearse expressions of what is being imag-
ined, and by periods of collective negotiation and search for ways to modify
utterances so as to block counterexamples. 

This is the sort of atmosphere in which mathematics thrives, and it can
be established in any classroom at any age. Legrand (1993) describes
similar practices under the heading of scientific debate (also summarized in
Mason, 2001a). There is an important feature of conjecturing that is
perhaps not as strongly developed in most of us as it might be: Having
articulated a conjecture, it is wise not to believe it (Polya, 1957).

Classifying and Characterizing

When was the last time you sorted or organized a collection of objects?:
putting dishes away, putting laundry away, dealing with mail, weeding
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the garden, organizing papers. What did you have to do in order to
achieve the sorting? Did you get a sense of pleasure when it was finished?
We sort and organize all the time, and although it may sometimes be seen
as a chore to start with, there is often a sense of satisfaction when things
have been sorted. Each act of sorting involves stressing some (relevant)
features and ignoring others, which in turn requires us to be able to
discriminate those features. 

Sorting and organizing objects is typical of challenging tasks that
young children seem to enjoy. For example, sorting beads by color and by
size, sorting attribute blocks by color, by size, by thickness, by color and
size, by color and thickness, and so on, occupy young children for hours.
Such activity is extremely valuable because it exercises and develops fine-
motor control at the same time as leading them to discriminate according
to particular attributes while ignoring others, and experiencing general-
izations associated with properties. For example, Freudenthal reports
Bastiaan at age 4 years, 2 months playing with rings of plastic on a piece
of wire, then pulling a bottle cap out of his pocket and saying “now I must
do something with this”; Freudenthal (1978) suggests making a hole, and
suddenly Bastiaan says, “a screw-nut has a hole where the screw fits
in” and pulls a nut from his pocket to put on the wire (pp. 194–195):
A connection was made, as was a generalization. Young children often
display a desire to organize their own environment. For example, two
young girls were observed sorting and organizing the books in a book-
shelf, by size, which of course included books of a series being together.
The desire to impose order is manifested very early. Every experience is
classified (unconsciously) in order to assimilate it into current schema and
so “make sense of it.” If it resists classification, then it is either rejected out
of hand, or schemas are altered in order to accommodate it (Piaget, 1971).

For example, number names are quickly classified into even and odd
according to the last digit, but seeing that this is the same as being divi-
sible by two requires some explicit work; recognizing and naming poly-
gonal shapes requires discerning the presence of vertices and straight
sides, recognizing the relationship between the number of vertices and
the number of edges, and using this number to characterize the shape. In
fact, most shapes children are shown in mathematics, at first, are in fact
regular. It is no wonder, therefore, that they develop what Fischbein
(1993) called figural concepts based on perceived properties that may not
be what experts discern and stress. 

It is logical that children will not sort collections of objects on the basis
of features that they are not distinguishing. It is also reasonable that tasks,
which involve sorting according to characteristics that are not at the fore-
front of their attention, may prompt them to discriminate other features
(although they may not immediately respond as expected). This is a good
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example of the kind of sensitivity that directs effective teaching: noticing
what learners distinguish and what they do not, and challenging them
appropriately to go beyond what they can currently do with ease. By
being aware of the powers children are using, it is possible to expose
explicitly the criteria that are deemed important, and to work against
learners making inappropriate or undesired generalizations.

For example, when children first start playing the game of 20 ques-
tions, they find it hard not to ask very specific, specialized questions. If
told it’s an animal, they ask immediately if it is a specific animal such as
a dog, and then proceed to try other animals. However, I have never
encountered any child asking if it was a specific dog, such as their own
pet, which suggests that by the time 20 questions seems a reasonable
game, children have already encountered some degree of stressing of
some features while ignoring others and employ specializing without
being aware of it. By participating in the game with older children, they
discover that there are more general questions like “does it have four
legs?” that cut down the possibilities. In this way, they are enculturated
into ways of classifying. Very young children sometimes find it difficult
to accept a familiar class (crows) as a subclass of another (birds), just as
learners find it confusing that a square can also be a rectangle, a triangle
is a special case of a trapezium, and an integer can also be seen as a frac-
tion. Although the power is available, it sometimes has to be brought to
the surface and learners must be allowed to experience its use before they
integrate it into their thinking.

Children as Powerful Agents

The fact that every child has displayed these powers does not mean that
they are automatically thinking mathematically. Rather, in order to be
thinking mathematically, these powers need to be exercised, developed,
and for the most part brought to the surface so that they can be used
intentionally. The issue is not whether these powers are available, but that
people sometimes fail to make use of them. One reason for this is that
these powers may have been downplayed or ignored in school. Where
teachers are induced to downplay reasons, to bypass convincing learners
by appealing to their powers to reveal and express mathematical struc-
ture, where teachers and texts proceed by worked examples and repeti-
tious but unstructured, unprincipled practice, and where time is not
devoted to reconstructive reflection on the underlying structure of exer-
cises, children’s powers and energies are not just being wasted but
abused.

One of the telling features of the use (and abuse) of children’s powers
is that young children, immersed in the use of their powers, are not put
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off by only partially comprehending what is going on around them. They
make what sense they can, and they work away at it. The very young
child lying in the crib can be heard making sounds that rehearse the tone
patterns of sentences, before they have words. They are immersed in
language, but they are not disheartened by not understanding. 

Once children have been to school for a time, they begin to show
petulance and disinterest when things get too hard. Why is it that not
understanding becomes an issue when children are in school, but not
understanding is of no concern when they are working for themselves
with their own powers? For example, children practicing skateboarding or
gymnastics will display perseverance that is never witnessed in class-
rooms. Could it be that in the classroom the use of their powers has been
usurped, that they have begun to be enculturated into a climate of non-use
of many of their own powers, in order to do just what the teacher wants?

How, then, can children’s natural powers be harnessed to enrich the
emergence of algebraic thinking? 

ARITHMETICAL THINKING AS PRE-ALGEBRA

Looked at from the point of view of the use of powers, even arithmetic, com-
monly seen as the ground on which algebra is based and from which alge-
bra is derived, cannot actually be grasped fully without algebraic thin-king,
that is, without the use of the powers associated with generalizing. “In order
to do arithmetic you already need to do algebra!” (Hewitt, 1998, p. 19).

In the following examples, which are just a few of many others, atten-
tion is directed to instances in which learners’ powers are used sponta-
neously, and that can be exploited to support increasingly sophisticated
algebraic thinking. 

Rhythm and Sequence

Young children are sometimes invited to thread beads on a string, or to
place objects in a line or in a tower. One covert or inner aim (Mason, 1992;
Tahta, 1980, 1981) of such tasks is to put the children in a situation in
which they can work at refining and integrating their fine-motor control.
The aim is not to get beads threaded, but to subordinate the actions so that
they no longer need to pay so much attention to getting the needle into
the hole, or the blocks stacked so they don’t fall over. Because expert func-
tioning requires little or no attention paid to details of the action, to
become expert requires removing attention from performing that action.
Consequently, being given lots of practice in which full attention can be
given to performing the action is more likely to develop a habit of requi-
ring full attention than actually helping the person integrate through
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subordination of attention (Gattegno, 1987). It makes more sense, therefore,
to engage learners in a macro, or outer, task, which attracts attention to a
larger aim (e.g., trying to make a sequence) while at the same time the
learner is practicing the action on specific examples, preferably exercising
their own choice and powers to create relevant examples for themselves
rather than working through someone else’s script (Hewitt, 1996).

In the case of beads and towers, a task might be to design a repetitive
sequence as simple as:

blue, red, blue, red, blue, red, . . .

Or, it may be as complex as:

blue, red, blue, blue, red, blue, blue, blue, red, . . .

This can be used as the basis for clapping instructions (hard on blue, soft
on red, etc.).

Of course, it is much more interesting to make up your own sequences,
thereby exposing the dimensions of possible variation and the corre-
sponding ranges of permissible change of which you are aware (Marton
& Booth, 1997; Mason & Johnston-Wilder, 2004; Watson & Mason, 2004).
The point is to make it sufficiently challenging so that attention is drawn
away from the physical doing and into what cognition is good at, which
is monitoring and directing. 

As Johnson (1987) has pointed out, the fundamental means for making
sense of abstract ideas is the metaphor of position or location in space,
which we experience through the senses. The groundwork for appreciating
and employing such metaphors lies in early connections, which children
make between the physical-visceral and the cognitive-mental. For example,
poems with strong rhymes and rhythms are popular with young children.
The rhythm appeals to their body-based pattern recognation and general-
ization. At the same time, they are making links between body and mind,
between enaction and cognition, which is a fundamental form of abstraction.
They develop the physical coordination to clap a rhythm of hard and soft
claps (e.g., hard soft soft, hard soft soft, . . .), replacing these with claps and
non-claps. Furthermore, extending a sequence beyond any diagrammatic
score from which to read the clapping, such as the aforementioned blue
and red sequences, encourages learners to move inward and make use of
their power to imagine beyond what is physically present. They can also
count out loud at the same time, and then use a number chart to select
and name the numbers corresponding to hard claps. There are many
different ways to carry out such activity, with the aim of viscerally relating
regular number counts to rhythm.
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More challenging is making the count silent, clapping loudly on some
numbers and quietly on the others. In the United Kingdom, Fizz Buzz is
a game with various rules, such as people count in turn; if your number
is divisible by 3, you say “fizz” as many times as 3 divides your number;
and, if it is divisible by 5, you say “buzz” as many times as 5 divides your
number. Simpler versions have everyone counting out loud but becoming
silent if there is a digit 3 or 5 in the numeral. There is great delight when
most are silent, but a few say the number out loud inappropriately.
Whereas the outer task is simply to engage in the game, the inner task is
to anticipate and think about the number before it is said, thus calling on
the powers of imagining and focusing.

Dealing With Not Knowing

At first, having two counts (e.g., 3 cows in one field and 5 cows in
another) is a state of not knowing how many animals there are alto-
gether in both fields, or how many there would be if they were all put
into one field. Notice how mental imagery is ever present. The cows in
fields could, of course, be beans in bags, and many other contexts; ulti-
mately, learners are expected to recognize that there is a method that
involves attending to the numbers and ignoring the objects. Notice too
that moving to “3 cows and 5 horses makes how many animals?”
requires a shift in what you are attending to: You have to let go of the
particular animals, and re-see them just as animals, which then permits
a focus on the numbers. 

Much has been made by researchers of learners’ propensity for getting
an answer no matter what the problem asks, such as in the well-studied
l’âge du capitaine (Baruk, 1985; Freudenthal, 1991; Merseth, 1993). It is typical
of a wide class of situations in which learners display use of a method
they have been taught implicitly, namely, ignore the objects and just add
(deal with) the numbers. They are being very mathematical and show that
they have learned: It’s just that they have learned too general a method.
One of the many mistakes in early algebra (3x + 5y = 8 or 8xy) (Booth,
1988; Kücheman, 1981) could be accounted for in the same way. Similarly,
the classic error 0.3 × 0.3 = “oh point nine” based on 0.4 × 0.4 = “oh point
sixteen” and 0.5 × 0.5 = “oh point twenty-five” is a brilliant conjecture
based on inappropriate data!

It is common to find “hidden answer” tasks in textbooks, of the form

� + 3 = 8 and 5 + _ = 8. 

These are presumably intended by authors to expose learners to algebraic
ideas but are not always seen by children as anything to do with unknowns
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but rather as arcane arithmetic tasks (Carpenter & Fennema, 1992; Franke,
Carpenter, & Battey, chap. 13, this volume). An alternative situation that is
closer to children’s experience is to publicly count a number of objects,
cover them with a cloth, and ask the children if they know how many
objects are under the cloth (Floyd, Burton, James, & Mason, 1981). There
is an immediate opportunity to work on the difference between not
knowing when you look because they are covered up, and knowing even
though they are out of sight (mental imagery). Contrasts can be made
with covering up an uncounted number of objects. (Note connections
with Piagetian preservation tasks; see Donaldson, 1978.) Then someone
reaches under the cloth and extracts some objects, which are seen and
counted. How many objects remain? Now the answer is not known (at
first), but perhaps there is a method for finding out just from what is
currently known (without peeking). Notice an instance here of moving to
working with properties. 

Box equations are but a drop in the ocean of potential for thinking alge-
braically within arithmetic, so concentration on them as a dominant style
of task almost certainly ensures that learners learn to do them mechani-
cally, arithmetically, avoiding or circumventing any algebraic thinking,
any sense of the box as an as-yet-unknown to be discovered. 

For example, it is common to set sequences of tasks such as 4 + 6 = ?;
3 + 7 = ?; 2 + 8 = ?, 1 + 9 = ? These are known as number bonds to 10, and
it is a curricular aim to have children integrate and automate these pairs.
But, there is a much more important generalization that learners are
expected to pick up later when doing subtractions. Stated in full generality,
it would be (x + d) + (y – d) = x + y. There are of course intermediate gen-
eralizations achieved by specializing x + y to a particular invariant value
(especially 10 as the base of our number naming system) and then vary-
ing d (as with the previous examples), or specializing d and varying x and
y (as in mental arithmetic methods). (See Carpenter, Franke, & Levi, 2001,
for an exploration of this case; and Schifter, Monk, Russell, & Bastable,
chap. 16, this volume, for others.) The important pedagogical questions
ask whether these generalizations are left implicit, whether learners are
called on to use their own powers to make these various generalizations
for themselves but are supported and encouraged to do so, or whether the
generalizations are imposed on the learners before they have come to
them themselves.

There is an unfortunate clash in most curricula, because learners are
immersed for some time in a culture in which not knowing answers (to
arithmetic calculations) is treated negatively, and then suddenly intro-
duced to algebra in which not knowing is treated positively as an oppor-
tunity to use symbols, as a way of working with not knowing. In the 19th
century, Mary Boole suggested that algebra arose when someone 
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perhaps a woman, said “How stupid we’ve been! We have been dealing
logically with all the facts we knew about this problem, except the most
important fact of all, the fact of our own ignorance. Let us include that
among the facts we have to be logical about, and see where we get to
then . . . let us agree to call it x, and let us always remember that x stands for
the Unknown.” (Tahta, 1972, p. 55)

Acknowledging ignorance, not knowing, makes it possible to denote it,
and then manipulate it as if it were known. No wonder children who have
been trained in dependency and in getting single numerical answers find
algebra confusing!

Methods as Implicit Generalization

No one teaching arithmetic would expect learners to memorize all possi-
ble additions of two two- or three-digit numbers, or the products of all
pairs of two-digit numbers. The whole point of arithmetic is to learn
methods for determining them, as Eliot (1855/1990) observes in an essay
about Thomas Carlyle: “It has been well said that the highest aim in edu-
cation is analogous to the highest aim in mathematics, namely, not to
obtain results but powers, not particular solutions, but the means by which
endless solutions may be wrought” (p. 343).

Unfortunately, mathematics is not always seen or taught in this way.
De Morgan (1865), writing at about the same time, railed against teaching
by rote:

Mathematics is becoming too much of a machinery; and this is more espe-
cially the case with reference to the elementary students. They put the data
of the problems into a mill and expect the result to come out ready ground
at the other end. An operation which bears a close resemblance to that of
putting in hemp seed at one end of a machine and taking out ruffled shirts
ready for use at the other end. This mode is undoubtedly exceedingly effec-
tive in producing results, but it is certainly not soaked in teaching the mind
and in exercising thought. (p. 2)

If arithmetic is about learning methods, as well as some elementary
facts, it is curious that learners are subjected to particular calculations all
the time. Of course, saying in words how you add two three-digit num-
bers, or do two- more or digit multiplications is extraordinarily difficult:
To see this for yourself, try developing a spreadsheet to do these things
with the constraint that a cell may only ever hold a single digit! So we
embark on getting learners to learn methods that can’t even be spoken
completely, much less written down. We do this by subjecting learners
to many particular cases, with explanations, while at the same time
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overlooking a multitude of other opportunities to encourage children to
use those same powers overtly. The fact that so many children do as well
as they do is a testament to their use of their powers without explicit
intention. 

Whenever a learner solves a problem, there is available the question
“What is the method that was used?”, which is intimately tied up with the
question “What can be changed about the problem and still the same
technique or method will work?” or “What is the class of problems which
can be solved similarly?” S. Brown and M. Walter (1981) suggest asking
“What if . . . something changed?” or “What if not . . . ?” Watson and
Mason advocate explicitly asking learners to consider what dimensions of
possible variation and corresponding ranges of permissible change they are
aware of (Mason & Johnston-Wilder, 2004; Watson & Mason, 2004) as
stimulus to becoming aware of, and even expressing features of, the gen-
eral class of problem of which the ones considered are representative.
This is essentially the same as what Blanton and Kaput (chap. 14, this vol-
ume; in press) refer to as algebrafying arithmetic tasks. Learners aware of
general classes are much more likely to recognize the type of a problem
on a test. Learners who have constructed and solved their own problems
of a given type—perhaps responding to “construct a problem of this type
which is easy,” “. . . which is hard in some way,” “. . . which would chal-
lenge a friend or the teacher,” “. . . which would be good for learners next
year to work on,” “. . . which demonstrates that you know how to do
problems of this type”—are again much more likely to be able to deal
with examination questions, for they have exercised creativity and choice,
as well as powers of focussing and de-focusing, generalizing, and so on.

Tracking Arithmetic

Children are often exposed to arithmetic as the study of producing a
single number answer to sometimes quite complex number situations.
But arithmetic, as has been suggested already, is much more. Instead of
completing calculations, tracking one or more numbers through a calcu-
lation displays the role played by the number—what some refer to as the
algebraic use of numbers (see Zaskis, 2001): “As one example, consider the
ever-popular Think of a Number games: Think Of A Number; add 2; mul-
tiply by 3; add 4; add twice the number you first thought of; divide by 5;
subtract 2; you now have the number you first thought of.” There are, of
course, many variants (see also Goldenberg & Shteingold, chap. 17, this
volume). But adolescents and even younger students seem to get great
pleasure from the apparent mystery of how the prediction can be made.
To find out how, it is useless to try an example by doing all the calc-
ulations because then the generality is obscured. It is vital to resist the
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temptation to do calculations. Thus, starting with 7 (the least popular
number between 1 and 10) gives

7; 7 + 2; (7 + 2) × 3 = 7 × 3 + 6; 7 × 3 + 6 + 4; 7 × 3 + 10 + 7 × 2 = 7 × 5 + 10;
7 + 2; 7

The mystery is solved because you can look through the 7, seeing it as a
placeholder, a slot, a variable into which any other number could be
dropped. Learners are experiencing that something is invariant (the struc-
ture of the arithmetic computation) despite the fact that the actual number
used is allowed to change. This theme of invariance in the midst of change
pervades mathematics. Indeed, much of algebra at school and beyond can
be seen as the study of invariance and invariants.

Zazkis (2001) has found that using very big and unwieldy numbers can
assist learners who are reluctant to let go of particulars and to contemplate
general or as-yet-unknown numbers. By replacing the 7 in the Think of a
Number by something enormous, such as 987654321, learners’ attention is
diverted away from the particular and onto the method of the calculation.

If, in a problem situation, you can check whether a proposed answer is
correct, then in principle you can set out the constraints imposed by the
problem situation in algebra. All you have to do is to track the arithmetic
of a proposed solution, then treat it as a slot, substitute a letter, and see
what happens, for example:

A Father at his Death left his three Sons all his Money in this manner: to the
Eldest he gave half of it, wanting 44 Pounds; to the Second he gave one third
of it, and 14 Pounds more; to the Youngest he gave the Remainder, which
was less than the Share of the second Son by 82 Pounds; What was each
Son’s Share? (Ward, 1713, Question 31, p. 224)

To check a proposed solution of, say 100 pounds, the eldest received
100/2 – 44, the second received 100/3 + 14, and the youngest received
100/3 + 14 – 82. These three must then add up to the total of 100.
Replacing the proposed solution by a letter f leads to (f/2 – 44) + (f/3 + 14)
+ (f/3 + 14 – 82) = f. So 7f/6 – 98 = f, so f was 6 × 98/7 = 84 Pounds. Learners
with an eye on general methods for a class of similar problems might
track all the numbers to find that: 

f(1/2 + 1/3 + 1/3) + 2 × 14 – 82 = f

f = (82 – 2 × 14)/(1 – 1/2 – 1/3 – 1/3)

Now any of the initial data can be changed and the bulk of the thinking is
done: All that remains is some arithmetic. 
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Of course, students of arithmetic are working problems to practice
their arithmetic. Their attention is probably fully caught up in the comple-
xities of adding fractions, subtracting from 1, and dividing. They may
find that holding all the arithmetic without compacting the numbers by
doing calculations is a strain on their attention. But, once they can suspend
the desire to do computations, they have what is tantamount to a formula
for a whole class of problems of the same type, by treating each datum as
something, which could be varied.

Newton, writing in 1669, thought it a simple matter to learn to set up
equations, even before knowing how to solve them:

After the novice has exercised himself some little while in algebraic compu-
tation, . . . I judge it not unfitting that he test his intellectual powers in reduc-
ing easier problems to an equation, even though perhaps he may not yet
have attained their resolution. Indeed, when he is moderately well versed
in this subject and conceives he has some degree of skill in the art of elicit-
ing from the circumstances of a question as many equations as suffice to
implement fully all conditions and knows how to reduce all those equations
(should there be several) to a final one which satisfies the question, then will
he with greater profit and enjoyment contemplate the nature and properties
of equations and learn their algebraic, geometrical and arithmetical resolu-
tions.
But when some problem has been proposed, the practitioner’s skill is parti-
cularly demanded when it comes to designating all its conditions by an
equal number of equations. To do this, let him in the first place examine
whether the propositions or phrases by which it is enunciated are all fit to
be denoted in algebraic terms in the same way that we express our concepts
in Greek or Latin characters. Should this happen (as usually is the case in
questions which relate to numbers or abstract quantities) let him then set
names on the unknowns and also on the quantities if need be, denoting the
sense of the question algebraically, and its circumstances thus translated
into algebraic terms will yield as many equations as suffice to resolve it.
(Whiteside, 1972, pp. 428–429)

Newton’s near contemporary Ward (1713) realized that it was not always
quite so easy:

When any Problem or Question is proposed to be Analytically Resolved; it
is very requisite that the true design or meaning thereof be fully and clearly
comprehended (in all its parts) that so it may be truly abstracted from such
ambiguous words as Questions of this type are often disguised with; other-
wise it will be very difficult, if not impossible to state the Question right in
its various substituted Letters, and ever to bring to an Æquation, by such
various Methods of ordering those Letters as the Nature of the question
may require.
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Now the knowledge of this difficult part of the work, is only to be obtained
by Practice, and a careful minding of the Solution of such Leading
Questions as are in themselves very easie. And for that Reason I have
inserted a collection of several Questions; wherein there is a great variety.
(pp. 175–176)

Mathematicians turned their attention instead to the solution of equa-
tions, and modern algebra began. That is perhaps why, since then, word
problems slink out of most algebra texts and migrate to arithmetic and
school algebra texts.

Implicit Awareness of Arithmetic Structure

Children’s awarenesses of how numbers can be manipulated are often
intuitive and implicit, making use of theorems in action (Vergnaud,
1981), rather than having explicit and conscious awareness of rules. It is
in bringing these awarenesses—these functionings—to the surface and
becoming aware of them that algebra emerges. For example, the young
child who when asked “3 + 5?” then “5 + 3?” announces after a pause that
“anything plus anything is anything plus anything” is not talking
nonsense. That child is struggling to control the essential generality of
language to express an awareness about how numbers work. For 3 + 5 is
equal to 5 + 3 NOT because they are both equal to 8, but because adding
is based on the physical action of combining, and combining does not
depend on order. Algebraic thinking is the thinking that results in
general statements about number (in school) and about structure (in uni-
versity). Put another way, when objects are labeled and the labels are
manipulated, you have algebra (see Kaput et al., chap. 2, this volume), or
as Tahta (1989) put it, “The geometry that can be told is not geometry
[but algebra].”

Children behave with numbers as if they know that addition and
multiplication are order independent. They usually operate as if subtrac-
tion and division do depend on order, although in the midst of a three-
digit subtraction they may be tempted to take smaller from larger as part
of the method or algorithm that they have constructed from past experi-
ences (S. Brown & van Lehn, 1980). Children also act as if multiplication
distributes over addition in some circumstances. They use these rules as
theorems in action, particularly when stimulated to discuss and exchange
different ways of doing arithmetic mentally (Anghileri, 2000, 2001).

When teachers decide to introduce negative numbers, then fractions,
and then decimals, they are recapitulating developments, which took
years, even centuries to be adopted fluently and without cavil. Instead of
telling learners rules, or trying to provide pseudocontexts in which the
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rules are evident, it is possible to get learners to determine what the rules
should be by appealing to their sense of structure and awareness of how
simpler numbers work. The guiding principle is that whatever is decided
must extend what has gone before. An excellent way to do this is to run
patterns backward:

2 × 4 = 8 2 × 3 = 6 2 × 2 = 4 2 × 1 = 2 2 × 0 = ?

2 × (?) = ?

Something as simple as this can be worked on by looking for what is
changing and how it is changing at each stage, and demanding contin-
uation. One or two experiences like this are unlikely to be sufficient. What
will be convincing is over and over meeting the same rule arising from
extending different patterns. This idea is developed further later under
the label of Tunja Sequences. 

ALGEBRAIC THINKING

As Bednarz, Kieran, and Lee (1996), among others, point out, arithmetic
proceeds from the known to the unknown. At each step, something
fresh and previously unknown is calculated. Algebraic thinking allows
people to solve much more complicated problems, because it starts with
acknowledging ignorance of the unknown, as Mary Boole put it so poet-
ically, denoting that ignorance, and then doing calculations with it as if it
were known. Thus, the unknown is found from the known by means of
the unknown. The psychological impact and significance of this switch of
tactic is not always acknowledged in traditional presentations of algebra.

It is common to think in terms of algebra as the use of letters to stand
for numbers and even to use the phrase generalized arithmetic for this cler-
ical activity. Indeed, there is a long history going back to the 16th century
of introductory algebra books treating algebra in this way. I am proposing
that it is much more fruitful to think of generalized arithmetic as meaning
the result of learners generalizing their experience with numbers, and
expressing generality about properties of numbers arising from a variety
of situations in the material, mental, and symbolic worlds, culminating in
expressing generality about the rules of arithmetic and then taking these
to be the rules for algebraic manipulation. Thus, algebra is most usefully
seen not as symbol manipulation (or worse, study of the 24th letter of the
alphabet), not as arithmetic with letters, not even as the language of equa-
tions, but as a succinct and manipulable language in which to express
generality and constraints on that generality.
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Proceeding to Algebra Without Going Via Arithmetic

Davydov (1972), working within a Vygotskian framework, argues that
very young children can work with relationships without going via quan-
tities at all. His ideas are being developed in a longitudinal study by
Dougherty and colleagues (Dougherty, 2003; chap. 15, this volume). See
also Freudenthal (1974, 1978) and J. Smith and Thompson (chap. 4, this
volume). Children are introduced to qualitative comparisons of area,
length, and mass before they have numbers with which to quantify. They
demonstrate authority and control of symbolic notation for comparison
(A > B) and for manipulating these in order to express intuitive, percep-
tual connections. Although the symbols are necessarily labels for objects
rather than quantified measures, there is a noticeable development from
label-for-object to label-for-measure-of-quality, even though these are not
translated into numbers at the beginning. Davydov and colleagues also
showed that young learners could tackle word problems with letters
rather than numbers: Sometimes the presence of particular numbers
attracts thinking into particulars rather than into structures (Freudenthal,
1974, 1978).

One thing to be learned from this work is that young children possess
the power to think and articulate abstractions and generalities indepen-
dent of numbers. Therefore, waiting to introduce symbols until arithmetic
has been mastered may fail to make use of children’s powers when they
are available. There is strong resonance with Gattegno’s view, for he saw
algebra as stressing operations (combining, distributing, dividing, perm-
uting) and consequently ignoring the objects (numbers), which are
being treated in generalized ways and denoted by letters. This led him to
his definition of algebra as the “study of the dynamics of the mind.”
Generalized arithmetic is then only part of algebra, for there are other
relationships between objects, which can usefully be expressed and gen-
eralized, as the Davydov-inspired work has shown.

One consequence of distinguishing between arithmetic and algebra in
relation to problem solving is that people sometimes try to classify prob-
lems as either arithmetic (can be done using only arithmetic) or algebraic
(requires the use of symbols and their manipulation). However, it is very
difficult to find a problem, which cannot be done by arithmetic if you are
clever enough. For example, consider the following two problems:

Cistern: One tap fills a cistern in 1 hour, another in 2 hours; how long does
it take when the taps are used together?
Couriers: One courier sets out from city A to take a message to city B a spec-
ified distance apart, traveling at a specified speed; some specified time later,
a courier sets out from city B to city A traveling at a different specified speed
to the first. When and where do they meet?
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Freudenthal (1991) describes how children faced with the cistern-filling
problem looked at the proportion of water contributed by each tap and
quickly calculated the answer. Of course, using algebra can reveal internal
structure, for, as he goes on to point out, people rarely recognize the
courier problems as having the same structure as cistern problems, at
least until they solve both problems in a general form. 

What matters is not whether a problem can or cannot be done in one
way or another, but whether learners have the flexibility and confidence
to choose to use arithmetic or algebra according to the situation. It is the
thinking that is algebraic, or not, not the task.

One of the consequences of failing to make use of children’s powers over
many generations is that those who have not succeeded with algebra
question its value, thinking that for them, arithmetic is sufficient. After all,
they were successful without algebra, so why impose it on everyone?
Reflection on the presence of arithmetic and algebra in everyday life soon
reveals that customers want numbers: They want the price they are to pay.
By contrast, entrepreneurs need policies, which are essentially algebraic
formulae or at least general procedures for working out prices to be
charged, taxes, and so on. Sometimes they get them a bit wrong: In
supermarkets in the United Kingdom, the following is a remarkably
common phenomenon: “Hot Cross Buns sell in packets of 6 for 90p. A
special deal offers you a second packet for half price. On a particular day
packets approaching their sell-by date are reduced to 40p each. How much
do I pay for two of these packets?” (Alan Parr, e-mail February 11, 2003)

The answer turns out to be 35, because the computer is programmed to
subtract 45p for the second one, so it becomes cheaper to buy two and
throw one away than to buy just one. This illustrates just how important
it is for the entrepreneur to think about generality so as to get their form-
ulae, their algebra, correct. It affords an opportunity in class to generalize
by looking for dimensions of possible variation such as treating the indi-
vidual numbers as variables, and by working out the price to be charged
for 3, 4, . . . n packets.

Algebra should not be taught because some people who become entre-
preneurs will need to think that way. Algebra should be taught to every-
one because it is the natural outcome of the use and development of the
relevant powers. Put another way, no one should be confined to arith-
metic calculations as their basic numeracy because to do so stunts or even
blocks their access to the kind of thinking that is essential for participation
in a democratic society: recognition and use of general methods, testing
and challenging of generalizations, and questioning the modeling
assumptions on which such generalizations are often made.

From what has been said so far, it is clear that the position being advo-
cated is that algebraic thinking is required for success in arithmetic, so the
two are intertwined. Some difficulties with arithmetic may even arise
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because algebraic thinking, and especially, learners’ own powers, are not
being activated. Similarly, some difficulties learners have with algebra
may be due to the absence of use of the powers and particularly of alge-
braic thinking when learning arithmetic.

MAKING USE OF POWERS TO PRODUCE ALGEBRA

The claim has been made that algebra, like arithmetic, emerges from the
use of children’s natural powers. There is room here to give only a few
examples of how this can happen, but other chapters in this book can be
read through the lens of learners’ powers. See also South Notts Project
(undated 1970s) and Malara and Navarra (2003). 

Awareness of and Expressing Generality

Whenever a teacher becomes aware of an implicit generality in some
particular instances, there is an opportunity to make a choice: to pause
for a moment and prompt learners to try to express that generality
before continuing, or to keep going. Whenever the teachers catch them-
selves uttering a generality, or hear a learner expressing a generality,
there is an opportunity to make a choice: to pause for a moment and
prompt learners to specialize (construct a particular example) or to keep
going. As Malara and Navarra (2003) have demonstrated in their ArA1
project, learners often begin by babbling in a new language, whether it
is the language they hear around them or the symbolic language of gen-
eralization in mathematics. Indeed, if they are not immersed in the lan-
guage, and finding reasons to want to use it in order to express
themselves, then it is no wonder if they pick up at best a few fragments.
There is no need to rush learners from pictures, which can be read
generically, to single-letter expressions. Abbreviating arises perfectly
naturally when learners find themselves wanting to write down compli-
cated expressions repeatedly. 

Picture-pattern sequences (Mason, 1988b; Mason, Graham, Pimm, &
Gowar, 1985; South Notts, n.d.) provide just one context for generalizing.
For example, for each of these sequences (Fig. 3.1), learners can be invited
to specify a method of describing how to draw more and more members
of the same sequence. They then use that method to justify a way to count
how many segments and how many corners there will be in some picture
much farther along the sequence. Both simpler and more complicated
sequences can be generated by learners, so they can challenge themselves
and each other.
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Number properties such as that the sum of three consecutive numbers
is divisible by 3, that the product of two consecutive numbers is divisible
by 2, and that one more than the product of two numbers differing by 2 is
a perfect square can also be generalized extensively. 

Sequences of number relationships, such as either of the following two
columns, can be extended downward following the pattern emerging due
to the counting numbers:

2 × (1 + 3) = 2 × 1 + 2 × 3 (2 – 1) × (2 + 2) = 22 + 2 – 2

3 × (2 + 3) = 3 × 2 + 3 × 3 (3 – 1) × (3 + 2) = 32 + 3 – 2

4 × (3 + 3) = 4 × 2 + 4 × 3 (4 — 1) × (4 + 2) = 42 + 4 – 2

The presence of terms from a familiar sequence, such as the counting
numbers, makes it almost automatic to fill in the next and succeeding
lines. The brain automatically detects both systematic change, and invari-
ance, all manifested in “the almost visceral desire to continue.” Watson
(2000) described this as “going with the grain,” making a useful contrast
with the overt, mathematical sense making of “going across the grain,”
which means pausing to address what is the same and what is different
about each statement (see also Freudenthal, 1991). In the first case, one
observation is that multiplication “distributes over the addition of 3,”
inviting further generalization of the invariant 3s. In the second case, the
expression x2 + x – 2 always factors, so factoring a quadratic is seen as the
expression of a generalization of a collection of arithmetic facts.

Thinking in terms of with versus across the grain adds substance to
Polya’s (1957) still overlooked phase of “looking back.” Learners experi-
ence “going across the grain” when they interpret a generalization
achieved by going with the grain. It is the going across the grain, the inter-
preting, that is the important part of the task, not merely the completion
of the sequence!

Equation sequences can also be extended upward, revealing through
the desire for the pattern to continue, the necessary properties of multipli-
cation by negative numbers. In Mason (2001b), I called these Tunja
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sequences, because teachers in the city of Tunja, Colombia, asked me
how to teach factoring quadratics to learners who were struggling with
negative numbers. Basic structural properties of arithmetic can be
exploited in a similar manner long before factoring is encountered and
reinforced while learning about factoring. Simple patterns, and more
complex ones, can even be put into a grid so that two different dimen-
sions can be varied at the same time (see Table 3.1). Learners can be
invited to extend the grid downward and upward as well as right and
left, justifying their proposals in terms of structure exhibited in patterns.
Because learners sometimes experience considerable difficulty general-
izing two things at once (Mason, 1996), using grids in this way offers
support for and experience of multiple generalizations. These ideas are
exploited in Flash (Mason, 2006).

The learners’ rules for the arithmetic of negative numbers, fractions,
and even decimals can be experienced and formulated by learners on the
basis of the use of their own powers, thus helping them make the transi-
tion for mathematical warrants from authority to reason and logic. 

From the simple but powerful awareness that adding something to one
number and subtracting it from another leaves the sum invariant, or
adding the same number to both leaves the difference invariant, to the
more complex task of classifying all numbers that are both square and tri-
angular, the same mathematical possibilities are present: specializing in
order to make sense of a generality through reconstructing it for yourself,
by discerning what is changing and what is invariant.

As learners become used to being expected to express generalities, and
to treat such expressions as conjectures to be tested with particular and
special cases, and then to attempt a justification, most will internalize the
practice so that the teacher need only prompt occasionally. The outstanding
conjecture that needs to be tested systematically is that such learners will
be much more efficient and effective at learning mathematics, because
they are behaving as natural mathematicians, because they are using their
own natural powers. Anecdotal evidence and reason suggest that this
conjecture is well founded.
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Table 3.1

Portion of Infinite Grid of Similar Cells

2 × (1 + 3) = 2 × 1 + 2 × 3
1 × (2 + 3) = 1 × 2 + 1 × 3 2 × (2 + 3) = 2 × 2 + 2 × 3

3 × (3 + 3) = 3 × 3 + 3 × 3



Working With the As-Yet-Unknown

Whenever learners have solved a problem, it is possible to turn the ques-
tion around and ask for other problems of the same type, which would
give the same answer. This does more than illustrate the pervasive and
creativity-demanding mathematical theme of “doing and undoing”
(Mason, 1988a; SMP, 1984) or inverses (Groetsch, 1999; Melzak, 1983). It
does more than engaging the natural power and desire to try to classify
objects (all problems giving the same answer). It also engages learners
immediately in thinking about as-yet-unknown values, similar to those
they started with, which will also give the same answer. 

For example, we know that 5 + 5 = 10, but what other pairs will give
the same sum? Having discovered perhaps that 29 leaves a remainder of
2 on dividing by 3, what are all the numbers, which have the same prop-
erty? Variations include what are all the numbers that when divided into
29 leave a remainder of 2? Or, put in a form more accessible to younger
children, what numbers can you start with and count by threes to get to
29? A similar question is embedded in the analysis of the 31 game: How
can you guarantee a win as the first player if players alternately choose
numbers from 1 to 5, and the winner is the first to get the cumulative total
to 31 (see e.g., Brousseau, 1997; Freudenthal, 1991). Trying particular cases
while attending to the structure—to the choices available—is a produc-
tive way of approaching the task and its generalizations. Transforming
arithmetic tasks in this way by converting a doing calculation into an
undoing encourages learners to make choices and to act creatively. It
provides them with experience of multiplicity in the as-yet-unknown, in
contrast to tasks that seek single, arithmetically calculated correct
answers.

Challenging learners to specify a method to be used by someone else
(perhaps at the end of a telephone or e-mail) on data that they have not
yet collected, uses learners’ mental imagery to place them in a position of
not knowing what numbers are to be used, and so seeking for some way
to refer to numbers that are as-yet-unknown.

Freedom and Constraint

The mathematical notion of a variable arises naturally both in the context
of expressing generality and in referring to as-yet-unknown numbers.
These joint aspects of what mathematicians call variables are present at a
very early age, and they are united by seeing situations in terms of freedom
and constraint. I am thinking of a number (freedom is complete within
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the meaning intended of number); oh yes, and it is between 2 and 3 (a
constraint is added); and its decimal name does not use the digits 5 or 9
(another constraint); how close can it be to 5/2? Here the sense of freedom
diminishes with constraints. A simpler version is obtained by reversing
(doing and undoing again) the traditional arithmetic question of 3 + 4 = ?
to give 7 = ? + ?, where the question marks denote numbers to be filled in.
Thinking for the moment in terms of positive whole numbers, how much
freedom is there for your first choice? And when you have made that
choice, how much freedom remains? Sometimes your first choice renders
the second choice impossible. Altering the range of permissible change for
numbers gives access to a different sense of freedom. Indeed, all school-
book problems can be seen as examples of situations in which you
start with complete, or at least very great freedom, and impose
constraints. The problem is to construct an object, even all-possible
objects, satisfying the constraints (Watson & Mason, 2004). Often it makes
it easier to solve a problem if you impose the constraints one at a time. The
7 = ? + ? has many different dimensions of possible variation, including
changing the number of question marks and changing the operation(s).
Tasks like these provide learners with direct experience of working with
the as-yet-unknown as an expression generality with constraint (Floyd
et al., 1981).

Toward Manipulation: Multiple Expressions
for the Same Thing

One of the delightful features of getting learners to express generalities,
such as how many objects will be required to make a pattern or to satisfy
some constraint, is that very often there are many different ways to
express the same thing. For example, the number of chairs needed when
tables that seat four people are put together in a long row can be
expressed in several different ways (see Table 3.2).

Each expression asserts the same thing yet each looks different. Indeed,
each displays a different way of seeing. Learning to see the situation
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Table 3.2

Different Ways to Express the Same Generality

2 + 2 × number of tables
number of tables + number of tables + 2

4 × number of tables – 2 × (number of tables − 1)
1 + 2 × number of tables + 1



through the structure of an expression strengthens the learners’ sense of
there being different ways to express the same thing, strengthens their
experience of interpreting symbolic expressions, and also leads to the
desire to manipulate expressions: Surely, there must be a way to see that
these expressions always give the same answers, without having to go
back to the tables and chairs! The desire to manipulate algebraic expres-
sions can arise naturally and spontaneously as a result of learners using
their powers. At the same time, of course, students are building their
accompanying notion of equivalence of symbolic expressions.

Guessing and Testing

The child who can search for and find a glass or a fork when asked for one
has demonstrated the power to specialize (particularize). The child who
can offer a contrary example to an assertion has demonstrated the power
to specialize with a purpose, which involves maintaining contact between
the general and the particular. Guess & Test is not only good mathematics,
but it can develop over time into more sophisticated versions: Try &
Improve, in which the guess is modified according to some principle rather
than being essentially random; Spot & Check when an answer is tried and
found to be correct (it is often difficult just from marks on paper to distin-
guish between a lucky guess and an insightful spotting of the correct
value); Using Structure, where the values tried are built up in some way
using structural features of the problem (e.g., when given the perimeter of
an isosceles triangle with sides twice the base, some evident use of 5 as a
multiplier or divisor); and finally, denoting the as-yet-unknown by a
manipulable label. 

The methods of false position and double false position, which dominated
the medieval mathematics curriculum in Europe, were devised very early
on by Egyptian, Indian, and Chinese mathematicians to deal with prob-
lems involving proportions and linear relationships, respectively. The
method was based on trying a convenient value and then using the incor-
rect answer to modify the trial value to obtain the correct answer. Isaac
Newton then developed an iterative process to solve equations based on
a form of Try & Improve, using fluxions to structure the improvement.
Although not for a moment suggesting that this ontogeny would be use-
fully recapitulated by modern learners, it shows the depth and signifi-
cance of developing Guess & Test into a successful general method that
both spurred and used the development of algebra. 

Summarizing

Getting learners to make use of their powers is not simply an approach to
algebra or even an approach to mathematics. It is mathematics. It is the
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evocation of mathematical thinking. Algebra is seen as a powerful language
in which to express relationships as generalities, enabling those relationships
to be seen as properties and hence as the basis for deductions (see Kaput
et al., chap. 2, this volume, for further amplification of this point). This
includes and subsumes the use of algebra to solve word problems, indeed
to solve any problems in which what is unknown is not readily deducible
from what is known. By treating algebraic thinking as a natural conse-
quence of the use of learners’ powers, algebra can be released from its
gatekeeper role as some kind of intelligence test and as an intellectual
obstacle of adolescence. It is a natural birthright of all human beings.

POSSIBLE OBSTACLES

Any approach to teaching encounters obstacles, precisely because the
teacher is only able to provide fodder on which learners can act, and
prompts to direct learner attention. Most obstacles to learning algebra that
emerge from research can be accounted for on the basis of failure to make
use of expressing generality as the foundation stone for children’s experi-
ence of arithmetic, much less algebra. 

Stacey and MacGregor (2001) question the efficacy of an approach to
algebra based on expressing generality in the context of picture patterns
and tables of consecutive values of functions, for three reasons: first,
because there is no research evidence that it is more, or even as, effective
as introducing letters to stand for as-yet-unknown numbers; second,
because research on learners’ responses to pattern formulating tasks
shows low facility; and third, because picture patterns stress relationships
between terms and hence induce a recursive or inductive specification of
rules (you multiply by two and add one for the next), rather than func-
tional relationships (the nth term is . . .). The difficulty with demanding
research evidence in advance is that expressing generality is not a strategy
to be used and then tested, but a holistic approach to mathematics. The
whole approach needs to be tried properly and fully to test it as an
approach. Testing learners on isolated items with which they have little
familiarity, and certainly little breadth of experience, demonstrates only
that learners do best on tasks that closely match their training. Stressing
the expression of generality is working to educate awareness, not just
train behavior. This takes time. It is not a substitute for some topic, but
integral to every lesson. Indeed, a lesson without the opportunity for
learners to generalize cannot be considered to be a mathematics lesson.
Stacey and MacGregor do point to success with the use of spreadsheets
for the use of symbols for unknown quantities (Rojano & Sutherland, 1993),
and they make suggestions about improving a pattern-based approach,
without perhaps going as far as is advocated here.
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Evidence for the importance, value, and effectiveness of stressing and
exploiting expressing generality from the earliest age is available, how-
ever, in the sense that those people who choose to exploit their mathemat-
ical powers show evidence of behaving in the ways being promoted here
(Krutetskii, 1976). These are the learners who quickly pick up ways of
thinking, ways of using their powers that constitute mathematical think-
ing. Most learners require more explicit encouragement and prompts to
get them thinking algebraically in mathematics lessons. 

Although it is often thought only high attainers can do algebra, there is
mounting evidence to the contrary, including in several chapters of this
book. Learners classified as low attainers can display the use of their pow-
ers to think mathematically when they are treated appropriately (Ahmed
& Williams, 1992; Boaler, 1997; Ollerton & Watson, 2001; Watson, De
Geest, & Prestage, 2004). It seems daft, therefore, to construct curricula
along lines that are not compatible with the exploitation and use of
children’s natural powers. Charting routes that oversimplify for learners,
break down topics into tiny discrete steps, present generalizations to
them rather than provoking them into making them for themselves, and
focus on training behavior without educating awareness (Gattegno, 1987),
cannot be making effective or efficient use of learners’ powers.
Approaches, which provide plenty of particular examples and plenty of
practice yet never prompt for generalization, and in which the examples
provided are not structured so as to enable learners to discern relevant
dimensions of possible variation, cannot be considered pedagogically
effective. Each of these instructional moves attempts to reduce or remove
the fundamental tension identified by Brousseau (1997) and expressed
succinctly as: “The more clearly and particularly the teacher specifies the
behaviour sought from learners, the easier and more likely it is that learn-
ers will produce that behaviour without actually generating it from them-
selves, and hence, without learning from the doing.” This tension is
endemic and inescapable. Teaching becomes ineffective when attempts
are made to reduce it by going to extremes; flexibility and variation
around the mean is much more effective.

Timing

There is a complex issue regarding expressing generality and timing.
There does not appear to be time in an already overcrowded curriculum
for learners to take the time to express and re-express, challenge, and
modify conjectures. I take the opposite view: It is a singular waste of
human energy and time not to promote learners’ use and development
of their natural powers. Worse, failure to do so produces disaffection
and disruption by some, which makes learning difficult for others.
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Furthermore, if learners develop the habit if using their own powers, then
later teaching can be much more efficient. Learners can be expected to use
those powers, and so will require much less time going over old topics
and being trained in new techniques in new topics. They will be learning
how to learn more efficiently and effectively.

If learners are always left to themselves to generalize from ill-
structured tasks, then many will never work out that that is what they are
supposed to do (which partly accounts for the present parlous state of
algebra learning). If learners are offered situations and experiences, which
are structured so as to suggest and invite generalization, then more learners
may experience inner generalization, but may not integrate it into their
functioning. If learners are periodically explicitly invited not only to
generalize but also to express those generalities, and to negotiate the artic-
ulation of those generalities with colleagues as well as with a teacher, then
there is a much greater chance that more learners will experience the plea-
sure of exercising their own power to generalize. 

If learners are always given a set of exercises that starts simply and
gradually becomes more complicated, then they are likely to form the
impression that this is how mathematics is. If, instead, they are sometimes
given complex or general statements to consider, to modify if necessary,
and to convince themselves, then a friend, then a sceptic (see Mason,
Burton, & Stacey, 1982) whether it is always true, they experience problem
solving in its richest and most valuable form. If they are supported in
simplifying through specializing, trying out particular cases not just to
establish a pattern of numbers by going with the grain, but rather through
which to become aware of structure that can then be articulated as a gen-
eralization by going across the grain, then they are likely to get pleasure
not only from making choices as to which particular cases to consider
(using their power to specialize), but also from appreciating the general-
ization they reconstruct and perhaps even extend.

If learners are only ever asked to work with what is present to them
(physical objects, diagrams already drawn, symbolic expressions already
formed), then they are likely to feel disempowered. If learners are invited
to imagine what is not present, to discern details, to seek relationships, to
identify properties, and most of all, go beyond what is present to them in
the material world, then their powers of imagining will be used fruitfully
rather than trivially.

If learners’ attention is drawn to different dimensions of possible vari-
ation, then they are more likely to form a rich web of meaning for a
concept. If learners are invited to manipulate familiar objects not as the
core of a task, but as part of trying to see for themselves what is going on
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as they try to articulate for themselves a generality, then they can use and
strengthen their mathematical powers and take algebra in their stride.

The notion of scaffolding and fading (S. Brown, Collins, & Duguid, 1989)
is vital here. If learners have a steady and constant diet in terms of the for-
mat in which tasks are presented and developed by teachers, then they
will become inured to and dependent on that format. As with all human
beings, invariants soon disappear from attention unless there is some con-
trasting change going on. The picture on the wall is noticed for a few
weeks and then tends to disappear. If, however, there is a varied diet, if
sometimes the teacher starts from the general and invites and supports
learners in simplifying in order to make sense and then regeneralize for
themselves, if the teacher sometimes explicitly works on getting learners
to express and negotiate conjectured generalities, but at other times
makes—at best—indirect reference to those opportunities, and sometimes
acts as if assuming that learners will do this for themselves, then learners
are much more likely to take initiative and to internalize the strategies.
They are also more likely to develop their powers in a positive ascending
spiral of pleasure and self-confidence, instead of a descending spiral of
don’t, can’t, won’t as the opportunities for using their powers decrease.

CONCLUSIONS

People of all ages have the necessary powers to make sense of their expe-
rience and, especially, to make sense mathematically. The issue is not
whether or not these powers exist, but how to make use of them by not
obstructing or obscuring the issue, not trying to do the work for them so
that they park their powers at the classroom door. Using your own pow-
ers is motivating; using your own powers creatively is exhilarating.
Education is not about training learners to be dependent on experts, but
about fostering independence and creativity. The principal interpersonal
attribute required is trust: trusting children to use their powers and trust-
ing the use of those powers to be effective and productive. This is not a
recipe for hands-off discovery learning. On the contrary, it is extremely
demanding on teachers because they have to be aware not only of their
learners’ current state, but of appropriate potential mathematical and
sociocultural developments. This they do through enhancing their own
awareness (Mason, 1998).

Algebra, in particular, is vital to all citizens. As Gattegno (1970) put it:

. . . how can we deny that children are already the masters of abstraction,
specifically the algebra of classes, as soon as they use concepts, as soon as
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they use language, and that they of course bring this mastery and the alge-
bra of classes with them when they come to school. 
. . . the central point is this: the algebra is an attribute, a fundamental power,
of the mind. Not of mathematics only. 
Without algebra we would be dead, or if we have survived so far, it is partly
thanks to algebra—to our understanding of classes, transformations, and
the rest. (pp. 24–25)

Why then does further mathematics prove to be so difficult for so many?
My claim is that education systems militate against supporting teachers to
get learners to make choices and to use their own powers. There is so
much desire to control, to standardize, sometimes masked by equity
rhetoric, but always making the same mistake: failing to support and
encourage teachers to use their own powers and to make choices
creatively in order to promote the same for their learners.
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No doubt, it is difficult for a teacher to teach something which does not satisfy
him entirely, but the satisfaction of the teacher is not the unique goal of
teaching; one has at first to take care of what is the mind of the student and
what one wants it to become. (Poincaré, 1904, p. 255)

In keeping with the theme of this book—the early development of algebraic
knowledge and reasoning—we describe how students might develop
knowledge and ways of thinking in elementary and middle school that
support their learning of algebra. When we use the term algebra, we are not
referring to the content of the algebra I course currently taught in most
American middle and high schools. We mean the expression, manipula-
tion, and formalization of mathematical concepts and structures mediated
by explicit, rule-governed notational systems. As such, the content of alge-
bra, to us, depends on ideas of coherence, representation, generalization,
and abstraction. To address the development of algebraic reasoning, espe-
cially a meaningful and useful algebra, we must first address a more
fundamental problem in mathematics teaching and learning. 
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For too many students and teachers, mathematics bears little useful
relationship to their world. It is first a world of numbers and numerical
procedures (arithmetic), and later a world of symbols and symbolic
procedures (algebra). What is often missing is any linkage between num-
bers and symbols and the situations, problems, and ideas that they help
us think about. Preparing students for algebra should not mean importing
parts of an algebra I course into the earlier grades. Rather, it should
involve changing elementary and middle school curricula and teaching so
that students come to use symbolic notation to represent, communicate,
and generalize their reasoning. 

The opening quote from Poincaré highlights our central point. As we
design an early algebra program for elementary and middle-school
students, we must avoid the temptation to make it resemble the algebra
familiar to us as adults. There are too many problems with traditional
algebra I in the United States—perhaps the most serious of which is
students’ inability to find meaning and purpose in it—to use it as a model
for our efforts (Silver, 1997). For this reason, a fresh approach is needed.
Indeed, we must craft our expectations so that students build a kind of
algebraic competence that is rich, generative, and multipurpose.

For most of us, algebra means the content of traditional algebra I and
the courses that follow it. For authors of algebra I textbooks, algebra is a
tightly integrated system of symbolic procedures, each of which is closely
connected with a particular problem type. The procedures are often intro-
duced as the mathematical means to solve specific types of problems, but
the focus quickly becomes learning how to manipulate symbolic expres-
sions. These procedures are then practiced extensively and later applied
to specific problem situations (i.e., word problems). Teaching this content
involves helping students to interpret various commands—solve, reduce,
factor, simplify—as calls to apply memorized procedures that have little
meaning beyond the immediate context. For many students, this reduces
algebra to a set of rituals involving strings of symbols and rules for rewrit-
ing them instead of being a useful or powerful way to reason about situ-
ations and questions that matter to them. Consequently, many students
limit their engagement with algebra and stop trying to understand its
nature and purpose. In many cases, this marks more or less the end of
their mathematical growth. 

Many mathematics educators have recognized the deep problems of
content and impact of algebra I and have made introductory algebra a
major site in curricular reform efforts (Chazan, 2000; Dossey, 1998;
Edwards, 1990; Fey, 1989; Heid, 1995; Phillips & Lappan, 1998). In one
class of proposals, algebra is presented as a set of tools for analyzing real-
istic problems that outstrip students’ arithmetic capabilities. In contrast to
algebra I, problem situations involving related quantities serve as the true
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source and ground for the development of algebraic methods, rather than
mere pretext (Chazan, 2000; Lobato, Gamoran, & Magidson, 1993; Phillips &
Lappan, 1998). These introductions to algebra aim to develop students’
abilities to use verbal rules, tables of values, graphs, and algebraic expres-
sions to analyze the mathematical functions embedded in the problem
situations, and centrally involve computer-based tools and graphing
calculators to achieve these goals (Confrey, 1991; Demana & Waits, 1990;
Heid, 1995; Schwartz & Yerushalmy, 1992). 

Other proposals have emphasized the abstract and formal aspects of
mathematical practice, suggesting that introductory algebra should
develop students’ abilities to identify and analyze abstract mathematical
objects and systems. For example, Cuoco (1993, 1995) characterized algebra
as the study of numerical and symbolic calculations and, through the
development of a theory of calculation, the study of operations, relations
among them (e.g., distributivity), and mathematical systems structured
by those operations. Cuoco’s proposal reflects mathematicians’ interest in
the study of increasing abstract and general algebraic systems. 

Two working groups, directed to chart algebra reform K–12, have
proposed a more pluralistic approach (National Council of Teachers of
Mathematics Algebra Task Force, 1993; National Council of Teachers of
Mathematics Algebra Working Group, 1997). They identified four basic
conceptual themes in current algebra reform proposals—functions and
relations, modeling, structure, and representation and language—which
in turn can be explored in various mathematical contexts, such as growth
and change, number, pattern and regularity (National Council of Teachers
of Mathematics Algebra Working Group, 1997). Rather than mandating
one best introductory algebra, these educators anticipated different
courses that emphasize different themes and draw from different contexts
(see also Bednarz, Kieran, & Lee, 1996). Kaput’s (1995) characterization of
algebra and algebra reform was similarly pluralistic, identifying five
major strands of algebraic thinking, which alternately focus on mathe-
matical process (generalization, formalization, manipulation), content
(structures, functions), and language.

Given this proliferation of alternatives, one approach to early algebra
would pick one view of algebra and develop scaled-down introductory
versions in earlier grades. For example, the current pre-algebra course
common to middle schools is a scaled down version of algebra I. We
suggest this would be a mistake. We believe it is possible to prepare
children for different views of algebra—algebra as modeling, as pattern
finding, as the study of structure—by having them build ways of knowing
and reasoning that make those mathematical practices different aspects
of a more central and fundamental way of thinking. Alternative views of
what algebra is can be seen as different emergent aspects of making
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sense of one’s world quantitatively. To invoke a biological metaphor, the
development of quantitative reasoning can serve as the conceptual root-
stalk for many different approaches to algebra. Because the stalk can support
multiple branches, wedding early algebra to one or another approach is
unnecessary and limiting. 

We advocate an early emphasis on developing children’s ability to con-
ceive of, reason about, and manipulate complex ideas and relationships,
as an equal complement to numerical reasoning and computation.
Children who develop a rich capacity for reasoning about general rela-
tionships among quantities will possess the conceptual foundation for
learning and making sense of different programs and views of algebra.
This chapter describes a conceptual orientation toward what is going
on in complex quantitative situations, showing how teachers can help
students make mathematical sense of those situations. The key claim in
our argument is: If students are eventually to use algebraic notation and
techniques to express their ideas and reasoning productively, then their
ideas and reasoning must become sufficiently sophisticated to warrant
such tools. 

There is a reciprocal relationship between the long-term development of
students’ algebraic abilities and the long-term development of their rea-
soning from which these abilities emerge. If algebra, meaning the use of
representational practices that employ systematic use of symbols to express
quantitative and structural relationships, is to become students’ means of
expressing and supporting their thinking, then they must have experiences
from whence the thinking that those practices support emerges. Likewise,
if they are to develop thinking that calls for representational practices that
employ systematic use of symbols to express quantitative and structural
relationships, then the roots of those practices must be present in their early
activities.

ALGEBRA, SITUATIONS, AND QUANTITIES

For the mathematically sophisticated, the best approach to complex math-
ematical problems is to use the tools of algebra to help manage that
complexity.1 We move quickly away from the problem situations themselves,
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with all their complex relationships, toward the formality of algebraic and
numerical expressions and manipulations. In appealing to algebraic
methods to solve complex problems, we elect not to use less formal
approaches that are tied more closely to the situation. We also tend to
devalue this informal reasoning in comparison to algebraic methods. In
this devaluation, we miss an essential connection between the two kinds
of thinking: That more concrete, intuitive, and situation-specific patterns
of reasoning, appropriately supported and nurtured over a period of
years, can foster students’ development of the algebraic reasoning we
value so highly. If our goal is for students to understand and use algebra,
then the success of an early algebra program will depend on supporting
the development of formal reasoning from an informal foundation.

To illustrate the common separation of formal, algebraic reasoning and
informal reasoning, compare a traditional algebraic solution to the follo-
wing problem to one that more directly involves the quantities and rela-
tionships in the problem situation:

Problem 1. I walk from home to school in 30 minutes, and my brother
takes 40 minutes. My brother left 6 minutes before I did. In
how many minutes will I overtake him? (Krutetski, 1976,
p. 160)

A typical algebraic solution to this problem involves assigning vari-
ables, writing algebraic expressions, and eventually stating and solving
an equation. If t represents the number of minutes I have walked, then
whenever I have walked t minutes my brother will have walked t + 6
minutes. If d stands for the number of miles from home to school, and
if my brother and I travel at constant speeds, then my walking speed is
d/30 miles per minute and my brother’s is d/40 miles per minute.
Using the general relationship that “rate multiplied by time equals dis-
tance” (d = r * t), these expressions can be stated in the equation, (t + 6)
d/40 = t d/30, which can be easily solved from its equivalent form,
(t + 6)/40 = t/30. Related motion problems like Problem 1 are common
in algebra textbooks because algebraic methods are presumed neces-
sary to solve them. As long as no difficulties arise, this algebraic
approach makes few explicit references to how speeds, times, and dis-
tances are related in the situation. The basic idea is to move out of the
situation and its constituent quantities and into the world of symbolic
expressions and equations.

But this problem can also be solved by reasoning about the relation-
ships among distances, walking rates, and times of travel without the
support of variable assignments or algebraic expressions. Here is one
example of this approach, which we will call quantitative reasoning:
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• I imagine myself walking behind my brother, seeing him ahead of
me. What matters in catching up with him is the distance between
us and how long it takes for that distance to become zero.

• The distance between us shrinks at a speed that is the difference of
our walking speeds.

• I take 3/4 as long as brother to walk to school, so I walk 4/3 as fast
as brother.

• Since I walk 4/3 as fast as brother, the distance between us shrinks
at the rate of 1/3 of brother’s speed.

• The time required for the distance between us to vanish will there-
fore be three times as long as it took brother to walk it in the first
place (6 minutes).

• Therefore, I will overtake brother in 18 minutes.

Like the algebraic solution, this reasoning is quite sophisticated, requiring
a rich understanding of how times, speeds, and distances are related, how
those relationships can be used to draw inferences, and how numerical
values can be inferred from those that are given. It also has the same level
of potential generality as the algebraic solution. If different initial numer-
ical values were given, the calculations in the solution might become
more cumbersome, but the logic of the reasoning would not change. The
two solutions differ most visibly in their use of algebraic symbols.
However, they differ more deeply in the former’s focus on translating
relationships into symbols and the latter’s focus on expressing and work-
ing directly with those relationships.

In proposing quantitative reasoning as a root for algebraic thinking,
we acknowledge that the former does not develop easily or quickly. In
fact, the student who produced this solution achieved his proficiency
from a wide variety of experiences over several years. Our thesis is that
students’ quantitative reasoning is worth years of attention and develop-
ment, both because it increases the likelihood of success with algebra and
because it makes arithmetic and algebraic knowledge more meaningful
and productive. 

Algebraic reasoning is characterized by its generality and by the role
that symbolic expressions play in stating general relationships, compar-
ing and manipulating them, and facilitating many numerical evaluations.
Quantitative reasoning, when developed throughout children’s elemen-
tary and middle school years, develops mathematical ideas of similar gen-
erality that students will eventually find sensible to express in algebraic
notation. Put simply, quantitative reasoning provides conceptual content
for powerful forms of representation and manipulation in algebra.

Before we proceed, it is important to emphasize that we are not using
the terms quantity and quantitative reasoning as synonyms for number and
numerical reasoning. Indeed, our central purpose here is to show how the
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elementary years can be used to support the development of students’
quantitative reasoning by focusing their attention away from thinking
strictly about numbers and numerical operations. In our view, conceiving
of and reasoning about quantities in situations does not require knowing
their numerical value (e.g., how many there are, how long or wide they
are, etc.). Quantities are attributes of objects or phenomena that are mea-
surable; it is our capacity to measure them—whether we have carried out
those measurements or not—that makes them quantities (Thompson,
1989, 1993, 1994). In this sense, we follow Piaget’s (1952, 1970) meaning of
quantity and quantification. But, as we do, we also acknowledge that
other analysts draw much closer associations between quantity and
number (e.g., Fey, 1990; Fuson et al., 1997).

RELATIONSHIPS BETWEEN QUANTITATIVE
REASONING AND ALGEBRAIC REASONING

The two prior solutions to Problem 1 suggest a stark contrast. One trans-
lated the relationships in the situation into traditional algebraic expres-
sions and looked like algebra; the other directly manipulated the
relationships among the quantities in the situation—elapsed times, walk-
ing speeds, and walking distances. Whereas this contrast exemplifies the
character of quantitative reasoning as a distinct form of mathematical
thinking, we stress the connections between quantitative reasoning and
algebra, as well as their differences. Before we consider how such sophis-
ticated quantitative reasoning can be nurtured over the years, we return
to Problem 1 and examine three solutions in greater detail. These solu-
tions (the two already given and one more) show how quantitative rea-
soning can underlie and motivate reasoning with symbols.

The traditional algebraic solution involved generating and solving the
equation,

But, what sort of thinking could motivate the initial variable assign-
ments and the symbolic expressions for times and speeds found in that
equation? If equation writers understood the problem situation (rather
than memorized a script for this problem type), their reasoning might
have had some of the following character:2

4. QUANTITATIVE REASONING 101

(6 + t)
d
40

= t
d
30

.
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on this problem.



• Since we both begin from home, I will catch my brother when we
both have walked the same distance from home.3 We both walk any
distance by traveling at some speed for some amount of time.

• I do not know how far it is from home to school, but I can think of
it as some number of miles, which I will designate by d. My
brother walks d miles in 40 minutes, so his speed is (Eq. 2) miles
per minute. I walk d miles in 30 minutes, so my walking  speed is

(Eq. 3) miles per minute.
• At any moment in my walk, I have walked (Eq. 4) miles in t

minutes. After I start, brother will have walked for 6 minutes longer
than I, so when I have walked t minutes, brother will have walked
(t + 6) minutes. Therefore, he will have walked (Eq. 5) miles
when I have walked t minutes. 

• I will catch brother when he and I have walked exactly the same dis-
tance from home. At that moment, our two distances will be the
same, so the formula for his distance, (Eq. 6), and the formula
for my distance, (Eq. 7), will have the same value. So, I am look-
ing for values of t that make the sentence (Eq. 8) true for
any value of d.

We consider this reasoning a good example of using algebra with under-
standing. The main content of that understanding is a solid conceptual
grasp of how the quantities of walking speeds, times traveled, and dis-
tanced traveled from home are interrelated. This elaborated algebraic
solution differs from the first bare-bones one in that it restates the prob-
lem in terms of the reasoner’s own experience with relative motion,
sketches the logic for transforming walking times into speeds, sees the
expressions for distance as complete and continuous descriptions of motion,
and generates an equation to determine where those distance expressions
produce the same value. Indeed, every step in the solution expresses
some conceptual relationship between two or more quantities in the situ-
ation, and it is these relationships that motivate and justify the various
algebraic expressions. One role for quantitative reasoning in complex
problem solving is therefore to provide the content for algebraic expres-
sions so that the power of that notation can be exploited.

Another role of quantitative reasoning is to support reasoning that is
flexible and general in character but does not necessarily rely on symbolic
expressions. We return to the nonalgebraic, quantitative solution of

(6 + t)
d
40

= t
d
30

t
d
30

(t + 6)
d
40

(t + 6)
d
40

t
d
30

d
30

d
40
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Problem 1 and unpack it to show how such sophisticated reasoning
might grow and how it shares the generality that characterizes algebraic
reasoning:

• I imagine myself and my brother walking. What matters in catching
up with him is the distance between us and how long it takes for
that distance to vanish.

The reasoner projects herself into the problem situation, adopting the per-
spective of actually looking at her brother walking ahead of her. From this
perspective, her distance and brother’s distance from home are irrelevant,
and the only thing that matters is the distance between them. It is this step
of imagining oneself into the problem situation that so often eludes
students: 

• The distance between us shrinks at a rate that is the difference of our
walking speeds.

This is quite a sophisticated inference. When two quantities change at
constant rates, in the same direction, and we consider how rapidly their
measures move apart, we are asking at what rate the difference between
them changes. If we consider each one changing for a unit of time, then
the added difference will be the difference of their rates. Thus, the rate at
which the excess of one over the other changes is the difference of the two
quantities’ rates. In terms of distance and speed, the rate at which the dis-
tance between the walkers’ changes is the difference of their walking
speeds. We hasten to add that by difference we do not mean the result of
subtracting. Rather, we mean the distance that is created by comparing
how much one distance exceeds or falls short of the other:

• I take 3/4 as long as brother to walk to school, so I walk 4/3 as fast
as brother.

This is another sophisticated inference. It exploits a general understand-
ing of speed as a rate of change of distance with respect to changes in
time. Because we walk the same distance, our walking speeds are differ-
ent only because our travel times are different. Longer travel times mean
slower walking speeds. If I walk the same distance as brother in three
fourths the time, then I would walk one third again as far as brother in the
same amount of time (Fig. 4.1). So I walk four thirds as fast as brother
because I walk four one thirds (4/3) as far as brother in the same amount
of time:
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• Since I walk 4/3 as fast as brother, the distance between us shrinks
at the rate of 1/3 of brother’s speed.

Walking 4/3 as fast as brother means that my speed is 1/3 greater than
my brother’s speed. So, in a given amount of time, I not only walk as far
as brother, I walk an extra one third of the distance he has walked.
Therefore, the distance between us shrinks at the rate of one third of
brother’s speed:

• The time required for the distance between us to vanish will there-
fore be three times as long as it took brother to walk it in the first
place (which was 6 minutes).

If brother took some amount of time to walk some distance, and another
person walked at one third of brother’s speed for the same amount of
time, then that person will walk one third of the distance brother walked.
So, in 6 minutes, the amount of time brother used to get ahead of me, the
distance between us will shrink by one third of the distance he walked in
6 minutes. I need to shrink this distance three times, so it takes me 3 times
6 minutes, or 18 minutes, to catch brother:

• Therefore, I will overtake brother in 18 minutes.
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This solution illustrates some important features of quantitative reasoning
and its origins. First, quantitative reasoning draws heavily on everyday
experience. The basic approach—studying how the distance between the
walkers decreases—depends on the reasoner projecting herself into the
situation and invoking the visual imagery of catching up. Once framed in
that way, the solution proceeds by drawing on relationships among
speeds, times, and distances. The change in distance-between-walkers is
cast as a rate of change and expressed in terms of the brothers’ walking
speeds, and numerous quantitative manipulations of the speed–time–
distance relationship support numerical inferences about the value of var-
ious quantities. Finally, although it is grounded in everyday experience, it
is difficult to imagine how students could develop this level of facility
without focused instruction, which draws on and stretches their abilities
to state general relationships and make inferences from them. 

We do not offer this solution as paradigmatic of quantitative reasoning.
Indeed, quantitative reasoning does not typically follow any standard
pattern or routine like the variable assignment and equation solving in
traditional algebraic problem solving. Quantitatively oriented solutions
tend to vary more widely than algebraic solutions to the same problem,
primarily because they are grounded in how students conceive of situa-
tions, and there is tremendous range in these conceptions. To illustrate
this variety, we present another quantitative solution to Problem 1 pro-
duced by a less mathematically mature student. This student’s reasoning
was less general but grounded in a solid, concrete understanding of
constant speed as a rate of change:

• Imagine the distance from home to school cut up into 30 pieces.
Each piece is how far I walk in 1 minute.

• Imagine the distance from home to school also cut up into 40 pieces.
Each of these pieces is how far brother walks in 1 minute.

• Brother’s 1-minute-distance piece will be 3/4 the length of my
1-minute-distance piece.

This statement directly compares the length of the 1-minute-distance to
brother’s 1-minute-distance:

• In 6 minutes, Brother will travel six [of his 1-minute distances], so
he will travel 18/4 of my 1-minute-distance piece. That is how far
ahead of me brother is.

Six iterations of 3/4 of my 1-minute-distance piece is 18/4 of my
1-minute-piece:
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• When I start walking, I will move closer to brother by 1/4 of my
1-minute-distance piece each minute. 

If for every 1-minute-distance piece I move brother moves 3/4 of that
1-minute-distance piece, then I am gaining by the difference each minute:

• I will make up 18/4 (eighteen one fourths) of my 1-minute-distance
piece in 18 minutes when I gain on brother at the rate of 1/4
1-minute-distance piece each minute.

Several features of this solution are worth highlighting. Although it
may appear entirely arithmetical and concrete, it involves quantities
whose actual values are unknown (distance from home to school, “my”
1-minute-distance, brother’s 1-minute-distance), yet from which the rea-
soner derives essential information (“in 1 minute, brother travels 3/4 the
distance I do”). Her study of 1-minute-distances and how they build up
over time also coordinates distances and times without the appeal to
speed-as-rate as a mediator, whereas a rate conception of speed was cen-
tral to the previous quantitative solution. This contrast underscores the
inappropriateness of expecting particular statements of conceptual rela-
tionships in quantitative solutions. Quantitative relationships—especially
complicated, multiplicative ones—can be expressed in many ways. This
reasoning describes in verbal terms what was expressed in symbols in the
bare-bones algebraic solution. Brother’s 1-minute-distance piece is equiv-
alent to the formula d/40 if d were used to represent the distance from
home to school. Finally, ideas of functional covariation—how one quan-
tity varies in relation to the variation of another—are central to this stu-
dent’s reasoning. Segmenting the total distance into 1-minute-distance
intervals provides a framework for comparing and coordinating distances
and eventually to quantify how much she is gaining.

But reasoning of this sort, even if less sophisticated than the previous
solution, does not spring forth either quickly or spontaneously. It must be
carefully nurtured over many years. On the one hand, it requires positive
support from curricula and pedagogy that extend children’s existing abil-
ities. The mental operations used in quantitative reasoning must be built
in many contexts and over relatively long periods of time. On the other, it
means avoiding the classroom orientation that quickly shifts the focus
away from making sense of situations and toward calculation (A. G.
Thompson, Philipp, Thompson, & Boyd, 1994). It opposes the prevailing
view that mathematics is about getting “the answer,” in numerical or
symbolic form. Senseless patterns of thinking emerge for students once
meaning and purpose in mathematics disappear and students’ expecta-
tion of making sense is therefore difficult to restore. The next two sections
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attempt to illustrate how richer capacities for quantitative reasoning can
be nurtured in the elementary and middle school years, beginning with
additive situations.

QUANTITATIVE REASONING AND ARITHMETIC
REASONING

We now look more closely at what we mean by quantities and relationships
between them. Just as we contrasted the emphasis on symbolic procedures
with reasoning about quantities and relationships in Problem 1, we empha-
size here the difference between reasoning about numbers and calculations
and reasoning about quantities in a problem situation typically seen as
arithmetic:

Problem 2. At some time in the future John will be 38 years old. At that
time he will be three times as old as his daughter Sally. Sally
is now 7 years old. How old is John now? (Adapted from
A. G. Thompson et al., 1994)

A Numerical/Computational Solution

From one perspective, Problem 2 is a three-step arithmetic word problem.
To solve it, students must first divide 38 by 3 to determine that Sally’s age
in the future is 12 2/3 years; then subtract 7 from 12 2/3 to determine that
the difference between her age then and now is 5 2/3 years; and finally
subtract 5 2/3 from 38 to determine John is 32 1/3 years old now. Most
middle grades students know that there are three numbers they must use
(38, 3, and 7) and four operations (addition, subtraction, multiplication,
and division) to choose from. They know they must find the right
sequence of operations on the right pairs of numbers (including interme-
diate results like 12 2/3) to produce the correct final answer. From this
perspective, classroom discussions usually center on those issues—which
numbers, which operations, and in what order? Although some attention
might be given to justifying the operations (e.g., noting that “three times
as old” is a clue to multiply), the primary focus is numerical and compu-
tational.

A Quantitative/Conceptual Solution

A different approach is also possible—one that centers on what many
people call understanding the problem (see Riley, Greeno, & Heller, 1983,
for a detailed example of this general view). From this perspective, the
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problem concerns quantities, their properties, and relationships among
them, and its solution involves reasoning about those relationships and
eventually linking them to numerical operations. This perspective focuses
on helping students conceptualize situations irrespective of the numerical
information with which they are presented and the calculations they can
produce. 

To illustrate this approach, we first identify four quantities in Problem
2: “John’s age at some future time,” “Sally’s age at that same future time,”
“Sally’s age now,” and “John’s age now.” We can think about these ages
and many relationships between them (e.g., one person is older, their ages
change at the same rate) without knowing their numerical values. The fact
that we happen to know the values of two of them—“John’s age at some
future time; 38 years” and “Sally’s age now; 7 years”—is incidental to our
ability to think about their ages changing over time.

These four quantities by themselves do not represent what is going on
in Problem 2. To comprehend fully, we need to recognize three important
relationships that integrate the quantities into a coherent structure. First,
there is the temporal relationship that time moves on from now to then,
which relates John’s ages and Sally’s ages (Fig. 4.2).4

Second, we need to recognize that John’s ages (now and in the future)
and Sally’s ages (now and in the future) stand in a specific quantitative
relationship to each other, commonly called a difference. The difference
between John’s two ages, for example, is the amount of time by which his
age in the future exceeds his age now. Although we cannot immediately
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determine the value of this difference, we can imagine it. We also know
that however much Sally grows older, John (and every other person) will
grow older by the same amount, so the difference between Sally’s present
and future ages will be the same as the difference in John’s present and
future ages. We represent these relationships as new quantities (the dif-
ferences in Fig. 4.3) linked to the age quantities.

A third relationship provides a crucial link between John’s and Sally’s
ages. At some point in the future, John’s age will be three times as great
as Sally’s. This relationship is typically called a ratio. We use that term to
indicate a quantity that expresses a multiplicative comparison of two
other quantities. A ratio’s measure describes how many times as great the
measure of one quantity is as the measure of the other. As with differ-
ences, we refer to ratios as quantities. Both are born of comparison and
therefore have dual existences: They express relationships between two
quantities (either a multiplicative [ratio] or additive [difference] compar-
ison), and they are quantities in their own right (as a measurable attribute
of such comparisons).

When we include the ratio between John’s and Sally’s future ages to
the structure presented in Figure 4.3, we have identified, analyzed, and
related the quantitative information relevant to answering the question of
how old John is now. In traditional terms, we have built an understand-
ing of the problem, which will support and justify our arithmetical
reasoning (Fig. 4.4).

With such an understanding, it is easy to decide (and justify) what
calculations are needed. When John’s future age is three times as large as
Sally’s future age, Sally’s age at that moment will be 1/3 as large as
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John’s. Thus, it makes sense to divide “John’s age in the future” by 3 to
determine the value of “Sally’s age in the future” (Fig. 4.5). Knowing the
values of Sally’s current and future ages, we can determine by how much
older she grows, which is 38/3 – 7, or 17/3, years. Because we know that
John grows older by the same amount as Sally (17/3 years), and that in
17/3 years he will be 38, we can make our final computation to find that
John’s age now is 32 1/3 years (Figure 4.5).

So, What’s the Point?

The purpose of these extended examples is to emphasize the richness that
mathematical reasoning can have when we focus on quantities and rela-
tionships among them instead of on numbers and arithmetic operations.
Sowder (1988) showed that when students do not attend to quantities
and relationships, their problem solving quickly becomes a matter of
ungrounded debate about choosing numbers and operations. An empha-
sis on the quantitative aspects of situations reorients students’ mathemat-
ical focus in three important ways, affecting both the development of their
arithmetic reasoning and their future prospects in algebra. 

First, the quantitative/conceptual approach makes thinking about the
quantities and their relationships a central and explicit focus of solving
the problem. The resulting conceptual structure that we have represented
in a series of figures can be used to explain and justify both quantitative
inferences and numerical computations. Such figures create public frame-
works that students and teachers can use to think about situations,
making it less likely that students will see numerical computations as
materializing from nowhere. They also create contexts for examining
mathematical issues that are unlikely to arise in the numerical/computation
approach. For example, a teacher could raise the question of whether the
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ratio between John’s and Sally’s ages remains constant as they get older.
Questioning how ratios of people’s ages change over time could lead to
an examination of how ratios change as the related quantities increase in
equal increments and how those increments themselves must change for
ratios to remain constant. 

Second, this focus on thinking about and representing general rela-
tionships between quantities (i.e., the relationships inherent in the quan-
tities themselves, not the specific numerical values they take on) supports
the kind of conceptual development that will eventually make algebra
a sensible tool for thinking and problem solving. We say this because
quantities are inherently indeterminate. We can imagine comparing two
heights without knowing their specific measures. Heights are quantities
that we understand as being measurable, but knowing their measures
does not add to conceptualizing the comparison. Rather, knowing their
measures simply adds information about the comparison. Algebraic nota-
tion and methods are powerful tools for stating, analyzing, and manipu-
lating general relationships, but without ideas of substantial generality to
express, students will find little sense in and little use for algebra.

Third, the quantitative/conceptual approach also suggests an early
route to algebraic symbols in its focus on representing the general numer-
ical relationships, rather than specific computations. If students write
their calculations in open form (e.g., “38/3 – 7” instead of “5 2/3“) and
focus on the nature of that calculation rather than its result, they can
adjust more easily to using expressions in place of computed values. The
purpose of writing open expressions is to record a chain of reasoning
clearly—a rationale that is useful in arithmetic as well as algebraic rea-
soning. Open expressions make it much easier for students to think about
the effects of changing a given numerical value in the situation and
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therefore support the shift in focus from particular to general relation-
ships (Mason, chap. 3, this volume). Also, if students regularly use expres-
sions to represent values, it is a much smaller step to using formulas
to represent values.5 Of course, it is incumbent on teachers to draw
children’s attention consistently to the nature and purpose of their
activity—that they are, in fact, representing a number without actually
having to compute it and that they are reasoning about many similar
problems all at one time.

In emphasizing the importance of open numerical expressions as an
entry point to algebraic formalism, we recognize that they are a standard
early topic in the traditional algebra I and pre-algebra curricula. However,
with students’ prior experiences dominated by numerical computation,
most of them do not understand what purpose open expressions serve.
After all, if you can complete a computation, then why state it in incom-
plete terms? When the focus is on grasping, stating, and exploring general
relationships between quantities, open expressions serve a clearer pur-
pose: to connect general relationships (like differences) to specific situa-
tions, quantities, and numerical values. 

The comparison of the two solutions to Problem 2 also illustrates other
features of quantitative reasoning that we attempt to elaborate in the bal-
ance of the chapter, specifically:

• Some quantities arise directly from measuring things; others, like
differences and ratios, arise from quantitative operations—opera-
tions on other quantities. Quantitative operations (e.g., multiplica-
tive comparison) are not the same as numerical operations (e.g.,
multiplication) despite the frequent similarity in terminology. 

• Quantities that result from quantitative operations exist in two dif-
ferent senses, as quantities in their own right and as relationships
between the two quantities. It can be conceptually demanding to
reason and communicate about such quantities because we must
distinguish and coordinate these two senses and, when necessary,
shift between them.

• Quantitative reasoning produces essential non-numerical infer-
ences about quantities and how they relate in the problem situation.
It is often the glue that holds arithmetic reasoning and algebraic
reasoning together.
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• Cognitive resources other than spoken language are useful (and
often necessary) in managing quantitative reasoning in complex
problem settings. One class of resources is diagrams that represent
relationships in sensible, public ways.

• Mathematicians and educators lack a standardized, accepted termi-
nology for quantities. Some terms used in this chapter, like differ-
ence, represent relatively standard usage; others, for example, ratio
and rate, are less standard (see P. W. Thompson, 1994). But the
names used to designate types of quantities are less important than
the way people think about them. 

QUANTITATIVE REASONING IN COMPLEX
ADDITIVE SITUATIONS

Situations that involve complex additive relationships (i.e., more than
three related quantities) can be an important site for the early develop-
ment of students’ quantitative reasoning. Developing young students’
abilities to reason with additive situations prepares them for algebra in
multiple ways. It provides occasions for them to think about situations
systematically, initially ignoring matters of calculation and instead focus-
ing on what is going on. When additive situations include large numbers
of interrelated quantities, this complexity presses students’ abilities to
understand, represent, and express those relationships and therefore
develops their non-numerical mathematics skills. If we want students to
learn and use algebra as a sensible tool for expressing their thinking and
solving problems, then work with complex problems must come first. 

Students who have mastered addition and subtraction as operations on
numbers may have much more to learn about additive relationships
among quantities. For example, consider the following two problems:

Problem 3. Thomas has 38 baseball cards and 13 more than his friend
Alex, How many baseball cards does Alex have?

Problem 4. Jim, Sue, and Tom played marbles. Sue won 6 marbles from
Jim and 5 from Tom. Jim won 3 marbles from Tom and 4
from Sue. Tom won 12 marbles from Jim and 2 from Sue.
(Compare Tom’s number of marbles before and after the
game.) (Adapted from P. W. Thompson, 1993)

By Grade 3, Problem 3 is not difficult for most students, despite that more
could be mistaken as a cue to add 38 and 13. But, even older students
struggle with Problem 4 because they must manage many quantities (col-
lections of marbles and changes in those collections), construct relation-
ships among those quantities, and reason about those relationships,

4. QUANTITATIVE REASONING 113



instead of simply choosing numbers from the problem statement and
computing. (We placed parentheses around the last sentence in Problem
4 to emphasize that situations can be the instructional focus without
becoming problems—that is, without asking for a quantity’s value.) 

Problem 4 illustrates some of the quantitative issues that can receive
attention when the main goal is to help students understand what is
going on in situations. A teacher might ask, “Is it possible for Jim to win
3 marbles from Tom if Tom won 12 marbles from Jim?” and then make
their understanding of that possibility the focus of her lesson. The ensu-
ing discussion, when oriented in this way, could move in the direction of
considering how the changes in the various collections of marbles inter-
relate (see e.g., P. W. Thompson, 1993). 

Developing students’ ability to reason with complex additive relation-
ships means rethinking the notion of problem in elementary mathematics.
We cheat our students if our problems are always requests for calcula-
tions. The next few sections illustrate a different sense of problems—that
of situations where students conceptualize and reason about relationships
between quantities. If students’ experience of problems changes, so can
the kinds of questions that teachers can ask, the kinds of assessment that
make sense, and the character of students’ capabilities. We must guard
against underestimating students’ quantitative reasoning abilities. They
come to school fully capable of learning to reason with simple additive
relationships and that reasoning can develop in impressive ways with
thoughtful instruction (Carpenter & Moser, 1984; Carpenter, Moser, &
Romberg, 1982; Fennema, Carpenter, & Peterson, 1989; Fuson et al., 1997).
A major task of the elementary curriculum should be to build on that
competence.

Sources of Differences

This section describes how differences—a key component of additive
problem situations—can arise in a variety of ways. We also examine the
kinds of questions that can be posed in complex additive situations; and
discuss some general aspects of students’ quantitative reasoning in these
situations and how teachers can support and extend it. This section does
not even begin to sketch out a K–8 curriculum in additive reasoning, but
it does provide examples of how traditional word problems can be
adapted to support the development of quantitative reasoning. 

Many complex additive situations centrally involve one or more dif-
ferences, quantities that measure how much one quantity exceeds or falls
short of another. Differences arise in situations in at least three ways.
In some cases, they emerge when actions physically change quantities in
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the situation. For example, in Problem 4, Sue’s act of winning 6 marbles
from Jim created the difference, “the ‘new’ marbles in Sue’s collection.”6

Differences also result from comparisons of two quantities that remain
wholly intact in the situation, for example, between two people’s height
(how much taller?), between size of classes (how many more children?),
between two people’s driving speed (how much faster?). Third, differ-
ences can emerge when quantities change over time but without any
physical act of transfer. For example, we can conceive of the daily fluctu-
ations in the price of some commodity relative to its “base” price as a
sequence of differences, one for each day.

The Basic Case. In the conceptually simplest case, a difference compares
two quantities that are not themselves the result of other quantitative
operations (i.e., they are not differences, ratios, or rates). Conceptualizing
a difference means thinking about three quantities in relationship to each
other.

The situations in Problems 2–4 included examples of basic differences,
such as the difference between John’s age now and Sally’s age now
(Problem 2) and the difference between Sue’s marbles before and after
playing Jim (Problem 4). In the first example, the values of the difference
and one quantity were known, so the value of the third quantity could
easily be calculated. In the second, only the value of the difference was
known so there were many possibilities for the number of marbles in
Sue’s collection before and after playing Jim. It is not necessary—and this
is a crucial point—to know the values of either quantity to conceptualize
their difference and reason about it (Fig. 4.6). Conceptualizing a difference
only requires thinking about the excess (or deficit) of one quantity over
another. As Carraher, Schliemann, and Brizuela (2000) have shown, even
primary age children can conceptualize differences and reason about
them in relation to their constituent quantities.

Operations on Differences. In some situations, two or more basic differ-
ences are present, and reasoning about those situations can involve additive
comparisons or combinations of those differences.7 Conceptualizing a
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difference of differences or a combination of differences means coordinating
the relationships among seven quantities (although not necessarily simulta-
neously; Fig. 4.7).

In the example “Allen is 27 years older than Alva and Alva is 13 years
younger than Denise,” we can think about the relationship between
Allen’s and Denise’s ages as a comparison: How much older than Alva
is Allen than Denise? Relative to Alva’s age, Allen is “more older” than
Denise, by exactly 14 years. In, “the price of regular unleaded gas at
Sam’s station increased 5.9¢ one month, decreased the next month, and
then was 3.7¢ lower at the end of those two months,“ the change during
the second month can be thought of as a combination of differences
(Fig. 4.8).

As in the basic case, conceptualizing a difference or a combination of
differences, however, does not require or necessarily follow from know-
ing the specific values of the differences that are compared. In the state-
ment, “Toni compared her height to her brother’s height and Melissa
compared her height to her brother’s height. They found that Toni is taller
than her brother by more than Melissa is taller than hers,” we know nei-
ther the specific value of any of the three differences nor the specific val-
ues of the four individuals’ heights. Yet, we can imagine a comparison of
Toni’s and Melissa’s differences and think about that difference as a
quantity. Even if the value of the difference of height differences were
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known, many different heights and height differences could produce it.
For this reason, situations involving differences of differences are often
complicated to sort out, make sense of, and speak about. There are more
quantities to keep track of, they participate in multiple relationships, and
assigning or changing their numerical value may have complicated
effects. 

Patterns of Differences. Other situations involve additive comparisons
of two quantities, which change many times (even continuously) in the
situation. Repeated or continuous additive change creates the possibility
of conceiving a pattern of differences. Conceptualizing a pattern of dif-
ferences means grasping the collection of changes as an object of consider-
ation. This approximates thinking about differences as a function of two
variable quantities.8 In many cases, changes take place over time, so dif-
ferences can be arranged and thought about as a temporal sequence. For
example, the performance of a business is often conceptualized as a series
of differences between revenues and expenses over some units of time,
say, months (Fig. 4.9).

Curriculum: Problems and Problem Situations

In developing a curriculum to support students’ additive reasoning capa-
bilities, it is important to consider the kind and complexity of the situa-
tions presented. Because the overall goal is to prepare students to use
mathematics to think about their world, it is sensible to choose and/or
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develop situations and quantities for which they have rich, everyday
experience. This general principle does not imply a strict realism (e.g.,
“kids can only think about quantities they have directly experienced”).
Rather, it means that the situations where students can draw on broadest
reservoirs of personal experience, thinking, and talk (e.g., motion, growth,
physical characteristics) are dependable places to start. They are contexts
where students’ reasoning may be initially the most developed. But other
features also contribute to the complexity and difficulty of situations. In
general, additive situations become more complex as the total number of
quantities increases, the level of interrelation among quantities increases,
and the number of quantities with known values is decreases.9

Students’ abilities to explain and reason are clearly dependent on and
strongly influenced by the kind of questions teachers pose. In most ele-
mentary classrooms, students are asked to find the value of one quantity
from the given values of other quantities, often in conceptually simple
situations. A curriculum of quantitative reasoning must include different
sorts of questions about more complex situations. Sometimes these ques-
tions will be calls to find a value of a quantity (or, perhaps more fruit-
fully, a range of values; see later); at other times, they will be questions

118 SMITH AND THOMPSON

FIGURE 4.8. The difference between the 2nd and 3rd months' prices is seen as a
combination of two differences.
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their students.



about the nature or behavior of a quantity. Problems 5 and 6 provide two
examples:

Problem 5. Sam and Joseph each had a shorter sister, and they argued
about who was more taller than his sister. Sam won the argu-
ment by 14 centimeters. He was 186 cm tall; his sister was 87
cm; and Joseph was 193 cm tall. How tall was Joseph’s
sister? (Adapted from P. W. Thompson, 1993)

In this case, although the right series of three numerical subtractions will
produce the “answer,” the complexity of Problem 5 makes it important to
think about and make sense of the situation by representing and sorting
out the quantities and their relationships. It makes reference to four
people’s heights, two brother–sister height differences, and a difference
between those differences. Without making sense of the situation as a set of
related relationships, the connection between the difference of differences
(whose value is 14 centimeter) and Sam’s family difference (whose value is
99 centimeters) can be quite mysterious. So one strategy for developing
students’ quantitative reasoning is to pose problems that are too complex
for them to apply an over learned strategy for solving simpler problems.

A second curricular design strategy to highlight quantitative structure
is to include problems that permit many numerical answers. For example,
Problem 5 can be adapted as follows:

Problem 6. Sam and Joseph each had a shorter sister, and they argued
about who stood taller over their sister. Sam won the argu-
ment by 14 centimeters. He was __ cm tall; his sister was __
cm; Joseph was __ cm tall; and his sister was __ cm tall. What
numbers can you put in the blanks so that everything works
out? (Adapted from P. W. Thompson, 1993)

Because only one quantity has a given value, this form of the situation
shifts attention further toward the structure of the additive relationships.
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Six of the seven quantities can take on different values, and students must
coordinate their choices of height values to generate appropriate values
of the three differences. This strategy of asking students to reason from a
difference rather than to a difference can be applied to generate a wide
range of interesting additive problems.

Student Reasoning and Pedagogical Considerations

All students have the capacity, both existing and potential, to develop
significantly better quantitative reasoning skills than is currently likely
in most elementary mathematics classrooms (Carpenter et al., 1982;
Nemirovsky, Tierney, & Ogonowski, 1993; Vergnaud, 1982, 1983). But that
development depends on students’ committing to the goal of describing
situations, quantities, and relationships as clearly as possible as they see
them. Students, particularly those who only see mathematics as finding
numerical answers by arithmetic, are unlikely to accept that goal if clear
reasoning is not valued and rewarded, appropriate support for clearer
thinking and communication is not provided, and multiple perspectives
on situations are not welcomed. Each of the requirements makes specific
demands on teachers and the norms they maintain in their classrooms
(Wood, Cobb, Yackel, & Dillon, 1993).

In comprehending and communicating quantitative situations in their
own terms, students have two primary means of expression: verbal
descriptions and various sorts of external diagrams.10 Producing a con-
ceptually clear verbal description does not require using the “right” ter-
minology; it is a matter of taking the task of clear description for others
seriously, listening to others’ reactions, and clarifying and refining when
necessary. When students’ verbal descriptions lose clarity and do not
communicate well—either to teachers or their peers—they can be asked
to show their thinking in a diagram. As with verbal descriptions, the
nature of drawings will vary with the situation and the student, but here
is a representative example. To manage the quantitative complexity of
Problem 6, one fifth-grade student used pencils placed side-by-side (Fig.
4.10) to represent heights and basic differences (see P. W. Thompson, 1993,
for a more complete account).

Such difference diagrams can provide useful grounding for discussions
of problems like Problem 6, where the value of a difference is known but
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the values of the other quantities are not. More broadly, and perhaps more
algebraically, they can help students to think about quantitative relation-
ships at a level of generality beyond the immediate problem. With some
experience and practice they can also easily be adjusted and annotated to
fit a wider range of problems. For example, diagrams may make it easier
for students to explore whether the winner in Problem 6 could be the
shorter boy, when he stands taller over his sister by more than the other
boy (Fig. 4.11).

Teacher Questions and Classroom Discussion

Teaching quantitative reasoning involves two main components: choos-
ing a sequence of situations and providing appropriate support for
students’ reasoning. Teachers can prepare in advance for the help they
provide their students. For each situation, they should first decide for
themselves what quantities are involved, how they are related, and how
they would describe the situation quantitatively. Then they should imag-
ine how their students might describe the situation differently and what
conceptual difficulties might be lodged in their descriptions (e.g., the
common event of confusing the value of a difference with one of its con-
stituent quantities). Although students’ interpretations cannot be com-
pletely predicted in advance (in fact, presuming to know exactly which
errors are coming can lead to terrible problems), teachers do not need to
wait for the discussion to start thinking about how they might respond.

Because the central goal is to focus on quantities and how they relate
in situations, and because this represents a major mathematical change
of focus for many students, it is important to open discussions with
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questions that lead to discussions of quantities, not numbers. A useful
opening question can be a general one, like what is going on here? The
goal is to get students to describe situations as they see them. In support-
ing quantitative discussions, the most central skill is careful listening.
Using their own knowledge of the situations, teachers can listen for which
quantities are mentioned, which are central for particular students, and
how students see relationships between those quantities. For situations
that express additive relationships, teachers should especially listen for
how students are discriminating differences from other quantities in the
situation.

In teaching fifth graders about complex additive situations, one of us
opened the discussion of Problem 5 as follows (P. W. Thompson, 1993):

Teacher (T): What are they doing?
Several students: Arguing.
T: What are they arguing about?
S1 & S2: Who’s taller.
S3: Who’s taller than Sam’s sister and Joseph’s sister.
T: Are they arguing about who’s taller?
Several students: No.
S4: Who was taller than their sisters.
T: Who was taller than their sister?
Several students: Yeah.
T: Are they both taller than their sisters?
Several students: Yes.
S1: Who was more taller.
T: Who was more taller? What does that mean?
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(Students move quickly to modeling the situation using four pencils; they
also try adjusting their model, at the teacher’s request, so that the shorter
brother is actually the winner.)

This is one example of students reasoning quantitatively (note the
absence of references to numbers) with appropriate teacher support. The
opening question led to increasingly accurate descriptions of the compar-
isons in the situation. The teacher was able to point to where students
needed to revise their views without being explicit about how they
should change or doing it for them. Students were still “in charge” of their
thinking.11 

Perhaps the most challenging task in supporting quantitative reason-
ing is to listen for and respect alternative descriptions of the quantities in
the situation while pressing all participants for clarity. This is challeng-
ing work when two or more quite different views of the situation have
been expressed. For example, in Problem 5, one student might empha-
size the differences and another the relationships between the con-
stituent quantities (the heights). When quite different perspectives arise,
teachers can help their students by highlighting the contrasts between
them and then managing when each view gets worked on. Leading the
discussion to elaborate only one view at a time may help the class come
to see different descriptions as simply different perspectives of the same
situation.

TWO FINAL EXAMPLES: DEVELOPING
QUANTITATIVE FOCUS

We have stressed that the current K–8 mathematics curriculum, with its
emphasis on numbers and arithmetic, falls well short of adequately devel-
oping students’ quantitative reasoning as a foundation for algebra. To
achieve a better curricular balance between quantitative/situational
reasoning and numerical reasoning, many additive situations currently
expressed as numerical word problems can be adapted to focus on quan-
tities and relationships. This section wraps up with two examples that
illustrate how simple this process can be.

4. QUANTITATIVE REASONING 123

11It is worthwhile to note that, in contexts like this, we recommend against
moving too quickly to simplify the situation by asking children to work with
numbers. The point of this example is to illustrate how a teacher can support
students’ thinking about the situation without drawing their attention to
calculating an answer.



A Single Difference

Many word problems in the primary curriculum are situated in quantita-
tive change, the gains and losses of everyday objects, for example:

Problem 7. Tony had 11 marbles but he lost 4 marbles to Marguerite in a
game. How many marbles did Tony have after the game?

Instead of following up Problem 7 with many others with the same
structure, Problem 8 can be given:

Problem 8. Sharon lost 6 marbles to Philip in a game. What can we say
about the number of Sharon’s marbles before and after the
game?

Problem 8 asks students to reason from a difference, rather than to com-
bine the values of a difference and one constituent quantity to find the
missing value of the other. Although students may initially object that
no answer exists, once five or six pairs of values have been generated
for Sharon’s marbles, they can explore the properties of those pairs. For
example, they can determine that the smallest number of marbles Sharon
could start the game with was 6. Of course, if this problem is presented in
isolation, students will likely not accept it as a problem or understand its
role in the development of their thinking. However, when it is one small
piece in a more deliberate, multiyear quantitative curriculum that chal-
lenges and extends their reasoning capacities, students’ reaction may be
quite different.

Coordinating Two (or More) Differences

The upper elementary curriculum contains many complex, multistep
additive word problems, like Problem 9:

Problem 9. An elementary school has two fourth-grade classes, Room 5
and 7, and two fifth-grade classes, Room 6 and 8. There are
52 fourth graders in the school, which is 7 more students
than are in the fifth grade. There are 22 students in Room 6.
How many students are in Room 8?

Whereas this situation is certainly more complex than Problems 7 and 8, the
reasoning required of students is minimized by the structure of the quanti-
ties and their known values. The value of the difference between the com-
bined sizes of fourth-grade classes and fifth-grade classes determines
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the total number of fifth graders (52 – 7 = 45), and the given number of
students in Room 6 determines the number of students in Room 8 (45 – 22
= 23). Only one difference appears in this situation; it compares the sizes of
the two combined classes and has a value of 7 children.

Problem 10 describes a similar situation with a slightly different struc-
ture to provoke greater attention to quantitative relationships:

Problem 10. The same elementary school has two first-grade classes,
Rooms 1 and 2, and two second-grade classes, Rooms 3 and
4. Rooms 1 and 2 together have 50 students, and Rooms 3
and 4 together have 46 students. Room 1 has 6 more students
than Room 4 and Room 2 has 2 fewer students than Room 3.
How many students can be in each room? Is there only one
possible size of each class?

The reasoning generated by Problem 10 will likely be quite different for a
number of reasons. Because the size of the individual classes is only
restricted by the size of grades (total first and total second graders), many
different values will “work.” There is also the interesting and important
relationship between the differences between classes (e.g., Room 1 has 6
more children than Room 4) and the difference between grades (the first
grade has 4 more children than the second grade). If students do not raise
the issue, then teachers can ask if the relationship between three differences
(“6 more” combined with “2 less” is equivalent to “4 more” overall) is coin-
cidence or not. Diagrams like Figure 4.12 can help support students’
analysis of this situation. Also, as suggested before, they provide teachers
with a convenient structure for generating new problems by varying the
given numerical values and helping students to trace the impact of these
changes and look for generality in the situation.
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CONCLUSIONS

We have attempted to sketch out one proposal for early algebra: an
approach to elementary and middle school mathematics that both read-
justs the current K–8 focus on arithmetic (numbers and operations) and
supports the development of algebraic reasoning. We question the content
of algebra I as the presumed standard for early algebra development and
with it, the presumed developmental linkage between arithmetic and
algebra. We suggest instead that elementary and middle school curricula
be reconceptualized in terms of students’ quantitative, arithmetic, and
algebraic reasoning. In contrast, we recognize that we have not outlined a
curriculum in quantitative reasoning. Although that is a pressing and
important task, it is not one that can be addressed in a single chapter.
Instead, we have tried to show how simple adaptations of current curric-
ula, when taught with a different emphasis, can make students’ mathe-
matical experiences much richer quantitatively.

Quantitative Reasoning Is a Central Dimension of Students’ Mathematical
Development. It is related to, but in an important sense independent of,
both arithmetic and algebra. It is also foundational for both arithmetic
and algebra, providing content and meaning for numerical and sym-
bolic expression and computation. The common arithmetic to algebra
framework is too limiting and narrow; discussions of early algebra
should be framed in terms of connections among quantitative reasoning,
arithmetic reasoning, and emergent algebraic reasoning (Fig. 4.13). In
each area, we should consider reasonable goals for students’ learning,
available curricula, useful teaching tools, and research on students’
capabilities.

The Current Emphasis on Numerical and Symbolic Expression and Manipulation
Is Fundamentally Flawed. It is flawed largely because it fails to substantively
connect mathematics to students’ experiential world. The implications of
this disconnection are varied, profound, and negative for too many students
by the middle school years. For students to learn mathematics that is
powerful and productive, more attention must be given to the development
of quantitative reasoning. Developing students’ abilities to conceptualize
and reason about situations in quantitative terms is no less important that
developing their abilities to compute.

A Rich Program of Quantitative Reasoning Spurs the Development of Students’
Conceptual and Representational Capacities as It Connects Mathematics to the
World of Objects and Situations, Measurement, and Change. It pushes
students to examine, articulate, and represent general relationships among

126 SMITH AND THOMPSON



and between quantities. Without the understanding of such general, con-
ceptual relationships, students find little need or sense in learning the tools
of algebra. If, on the other hand, students develop mathematical ideas of
sufficient complexity—among them complex quantities and relationships
between quantities—their expression, manipulation, and further abstrac-
tion in algebraic notation can become a more meaningful and sensible
activity.

Building Sophisticated Quantitative Reasoning Skills for the Majority of
Students Is Not a 1- or 2-Year Program; It Requires Development Throughout
the Elementary and Middle School Years. Students often come to school
with substantial quantitative competence in additive relationships and
build that competence, in and outside of classrooms. However, their
development of skilled quantitative reasoning will depend on instruc-
tional programs that recognize and extend students’ existing abilities.
These programs will require work on more complex additive situations
and relationships and, even more centrally, on developing students’ abil-
ities to conceptualize and reason about multiplicative quantities and rela-
tionships (Harel & Confrey, 1994; Vergnaud, 1983, 1988). 

Some important components of such a program include: suitably chosen
situations and problems, greater instructional focus on making sense of
quantities and relationships in those situations than on finding answers,
emphasis on reasoning and expression that is neither numerical or sym-
bolic (in the sense of traditional algebraic symbols), and support for rep-
resenting and communicating reasoning clearly and publicly in diagrams
and open-form expressions.
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FIGURE 4.13. Two views of the introduction of algebra.



In closing, we address two potential objections to our position: one
concerning content balance in the K–8 curriculum and another concerning
the claim that quantitative reasoning prepares students for diverse
approaches to algebra. 

Throughout, this chapter has argued for better curricular balance between
teaching and learning about number/operation and quantity/quantita-
tive reasoning. But, although quantity and number are central categories
of elementary mathematics, they do not comprise a comprehensive K–8
curriculum. We believe that students should also experience extended
work with metric and nonmetric geometry, data and statistics, as well as
introductory probability. Each can provide important ideas to represent
and reason about in greater generality with algebraic symbols and
methods (see Boester & Lehrer, chap. 9, this volume, for examples from
geometry). We acknowledge but cannot resolve the fundamental dilemma
that there is more worthwhile mathematics to learn than there is space in
the school curriculum to teach and learn it. Competition between ideas
and subfields of mathematics is a necessary, perhaps not wholly negative,
result. Our push to shift from a number-only orientation (K–8) to a
number and quantity orientation reflects our present task of reconceptu-
alizing early algebra as something more than the common view of algebra
as generalized arithmetic.

Likewise, we do not believe that a strict conceptual distinction between
number and quantity is psychologically defensible or educationally
useful. Children can find wonder and engage deeply in the nature of
numbers qua numbers and in quantities and situations. Any good
mathematics curriculum should recognize and nurture both interests.
Moreover, it can be difficult to decide if a person’s reasoning is more
numerical or more quantitative, particularly when the quantities are
numerically specific. In most cases, there is a natural dialogue between the
two mathematical dimensions. But softening the distinction between
number and quantity does not undermine our fundamental argument
that much more attention should be given to thinking about quantities,
relationships, and situations. 

We argued initially that a K–8 program that gives more attention to
quantitative reasoning can support numerous conceptually different and
sensible introductions to algebra, as replacements for the current U.S.
algebra I course. But our proposal could be seen as supporting, most
directly, the more applied view of algebra, algebra as modeling. We have,
after all, repeatedly emphasized the importance of making sense of prob-
lem situations and that an important kind of mathematical reasoning
examines general relationships between quantities. Indeed, we think that
introducing algebra as a set of tools for expressing reasoning about com-
plex situations and for generalizing their solutions has substantial
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promise, especially when the assumption is that all students will take and
learn algebra (Silver, 1997). But we also believe that this quantitative,
applied introduction can easily support the subsequent shift toward the
more formal, structural side of algebra. Algebraic knowledge that has
grown from a quantitative root stalk can serve as the basis for moves
toward increasing abstraction and focus on abstract structure, making
them abstractions from students experience and in students’ reasoning
about that experience. 

Finally, we note that whereas we were familiar with the Davydov and
El’konin approach to basing early mathematics instruction on ideas of
quantity (Davydov, 1975, 1982; El’konin & Davydov, 1975), we have only
recently become aware of curricular materials being developed and
researched that bind ideas of quantity with inscriptional practices that
mean to provide a bridge between quantitative and symbolic reasoning
(Dougherty, chap. 15, this volume). In this approach, children are asked to
think about quantities’ measures and relationships among them, and to
attend to what one can deduce from those relationships. For example, the
Davydov and El’konin curriculum intends that children read “A/B = 5” as
“Quantity A, measured in units of Quantity B, has a measure of 5.” It is
then a small step to deducing that “A is 5 times as large as B,” which intro-
duces the mathematical notion of fraction as reciprocal relationships of
relative size (P. W. Thompson & Saldanha, 2003), while respecting the
starting point that numbers are measures and symbolic statements cap-
ture quantitative relationships. Clearly much work remains to be done. 
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5

Representational Thinking as a Framework
for Introducing Functions in the
Elementary Curriculum

Erick Smith
Cayuga Pure Organics

If I had to explain what is algebra to a student, I would say: “think of all
that you know about mathematics. Algebra is about making it richer, more
connected, more general, and more explicit. . . . ” (Ricardo Nemirovsky,
Communication to the Algebra Working Group, September 19, 1994)

This chapter has several objectives. First, I want to describe a theoretical
framework for thinking about algebra and algebraic thinking. Although I
think it is important to think of algebra in the widest possible context in
the elementary years, there is still reason to be careful and perhaps even
precise in describing what we mean by algebraic thinking. One important
distinction is between two kinds of algebraic thinking, which I term rep-
resentational thinking and symbolic thinking, respectively. Symbolic think-
ing is related to the way one understands and uses a symbol system (of
which the usual algebraic character string-based one is, of course, a pri-
mary example) and its associated rules. In symbolic thinking, the focus is
on the symbols themselves, without regard for what they might refer to.
On the other hand, representational thinking is reserved to designate the
mental processes through which an individual creates referential mean-
ing for some representational system. Kaput refers (chap. 1, this volume)
to these in terms of the two core aspects of mathematical thinking.
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A second goal of this chapter is to argue that thinking about how
individuals create their own mathematical certainty is an important part
of representational thinking and a neglected route to making mathemat-
ics more connected, more general, and more explicit in Nemirovsky’s
terms. A third goal is to describe an approach to building student under-
standing of functions that is applicable in the elementary years that builds
on students’ sense-making activities around constructing units, working
toward an understanding of linear functions reflecting a longitudinal
approach to the function strand of algebra. Finally, I argue that occupied
context plays an important role in connecting mathematical certainty with
functional thinking—that is, in allowing functional thinking to become
part of the algebraic process of enriching our mathematical experience.

Throughout, there are cross-references to the two lead-off chapters of
the book because the analyses here, although originating several years
prior to the writing of chapters 1 and 2, provides strong and specific illus-
trations of the elements of algebraic reasoning and symbolization out-
lined in those chapters.

ALGEBRA AS GENERALIZATION:
REPRESENTATIONAL THINKING

As pointed out by Kaput (chap. 1, this volume), algebraic reasoning involves
many forms and flavors of generalizing activity and representational systems
for young children. The importance of keeping a wide view of what counts
as algebra is apparent in several examples from Bastable and Schifter (chap.6,
this volume). In many of their examples, the algebra takes the form of natural
language statements, for example, the conjecture by Knox and Adam that if
you take two consecutive numbers, you add the lower number to it’s square
to the higher number and you get the higher number’s square. When
children mature, these ways of representing will become differentiated and
conventionalized as they come to serve differing purposes and as the indi-
vidual becomes more aware of conventional classes of symbol systems. Thus,
algebra as a support for representational thinking narrows to certain symbol
systems, and algebra eventually comes to include symbolic thinking.
However, in the elementary grades, our primary interest is in representa-
tional thinking, in how children create meaningful representations and in so
doing build and express generalizations. Initially, it makes little sense to make
an a priori decision about what kinds of representations will count as alge-
bra, but instead to investigate how different representational forms become
useful tools in relation to the problems and issues of the students, especially
in how they express and argue for generalizations. We will see that represen-
tational thinking can cover a broad range of generalizing activities, including
some that, at first glance, would be described as arithmetic.
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For example, for a 5-year-old, the use of the number 2 to designate a class
of sets having two members can be as algebraic as a second grader’s use of
a table to represent a class of combinations, a third grader’s use of a graph,
a fourth grader’s use of a pattern, or a fifth grader’s use of a conventional
algebraic equation. From the experiential perspective of the individual,
each of these can be a process of generalizing, thus creating meaning for a
representational system. On the other hand, as Mason notes in chapter 3
(this volume), expressing distinctions can reify them, contributing to the
sense of objectiveness, which we develop from our contact with the mater-
ial world and generalize to abstract ideas. Thus, number becomes as con-
crete and objective as chair or spoon. Fractions, decimals, and xs can also
become equally concrete if the process of reflective abstraction is provoked,
supported, and permitted rather than blocked (Mason, chap. 3, this vol-
ume; 1996). That is, a fourth grader who has objectified the counting num-
bers will seldom be engaged in representational thinking when doing
computational arithmetic as opposed to when she is using numbers in
modeling activity, for example, making tables. Likewise, we might argue
that a professional mathematician’s use of x (or elements of any symbolic
system) would not necessarily involve representational thinking unless the
activity involves using these symbols in a process of generalization. That is,
symbol manipulation in itself, at any age, does not involve representational
thinking because it is symbolic thinking, thinking guided by working
knowledge of the symbol system itself.

Thus, we might view the relationship between representational think-
ing and symbolic thinking as one of leapfrog. Whereas the representa-
tional thinking of the 5-year-old involves creating meaning for integers
(algebra for the 5-year-old), this representational thinking leads to the
objectification of the integers, which the fourth grader can then use as
objects that form a pattern. This relates to the symbolization processes, as
outlined in chapter 2 by Kaput, Blanton, and Moreno (this volume),
whereby the “representing” system becomes, through a new symboliza-
tion, a represented system. Ultimately, the idea of categorizing some
problems as algebraic and some not algebraic independently of the child
mistakenly places the algebraic activity in the problem rather than in the
thinking of the child.

Taking an individual perspective is one way of looking or noticing, and
does not intend to indicate a view of individuals as isolated sense-makers
(or representational thinkers) within their experiential world. That is, one
can emphasize an individual perspective within a framework that sees
learning as occurring through social interactions within social and cul-
tural contexts. In fact, it is hard to imagine representational thinking in
any complex way as occurring without such cultural tools as representa-
tional systems that children encounter in or out of school. Cobb, Boufi,

5. REPRESENTATIONAL THINKING AS A FRAMEWORK 135



McClain, and Whitenack (1997) have suggested the term collective reflection
to indicate the process of reflective abstraction that takes place within the
context of a reflective discourse. In analyzing an episode from a classroom
(to be discussed later) in which several students seemed to be using the
classroom discourse as a means to reflect on and objectify the results of a
previous activity, they state:

We speculate that the children were reflecting on and objectifying their prior
activity by virtue of their participation in the discourse. In other words, the
children did not happen to spontaneously begin reflecting at the same
moment. Instead, they were reflecting because they were participating in
the discourse. It seems reasonable to talk of collective discourse in such
instances to stress that it was a communal activity. (p. 7)

So emphasizing an individual perspective does not minimize the impor-
tance of the social practice. Rather, it is a deliberate attempt to focus on
how the reflecting of the various individuals might take place, what gets
objectified for different students, and how this plays a role in their own
sense making, recognizing that this takes place within such communal
activities.

As a framework for seeking, provoking, and understanding represen-
tational thinking in elementary classrooms, the following three aspects of
the theoretical framework are all equally important:

1. Constructivist aspect: Generalization as a constructive process all
children engage in when working on mathematical problems.

2. Sociocultural aspect: Algebra as different kinds of representational
systems, both conventional mathematical systems and invented/-
contextual systems, including the (perhaps tacit) rules for using
these systems.

3. Integrated aspect: Representational thinking as interweaving the
children’s construction of mathematical generalizations with a
representational system. The next section argues that the con-
struction of mathematical certainty is an important part of these
generalizing processes.

This proposed theoretical framework is close to the pragmatic approach
advocated by Cobb (1994) and Cobb and Bowers (1999). However, it is
also compatible with other approaches advocated in this volume. Mason’s
discussion of the broad contexts in which children’s generalizations
take place is in the same spirit. In addition, J. Smith and Thompson (chap.
4, this volume) question the value of a top-down approach, that is, identi-
fying something to be called algebra (e.g., patterns and functions, formal
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properties, modeling, structure, language, etc.) and scaling it down to be
appropriate for elementary school. Instead, they argue:

We believe it is possible to prepare children for different views of algebra—
algebra as modeling, as pattern finding, or as the study of structure—by having
them build ways of knowing and reasoning which make those views appear as
emergent aspects of a central and fundamental way of thinking. (p. 97)

MATHEMATICAL CERTAINTY

The idea of mathematical certainty has been seriously challenged. From
Lakatos’s Proofs and Refutations (1976) to Ernest’s (1991) fallible mathe-
matics, there is a growing consensus that mathematical knowledge, rather
than reflecting eternal truths, is a fallible human construction whose
truths can and do change across history and circumstance (Davis &
Hersh, 1999; Kline, 1980). Although this is not the place for a detailed
examination of this complex issue, we can identify another, more local,
kind of certainty that is central to learning mathematics—the certainty
most adults feel and express when asked about their own mathematical
claims (e.g., that 2 + 2 = 4). In teaching mathematics, we do want our
students to feel sure about the answers they propose. However, we also
want that certainty to be internal, to be built by students based on their
understanding of the problem situation. Yackel (1993) suggests that, in
school, certainty often comes from an authority figure and this is often
reinforced by classroom dialogue in which the teacher only questions
incorrect answers. That is, the students become certain of a correct answer
when the teacher does not question it. Teachers attempting to create an
inquiry-based classroom often need to confront the previous reinforce-
ment that students have received for relying on external authorities,
including the textbook. She describes a classroom interaction where the
teacher has posed a problem and a student, DN, has proposed an answer
(six). Even though the proposed answer is correct, the teacher continues
the dialogue asking: There are six? Alright six. Is that right class? In the
ensuing dialogue, the student interprets the teachers questioning to indi-
cate that six is incorrect and successively proposes other answers (Seven?
Eight?). After a few minutes, the teacher, Mr. K, asks a different question:

Mr. K: What’s your name?
DN: My name is Donna Walters
Mr. K: What’s your name?
DN: My name is Donna Walters
Mr. K: If I were to ask you (your name) . . . again, would you tell me your

name is Mary?
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DN: No.
Mr. K: Why wouldn’t you?
DN: Because my name is not Mary.
Mr. K: And you know your name is— .. . If you’re not sure you might have

said your name is Mary. But you said Donna every time I asked you
because what? You what? You know your name is what?

DN: Donna.
Mr. K: Donna. I can’t make you say your name is Mary. So you should

have said, Mr. K. Six. And I can prove it to you. (Yackel, 1993, p. 5)

Even if we might not want to discourage student conjectures when they
lack a proof, we do sympathize with Mr. K’s goal that students should
construct certainty in their mathematical knowledge that is comparable to
their certainty of their name and, hopefully, be able to articulate their rea-
sons for that certainty. However, if their mathematical certainty is not
based on eternal truths or on external authority, then we expect the stu-
dent’s experience to play a central role in the construction of this certainty.
This section argues first for such an experiential-based mathematical cer-
tainty and, second, that the construction of mathematical certainty is a
basic driver of representational reasoning.

Constructing Mathematical Certainty

Why do we feel so certain that 2 + 2 = 4? Although some might answer this
from a formalist perspective, this almost certainly plays little role in the
creation of the profound certainty most people feel for this claim. From a
constructivist perspective, we would see an important role for the experi-
ence of combining or putting together two sets of objects, of connecting
the combining action with a quantifying (counting or measuring) action,
and of reaching the certainty that, regardless of the ways in which the two
sets are combined, the outcome is the same. Thus, quantification, combi-
nation, and the consistency of the quantitative result of combination are
fundamentally based in experience.

However, to make a general claim of certainty about an additive state-
ment requires the coordination of this experiential base with the media-
tional role of language. To claim with certainty requires one to be able to
discern which combinations of sets count and which ones do not count as
2 + 2 = 4. Language allows one to name sets of objects and their quantifi-
cation, which ultimately provides the power to identify when the quan-
tification of two combinations of sets is the same. This is clearly a
two-way process: It is through our experience that we initially create
meaning for language, but this language then becomes the tool that
mediates our experience and ultimately allows for general claims of
mathematical certainty.
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One interesting setting in which to examine this process is in relation
to Piaget’s nonconservation tasks with young children. Based on various
tasks, Piaget concluded that young children do not conserve quantity
under certain conditions. A typical task supporting this conjecture is to
show a child a row of eggcups, each containing an egg, and then ask
whether there are more eggcups or eggs. Most children say there is the
same amount of both. The eggs are then spread out over a large space and
the eggcups pushed close together. Almost all 4- and 5-year-old children
will say there are now more eggs. And, as Papert (1993) states, “They will
defend this position even under extensive cross-questioning and even
when pressure is placed on them to change their minds . . . ” (p. 154).

Such students have clearly constructed a certainty about this situation.
However, from an adult perspective, we see this certainty as wrong and
often interpret this error as originating in a failure to conserve quantity
due to an undeveloped sense of logical necessity. Papert (1993), however,
suggests another possibility:

A sensible objection that casts light on what is really being learned is that
the children are more likely to have misunderstood the question than to
hold the bizarre non-conservationist opinion. They think they are being
asked about the space occupied and not about number. In one sense the
objection must be true. If the children really understood the question as we
do, they would answer as we do. But the objection deepens rather than triv-
ializes Piaget’s experiment. There may indeed be a misunderstanding, but
it is not a “mere verbal misunderstanding.” It reflects something deep about
the child’s mental world. (pp. 154–155).

Papert (1993) is not arguing that young children do conserve quantity,
rather that their use of language may not allow them to distinguish
between the language of space and the language of numeric quantity. He
continues, “The work being done in the concrete period is that of gradu-
ally growing the relevant mental entities and giving them connections so
that such distinctions become meaningful. When you or I see six eggs, the
sixness is as much part of what we see as the whiteness or the shape of
the individual objects” (p. 155). Within Papert’s framework, one could
argue that these students, in sticking to their position, have constructed a
mathematical certainty by connecting their experience of space and quan-
tity with their arguments for more eggs. The claim for more eggs than
eggcups is a means of closing the cycle in relation to their own experi-
ences and their understanding of language. From this perspective, they
would be, in fact, correct in the claim they are making. Of course, this
does not mean that the certainty they have constructed is permanent,
rather that it is a certainty within the context of the experiential world of
the children. As this experiential world evolves, particularly as their
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understanding of more grows closer to the taken-as-shared knowledge of
adults, this certainty will also evolve. For the student as sense-maker, the
certainty will both be infallible within the context of his experiential world
and also change as that world grows and changes through experience and
communal activity.

In this example, the power of the mediational role of language becomes
apparent. Coming to know that the quantity of eggs does not change
under rearrangement says less about the structure of the world than it
does about the role of language in structuring experience. As adult lan-
guage is introduced into the experiential world of learners, they must
engage in a process of negotiation to produce a fit between language and
experience. Thus, we come to an understanding that any action on a set
that does change the quantity is to be excluded from those things we call
rearranging a set. Likewise, in the case of addition, any action on two sets,
one numbering 100 and the other numbering 200, which does not result
in a single set numbering 300 is excluded from that which we call addi-
tion. Certainty arises out of this negotiating process among experience,
conceptual operations, and language. It should be clear, however, that
although we construct this certainty, it is very much a certainty. The con-
struction of our mathematical certainty and of our experiential world is
intertwined in such a way that they feel very much inseparable. The pos-
sibility is unimaginable precisely because that is the part of the world we
have made. Goodman (1978) makes a similar point.

Mathematical Certainty and Representational Thinking

This argument views mathematical certainty as emerging from an inter-
weaving of individual experience with language and/or other represen-
tational systems. Fundamentally, it is an argument that generalization is
not an inductive process based on empirical experience, but rather an
interactive process of deciding which experiences count and which ones
do not count as cases of a particular representation. It can be regarded as
an example of the symbolization process sketched by Kaput et al. in
chapter 2 (this volume), where students are building the symbolizations
B and C from their shared reference field A.

Drawing from Cobb et al. (1997), and in keeping with Kaput et al.
(chap. 2, this volume), this suggests that initially students look through
the representation to see particular experiential examples. As the learner
becomes more sophisticated (compatible with taken-as-shared cultural
knowledge) in deciding which experiences count, the representation
comes to take on a life of its own. Because of the selective process of
deciding which experiences count, the representation becomes part of the
certain mathematical knowing/knowledge of the learner.
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Cobb et al. (1997) provide an example from a first-grade classroom
where the students are asked to decide how many different ways five
monkeys could play in two trees (one large, one small). As the students
propose possibilities for distributing the monkeys across the two trees,
the teacher records them in a table with the small tree drawn on the left
side of the table and the large tree on the right. As possibilities are
proposed, the teacher records them as shown in Table 5.1.

As Cobb et al. (1997) point out, up to this point the focus of the
discourse had been on generating the possible ways the monkeys could
be in the trees (p. 263). However, at this point there is an initial shift in the
discourse as students attempt to decide whether there can be any more
possibilities by checking new suggestions against the record in the table.
Cobb et al. continue:

A further shift in the discourse occurred when the teacher asked:
Teacher: Is there a way that we could be sure and know that we’ve gotten
all the ways?
Jordan: [Goes to the overhead screen and points to the two trees and the
table as he explains] See, if you had four in this (big) tree and one in this
(small) tree in here, and one in this (big) tree and four in this (small) tree,
couldn’t be that no more. If you had five in this (big) tree and none in this
(small) tree, you could do one more. But you already got it right here (points
to 5 | 0). And if you get two in this (small) tree and three in that (big) tree,
but you can’t do that because three in this (small) one and two in that (big)
one—there is no more ways, I guess.

Cobb et al. (1997) are interested in the shift in the discourse so that the
results of that activity (naming the possibilities) were emerging as explicit
objects of discourse that could themselves be related to each other. It is
this feature of the episode that leads us to classify it as an example of
reflective discourse.

In addition, it can be argued that Jordan (and perhaps others) has con-
structed (or is in the process of constructing) a certainty that there can be no
more possible combinations of monkeys in trees. Cobb et al. (1997) suggest
that although as observers we separate the signifier (table) from the signified
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Table 5.1
Distribution of Five Monkeys in Two Trees

5 0
2 3
3 2
0 5
4 1
1 4



(monkeys in trees), for Jordan this distinction is not so clear. They suggest
that Jordan is looking through the table to see the partitions and that, for
him, this distinction (between signifier and signified) had collapsed and the
table entries meant particular partitioning of monkeys (p. 270).

It would seem, then, that Jordan is creating this certainty by inter-
weaving the actions of the class (creating possible combinations) with the
representation created by the teacher. In interweaving his understanding
of the table with the associated activities of placing monkeys in trees, it
seems safe to assume that he is also building an understanding that no
other possible entree in the table would count as one of the combinations
of interest and any possible division of the monkeys is already in the
table. It is precisely because Jordan is in the process of creating these rela-
tionships that he is engaging in representational thinking. That is, the shift
in discourse noted by Cobb might also be thought of as a shift in the
thinking of Jordan and, presumably, other students, from thinking of the
particular to representational thinking. This is what Kaput et al. (chap. 2,
this volume) refer to as the new conceptualization of the reference field A
resulting from the symbolization process that began with A. As this
occurs, the table, for these students, begins to emerge as a representation
of a set of combinations rather than only a record of particular actions.
However, once Jordan reaches the stage of separating signifier from sig-
nified, he makes his argument simply in terms of the symmetry of the
number combinations in the table. So this representational thinking has,
in a sense, accomplished its task and evolves into predominantly sym-
bolic thinking that is thinking about the possible manipulation of sym-
bols. In Kaput et al.’s terms, the students have moved on to create a
symbol system D with an integrity and functionality of its own.

In addition, we might imagine Jordan having experiences with other
combination problems and eventually coming to objectify the previous
table as a representation of any situation involving partitions of five objects
into two sets. At this point, he will be able to make arguments about any
of these combination problems by reasoning about the table as an object,
that is, without the necessity of looking through the table at a particularly
contextual situation. Again, representational thinking indicates the
processes through which the table becomes objectified as representing cer-
tain activities. But, when one moves to working on the object (the table)
itself, this, like other kinds of symbol manipulation, involves cognitive
processes, which I would call symbolic rather than representational
because they are now operating with symbolic elements apart from what
they might stand for. In Kaput et al.’s terms, they will have moved on to
create a symbol system E, which is now functionally independent from the
reference field A that they started with and is also applicable without ref-
erence to the intermediate symbolizations that helped give rise to it.
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This hypothetical Jordan has engaged in representational thinking in
creating this table as an “algebraic representation” of certain problems and
has constructed a mathematical certainty by interweaving his experience in
particular situations, which brings its anchoring power and stability, with
this cultural tool. That allows him to use the representation and allowable
actions on the representation (exchanging rows, etc.) in nonalgebraic ways
to make claims about combinations of five items. The importance of the dis-
tinction between representational thinking (and its relation to certainty)
and symbol manipulation should be, I believe, a central part of algebra
teaching and learning. This is precisely the kind of thinking that is under-
emphasized or ignored in much mathematics instruction, where instead
representations are taken as a given and the focus is on the manipulation of
them. The unfortunate result is that these symbols never become represen-
tational for many students, leaving them without an experiential basis for
their mathematical understanding. Again, in Kaput et al.’s (chap. 2, this vol-
ume) terms, it is an attempt to build a symbol system without the active,
constructive process of symbolization.

A FRAMEWORK FOR FUNCTIONAL THINKING

The remaining part of this chapter extends this framework for representa-
tional thinking along a particular line that I call functional thinking, which is
one of the key strands of algebraic thinking as described by Kaput (chap. 1,
this volume). Functional thinking, at least for our purposes here, is repre-
sentational thinking that focuses on the relationship between two (or more)
varying quantities, specifically the kinds of thinking that lead from specific
relationships (individual incidences) to generalizations of that relationship
across instances. The algebraic reasoning part of functional thinking occurs
as children invent or appropriate representational systems to represent a
generalization of a relationship among varying quantities.

The following six activities are proposed as underlying functional
thinking and thus the construction of functions:

Engaging in a Problematic Within a Functional Situation

1. Engaging in some type of physical or conceptual activity.
2. Identifying two or more quantities that vary in the course of this

activity and focusing one’s attention on the relationship between
these two variables.

Creating a Record

3. Making a record of the corresponding values of these quantities,
typically tabular, graphical or iconic.
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Seeking Patterns and Mathematical Certainty

4. Identifying patterns in these records.
5. Coordinating the identified patterns with the actions involved in

carrying out the activity.
6. Using this coordination to create a representation of the identified

pattern in the relationship.

As in the case with Jordan described earlier, the representation in (6) may
be physically identical to the record already created. However, the mental
activities of interest in functional thinking are the processes by which this
record becomes a generalized representation of the relationship and how
the individual creates a mathematical certainty about this generalized
relationship. Also, these activities may not follow the exact sequence
listed here. Creating a record, for example, may be an integral part of
focusing on a relationship.

Confrey and Smith (1994) proposed a general framework for teaching
functions, based on the use of contextual problems, prototypes, multiple rep-
resentations, and transformations. In addition, they described a distinction
between covariation and a correspondence approach to functions. Although this
approach was aimed primarily at middle and secondary grades, many of its
features are relevant to a discussion of elementary students building ideas of
function. Indeed, it is intended to provide an illustration of how to apply new
approaches originally developed in later grades to earlier grades.

ENGAGING IN A PROBLEMATIC WITHIN A
FUNCTIONAL SITUATION

Constructivists have long argued that learning occurs when the individ-
ual constructs a problem (Confrey, 1991; Piaget, 1970; von Glasersfeld,
1984). Because constructivists have focused on the individual construc-
tion of knowing (Smith, 1995), they have also emphasized the individual
nature of such problems. In order to distinguish what the individual is
attempting to solve from the social statement of the problem, Confrey
(1991) had suggested the use of the word “problematic”:

A problem(atic) is only defined in relation to the solver. A problem is only a
problem(atic) to the extent to which and in the manner in which it feels prob-
lematic to the solver. When defined this way, as a roadblock to where a
student wants to be, the problem(atic) is not given an independent status. The
problematic acts as a perturbance, i.e. a call to action. (p. 136, my parentheses)

To initiate the study of functions, we want to create situations where the
various problematics for individual students center on the issue of the
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relationship between two varying quantities. However, as indicated by
Confrey, neither a written problem statement nor participation in any par-
ticular social activity necessarily creates appropriate problematics. Even
though the creation of a problematic is an individual process, it will take
place within a social context—that is, through the teacher’s suggestion of
appropriate problems, combined with classroom discussion and negotia-
tion and engagement in an activity. Activities may involve actual physical
processes an individual carries out over time or they may be related to cog-
nitive reflection on imagined activities. In either case, such activities
become a problematic when there is something the individual wishes to
know in relation to the activity. When this something has to do with the
relation between two varying quantities, then the individual begins the
process of functional thinking. Thus, the genesis of functional thinking
occurs when an individual engages in an activity, chooses to pay attention
to two or more varying quantities, and then begins to focus on the rela-
tionship between those quantities. It is the focus on a relationship that is cen-
tral to the concept of function. Even though I would argue that the potential
for the individual to engage in functional thinking is a matter of the indi-
vidual construction of an appropriate problematic, teachers, by creating
activities, describing variable quantities, and posing appropriate questions
and engaging in classroom discourse, provide the opportunity for individ-
uals to engage in functional thinking. As Cobb et al. (1997) state:

Our rationale for positing an indirect linkage between social and psycho-
logical processes is therefore pragmatic and derives from our desire to
account for such difference in individual children’s activity. As we have
noted, this view implies that participation in an activity such as reflective
discourse constitutes the conditions for the possibility of learning, but it is
the students who actually do the learning. (p. 272)

This is very much in line with the perspective of situated cognition
(Kirshner & Whitson, 1997; Lave & Wenger, 1991). Thus, the contextual
problems described by Confrey and Smith (1991) are social constructs
designed to facilitate this process. Using a phrase initially suggested by
Monk (1989), I use the term functional situation to describe a situation
where one or more students are engaged in a problematic related to the
relationship between two variables.

CREATING A RECORD

When students engage in solving problems related to functions, the most
common entry point is in the creation of a table (Confrey & Smith, 1994).
In Kaput et al.’s terms (chap. 2, this volume), this is the building of a B
based on a functional situation A. Typically, students make two columns
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and record corresponding entries for values of the variables of interest.
Creating such tables often plays an essential role in the development of
functional thinking. However, as the student moves from creating a record
to reflecting on that record as a representation of a relationship, it may also
be important to encourage students to construct additional representations
as well (Cs and Ds, as described by Kaput et al., chap. 2, this volume).
Confrey (1992) has described an epistemology of multiple representations
as “a claim that legitimacy of knowledge in mathematics evolves in rela-
tion to the multiple forms in which the idea might be displayed. We take
the position that it is through the interweaving of our actions and repre-
sentations that we construct mathematical meaning” (p. 11).

This suggests that encouraging students to create diverse forms of their
records may facilitate their engagement in functional thinking, where the
diversity occurs both within and across students. The reader likely recog-
nizes the aforementioned as providing an example of the recording activ-
ity sketched by Kaput et al. (chap. 2, this volume) in their Figure 2.6.

PATTERNS AND MATHEMATICAL CERTAINTY

If emphasizing a correspondence between the members of two sets were
our only criteria, then the creation of a record, particularly of a table,
would suffice to construct a function—that is, placing two values in the
same row indicates that those two values are the corresponding members
of the two sets. However, part of the argument for focusing on functional
thinking is the emphasis on constructing a relationship between variables
that extends beyond the mere designation of a correspondence. As
already discussed, an important part of that process is the construction of
a certainty in that relationship. Although potentially tentative, this cer-
tainty is an essential part of the feeling of absoluteness and permanence
that are part of the dominant cultural view of mathematics. We will
explore a few examples that serve also to illustrate the Modeling Strand
of algebra identified by Kaput in chapter 1 (this volume) and how it
interacts with the Function Strand and the processes of generalization
and symbolization.

Two concepts are central to this process. First is the distinction that
Confrey and Smith (1991) make between a covariational and a correspon-
dence approach to functions. In a correspondence approach, the empha-
sis is on the relation between corresponding pairs of variables. For
example, in Table 5.2, the focus would be on the relation between x and y,
which might be described as twice x plus one or algebraically as: y = 2x + 1.
This is, of course, the conventional approach taught in most classrooms
where algebraic equations are the primary representation.
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In the covariational approach, the focus is on corresponding changes in
the individual variables. So the description of the same table might be:
When x increases by 1, y increases by 2.

Although it may be important that students eventually construct equa-
tions expressing a correspondence relationship, the initial interest when
introducing functions is in how students use either of these approaches in
constructing a relationship between variables. It has been our experience that
the covariation approach is most often chosen by students, particularly when
the first variable is created as an indexing variable. In fact, moving down a
table is often parallel to the actions one takes in constructing the values of the
variables. For example, if one variable is time, one often makes sense of
changes (of another variable) over time. We expect that in many cases,
students’ initial understanding of a functional situation will be constructed
through a covariational approach. As they seek patterns in the records they
have made, the noticed pattern will typically be in how one moves down a
table. Note that this style of reasoning depends on the shape of the inscrip-
tion and, with graphical inscriptions, the reasoning can take very different
forms (e.g., Tierney & Monk, chap. 7, this volume). Here the parallel lists pull
the reasoner toward certain styles of thinking rather than others.

Confrey and Smith (1991) also use the idea of prototypic functions to
indicate the various classes of functions typically studied (y = χ for linear;
y = aχ for exponential; y = χ2 for quadratic, etc.) and also indicate the idea
of a characteristic operation or action for different prototypic functions.
For certain prototypes, this characteristic action is evident in a covaria-
tional approach. For example, with linear functions it is constant addition
(constant difference), and with exponential functions it is constant multi-
plication. Although not as obvious for other prototypes, there are cases
where we have observed high school and university students creating
quadratics as a constant double summation (constant second difference).
For a teacher attempting to create situations, which will become func-
tional situations for her students, there are at least three ways in which
she can approach a characteristic operation:
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Table 5.2
Variation Between Two Quantities

x y

1 3
2 5
3 7
4 9
5 11



1. She can make it part of the problem statement: In 1990, a house
was built 100 inches from the edge of a cliff. If the cliff is eroding
toward the house at 3.5 inches per year, when should the owner
move out?

2. She can make it part of the analysis of collected data: In 1990, a
house was built 100 inches from the edge of a cliff. Over the last 5
years, the owner has made a record of the distance of the cliff from
the house, which is shown in Table 5.3. When should the owner
move out? (This situation could be altered by using data with a
variable annual difference that averaged 3.5 inches/year).

3. She can allow it to evolve in relation to the students’ understand-
ing of the functional situation: In 1990, a house was built 100
inches from the edge of a cliff. By 1994, the cliff was only 86 inches
from the house. When should the owner move out?

Unfortunately, many problems used in mathematics instruction are of
either the first or second type. In the first case, the student is cut off from
both finding a pattern and from the context of the activity itself. That is,
the student need not deal with erosion as an issue in solving the problem.
The description of the context becomes simply a vehicle for carrying
(quantitative) information.

The second case does require finding patterns, but is also potentially
cut off from the context of the activity itself. The strength of the second
alternative is that it may allow for a process of theory building, thus sup-
porting the kinds of science experiments where one collects data, looks for
patterns, and then reexamines the context as a process of theory building
to connect the two.

The strength of the third alternative is that it can support the building
of connections between the conceptual actions one imagines in carrying
out the activity with identified (and projected) patterns. In effect, it affords
a generalization and symbolization process of the sort described earlier
and sketched by Kaput et al. (chap. 2, this volume). In the particular
example given, this may be difficult and complex for younger children.
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Table 5.3
Changes in Distance From Cliff to House

Year Distance

1990 100
1991 96.5
1992 93
1993 89.5
1994 86



However, in a classroom discussion I had with 10th- and 11th-grade
students, conjectures were offered that could support a linear (constant
conditions), quadratic (change in the hardness of the rock would lead to
constantly increasing, or decreasing, erosion each year), and exponential
(increase in the rate of water flow at the base of the cliff would lead to a
doubling of the amount of erosion each year) process. Whether or not an
expert would agree that these conjectures were realistic, they were offered
in the context of conceptualizing possible conditions that lead to erosion,
thus offering the potential to connect the activity to the creation of records
and to the patterns in those records.

Constructing Mathematical Certainty

A second example of a problem that fits the third alternative is the Stone
Path problem1: Your neighbor has asked you to build a stone path from
her back door to a bird feeder 44 feet away. She has purchased 15 circular
stones, each one foot in diameter and wants the space between each stone
to be the same. She would like the last stone to touch the bird feeder, but
will allow you to place the first stone any distance from the house you
wish. Before going to do the work, you need to make a plan for how you
will lay out the stones.

When students initially work on their plan and draw diagrams, they
typically deal with the whole distance and partition it into stones and
equal spaces. Thus, they do not necessarily deal with the problem as a
sequential set of actions. However, as teachers, we ask them to label their
stones in order and then make a table showing the distance of each stone
from the house (or the feeder). Assuming the students do engage in this
activity, we have actively encouraged them to change the way they are
thinking about the problem to create a functional situation. In doing so,
and in making the record of distances, they will typically identify the con-
stant difference as a pattern in the table. In a graph, they initially identify
the straight pattern of dots, but often have difficulty coordinating this pat-
tern with the constant difference in the table. One issue is the tendency to
see the graph as an iconic representation of the path, thus the equal dis-
tances in the path are seen as the equal distances between dots on the
graph, rather than the equal vertical distances between dots. However,
there is a basis for an ongoing discussion and investigation that should
eventually connect this graphical pattern to the table pattern and in turn
to the conceptual action of placing the stones at equal distances. It is in
this kind of coordination among created representations (table and graph)
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with their own conceptual representation of the activity that should
support the construction of certainty about the relationship—for example,
if the path was extended with the same equal spacing, then the pattern
in the table and the graph would also be extended. The important point
is that the justification for this extension is not simply an empirical obser-
vation of an initial pattern in either the table or graph combined with an
extension of that pattern. Rather, it is an actively cognizing process of con-
necting a regularity in the actions taken in the situation with those pat-
terns. This, in turn, creates the certainty that the continuation of the
numerical/graphical pattern is connected to the extension of that regular
activity. It is when this relationship is created that the table and graph,
which were initially simply records of a local event (placing 15 stones),
can be viewed as a generalized representation. This can also support the
construction of symbolic expressions, which can be interpreted as state-
ments of a constructed mathematical certainty.

The process described is the basis of what I call functional thinking. The
emphasis on the creation of one’s own conceptual certainty about a rela-
tionship is central to this process, because the certainty should play an
essential role in creating a function as a representation of a relationship. It
is also a strong illustration of the process of symbolization, building
and coordinating a B and C to represent a situation A, as outlined by
Kaput et al. (chap. 2, this volume).

THE ROLE OF CONCEPTUAL UNITS IN
FUNCTIONAL THINKING: THE LINK
TO YOUNGER CHILDREN’S REASONING

This chapter is primarily interested in linear functions and proposes that
there is opportunity to provide situations for students to construct linear
relationships based on their creation of conceptual units at an early age.2

These conceptual units arise from situations involving repeated addition,
which develop from the cognitive structures related to counting. The
appeal of introducing linear functions in the elementary years is that their
development can be seen as a natural extension of counting.

In his work on counting, Steffe (1987) describes a series of units where
each is a result of integrating operations on previously constructed units.
The units he describes are: numerical composite, abstract composite, sym-
bolic motor, so many more than, iterable, and measurement. The teaching
interviews, which he uses to describe these units all involve activities
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where a child is asked to, in effect, do a double count. For example, one
child is asked how many times he needs to count if he counts 12 blocks by
twos. By careful observation of the ways in which the children respond to
these questions, Steffe builds his models of the kinds of units they are
using. These various units indicate areas that seem to be essential in the
development of functional thinking in linear situations. That is, being able
to create these units would seem to be essential to building a covariational
understanding of a pattern in a linear table and coordinating that with
patterns in graphs or other representations. In effect, students are build-
ing the units on which the idea of rate of change will be built. And this
rate, in turn, is the “m” in Y = mX + b, which is the constant difference in
the table and the slope in the graph of the relationship.

Confrey (1994) proposed a definition for conceptual unit, which
acknowledges the integrating operations described by Steffe (1987), but
emphasizes its connection to a repeated action. Confrey and Smith (1994)
elaborated on her definition:

A unit is the invariant relationship between a successor and its predecessor;
the unit is (created as the result of) the repeated action involved in numer-
ation. For example, in order to create a counting unit of one, a child
must first recognize a multitude composed of objects sharing a particular
quality. . . . The unit which (the child) creates is the result of the operation of
carrying out mentally the repeated action. (p. 142)

What seems to separate a unit from an object is that to construct an object,
one must, among other things, isolate and coordinate a group of sensory
signals to form a more or less discrete visual item or thing (von
Glasersfeld, 1989). For Confrey and Smith (1991), a unit is constructed in
conjunction with a repeated counting action. A unit arises in the action
involved in repeatedly putting together (or taking apart) objects in coor-
dination with this counting sequence.

In functional situations, this coordination becomes more complex. In
their discussion, they use the Cliff Problem in the version described ear-
lier, which includes a data table showing the distance from the house to
the cliff for each year for 5 years (number 2 earlier), but also include a
third difference column showing the constant difference in the distances.
They state:

According to our units analysis, the repeated action in the example is the
annual loss of 3.5 inches. Thus we claim, in this example, the unit is –3.5 inches.
The decision to segment one’s experience into annual intervals sets the stage
for a unitizing operation to create a unit of –3.5 inches. Thus, a unit is con-
structed in relation to an experiential situation which involves both segmen-
tation and an invariance across segments. (Confrey & Smith, 1991, p. 145)
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The importance of this analysis is that an essential part of constructing a
function is in the way the individual constructs a repeated action in rela-
tion to a segmentation of experience, and that process results in the cre-
ation of a unit. However, in relation to the functional thinking model
described earlier, this analysis needs further elaboration. In functional
thinking, an individual needs to identify two or more quantities that vary
in the course of this activity. Identifying a quantity that varies is closely
related to Confrey et al.’s description of constructing a unit. In the Cliff
Problem example, we might assume that the first unit constructed is a year,
in effect borrowing a culturally available segmentation of a temporal expe-
rience. For whatever reason, the individual has chosen to focus on a year as
an object and, in counting the passing of years, creates the year as an ini-
tial unit. In constructing this initial unit and choosing to focus on its rela-
tionship to distance, the distance unit, –3.5 inches, is a derived unit, that is,
it is not created as an intentional segmentation of distance by the individ-
ual, rather as a result of the initial construction of the year as a unit.

This distinction is important for two reasons: First, it focuses attention on
the intentions of the individual in constructing the initial unit. In the Cliff
Problem, for example, this could have been because a year was what the
individual cared about (to the closest year, I need to know when the cliff
will be within 30 inches of the house). Second, because of the individual’s
knowledge of the relationship between climate and erosion, she might have
chosen a year because it is the unit of time in which she expects the succes-
sive variations in erosion will be smallest (e.g., if months were chosen, one
might expect several times the amount of erosion in the rainy season as in
the dry season). In this case, there would be an interactive relationship
between the construction of the initial and derived unit. However, the
intention would still be eventually to choose time as the initial unit and
then determine the magnitude of the derived distance unit. Conversely, one
might choose an initial distance unit, say one foot, then derive a time unit
by measuring the time taken to erode that distance.

Being aware of the distinction between the initial and derived units is
necessary in developing an understanding of the relationship between
variables. However, it is not sufficient. In the Cliff Problem, for example,
one might understand why a year was chosen as the initial unit and that
distance is a derived unit. But the context of the problem, if limited to the
presentation of 5 years of data, still has no connection to the relationship
between units. Both years and distance in the table are what Confrey and
Smith (1991) called additive units—that is, the operation involved in
going from predecessor to successor is one of constant addition. From a
student’s perspective, the problem context might seem to have little con-
nection to the kind of units involved. That is, it might make equal sense
for the distance units to be multiplicative—annual erosion increases by a
constant rate, or percent. It might make sense for the distance units to be
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linear annual erosion increases by a constant additive amount. It might
make sense for the distance units to be random—after all, why would
one expect to find a pattern? If we do not facilitate ways for the learners’
experience of the context to become related to their construction of the
operation that creates the unit, then we are using what I would call a
“vacant context.” The context is simply a convenient setting, playing no
real role in the conceptual development of the functional relationship.
The alternative is to occupy the contexts we created by encouraging our
students to relate their experiences of these contexts to the ways in which
units are constructed. As an occupied context, the Cliff Problem is
complex, and we might want to be careful about how we use such con-
texts. However, as already mentioned, students will make hypotheses
about this context that support the construction of a variety of units. In
making these hypotheses, they bring their previous experience into their
construction of units.

The proposed model of functional thinking emphasizes the importance
of the development of mathematical certainty. Focusing on how we dis-
tinguish between initial and derived units in relation to the intentions of
an individual who occupies a context is central to the creation of certainty.
It is one’s experience within the context (the students’ experience of a ref-
erence field in Kaput et al.’s (1994) terms that allows one the possibility of
creating the conceptual certainty by building the conceptual units: The
certainty in the relationship between the units is intrinsically tied to the
ways in which one has developed an understanding of the context—in
how one occupies the context. It is a certainty rooted in prior experience
in quite specific ways. It may well be true, even desirable, that at the time
one constructs this certainty, one is able to understand how different
occupants might construct different certainties, or that even altering one’s
own relation to the context might change this certainty. However, the
emphasis in developing functional thinking is in how the individual con-
structs a mathematical certainty as an occupant of a context.

FUNCTIONAL THINKING WITH PATTERN BLOCKS:
AN ELEMENTARY EXAMPLE

Finally, we turn briefly to a classroom example. The class was a summer
course for elementary teachers taught by a colleague and myself, which
focused on various issues related to early algebra. One of the themes of
the class was patterns and functions. Early in the class, we had had a dis-
cussion of visual patterns where we first developed examples of different
kinds of patterns. We then turned to trying to describe why we would call
certain visual images a pattern. This led to the inclusion of certain geo-
metric terms: symmetry, rotation, reflection, and translation, and similarity
and repetition as properties of patterns.
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We introduced pattern blocks to the teachers and initially just asked
them to experiment with creating various patterns. Pattern blocks are
blocks of various colors, which come in certain geometric shapes: hexa-
gon, square, triangle, parallelogram, trapezoid, and so on. As might be
expected, many kinds of patterns were created, some quite complex.

After discussing the various patterns, we asked the teachers to work on
creating a particular kind of pattern—one, which if repeated, would
stretch in a straight band as far as one wished to expand it. As various pat-
terns were created, people noted that what made a pattern in this context
was some initial arrangement that was repeated. Creating such a pattern
led to the construction of a unit. As more patterns were created, we posed
a question to the group: Can you find a relationship between the number
of repetitions (of the unit) and the total number of exterior sides in your
pattern?3 Eventually, most groups created a table showing the number of
repetitions and the number of sides. One of these tables is shown in Table
5.4. John, the teacher who wrote it on the board, explained his reasoning
in finding a pattern in the table as follows:

I was trying to look at how much each number goes up by. I thought
there might be a pattern there but then I saw a better pattern. These num-
bers here (pointing at the right-hand or ones’ digits in the numbers under
“Sides”) go down by two and these numbers here (pointing at the left-hand
or tens’ digits in the same column) go up by one. So if we (inaudible) that
pattern, I’m going to predict that if we had five repetitions (writes a five
under the four), this here would go up by one (writes a 4’ under the first 3
in 33) and this here would go down by two (writes a one under the second
3 in 33, making the number 41 under 33) and then you get 59 (writes 59
under 41) and then you get . . . (writes 67 under 59). To check it you would
have to go count all those sides which would be kind of tedious.

The first three repetitions of their pattern are shown in Figure 5.1. At
this point, the table on the board has been drawn (see Table 5.5). Another
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Table 5.4
John’s Data for the Number of Repetitions of a Unit

and the Total Number of Exterior Sides

Repetitions Sides

1 9
2 17
3 25
4 33
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Table 5.5
John’s Continuation of His Data Table

Repetitions Sides

1 9
2 17
3 25
4 33
5 41

59
67

FIGURE 5.1. The first three repetitions of teachers’ pattern block pattern.

teacher suggests that each number in the original table goes up by eight.
John replies:

Well actually we have, no one was eight and the next one was nine. (Turning
to his table on the board). I mean the difference between these two is eight
(pointing at 9 and 17), but then the difference (pauses uncertainly while
pointing at 17 and 25).
John had apparently miscalculated the difference between 17 and 25 as 9.
Other teachers say that the difference is eight also, then say that all the dif-
ferences in the original table were eight. John asks:
Are they all eight? Oh, there’s a pattern there too then. All these numbers go
up by eight. (short pause) I thought that was interesting the way you
could—without having to do it you can predict the way it’s going to be.

John assumes he has finished and returns to his seat. As the teacher, I hypoth-
esized (to myself) at this point, that John had initially erred in calculating the
differences and thus sought and found the pattern of down by two, up by



one. However, I was inclined to believe that now knowing that there was a
constant difference of 8, he would likely adopt this model. I took his last com-
ment in this light, but posed to the class the following question: An interesting
question is: Do both of those descriptions of the pattern work?

After a few seconds, several teachers asked what I meant by “work.” I
rephrased my question asking if both of the descriptions of the pattern in
the table could work together. Then John said, “It seems to work as far as
I have done it, 6 repetitions. Forty-one plus eight is (pauses). That’s not
right is it. (Another teacher says it should be 49). It should be 49 if that
was the pattern. So I don’t think you can use that (emphasizing ‘that’).”

I continue to feel that John is rejecting his initial hypothesis, but ask:
“Which one?” He replies, “You couldn’t use that you are going to add 8
to each number to get the next.”

Other teachers suggest that they need to check it against the blocks.
After a short time, John says, while pointing at the 41 on the board, “I do get
41 for the fifth repetition.”

John seems to feel that he is verifying the pattern he suggested. He con-
tinues building another repetition. After a minute, he says “Forty-nine”
(turns and looks at the board) and “So that doesn’t work.”

Several teachers then point out that adding eight does work and seem
satisfied. However, as the class continues, John sits and looks alternately
between his table on the board and the blocks for several minutes.

The importance of this episode is, I believe, in illustrating the tenacity
with which John holds to the initial pattern he has found in the table,
despite the feeling of the expert in the class (the teacher) that he would
naturally turn to the seemingly more obvious constant difference pattern,
once it had been pointed out. However, this did not happen. In retrospect,
it seems clear that for John the constant difference model carried no more
plausibility than his (and perhaps less). John was reluctant to give up
on his pattern even at the end of the episode when he seems to have cre-
ated both a discrepancy for his pattern and at the same time additional
evidence for the constant difference model.

Often, even in problem-solving classrooms, there is a tendency for the
teacher to assume at this point that the pattern had been established. As the
teacher in this situation, I felt strongly that the repeated addition of a repeti-
tion would result in a constant addition of sides—thus I felt that I had a basis
for feeling some certainty in the situation. However, I was making this
assumption from the basis of considerable experience in relating certain
kinds of activities to repeated addition models. This was not the case for my
students. When I asked how we could be certain that this numeric pattern
for the total number of sides would continue indefinitely as we continued to
extend the pattern, there were no suggestions.
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Within this episode, all involved seem to be operating within a vacant
context. Even though the block pattern is used to provide evidence, there is
no apparent effort to connect the repeated action with the blocks (append a
repetition) with the hypothesized patterns in the table. Even though I knew
that this was important, I decided to focus temporarily on other issues in
order to provide more experience with the numeric patterns created and to
coordinate them with graphical patterns. The tables were entered into a
spreadsheet program, which was able to create graphs automatically. There
was an extended discussion of the pattern in the graphs (straight lines of
discrete points) and of the relationship between the table pattern and the
graph pattern. This focused particularly on the question: Where can we
find the constant numeric difference in the graph?

Eventually we returned to the blocks, where I posed the problem: You
have found a constant difference pattern in your table and a straight-line
pattern in your graph. I would like you to work on finding, showing, or
creating an explanation of how we might find that constant difference in
the patterns you have made with the blocks.

The ensuing discussion was not taped, thus can only be summarized
from field notes. However, quotations are relatively intact. There was con-
siderable discussion in John’s group about what constituted a side. Even
though they had initially counted them (but in a vacant context), they
now were trying to coordinate their sense of a side with the action of
appending an additional unit of blocks. In the figure, it can be seen that
there is initially a long side on the right of the block unit. However, when
another unit is appended, this side is cut in half, and one half disappears
at the joint. The discussion centered for several minutes around the issue
of whether this shortened side should count as one or as one half of a side.

It is noteworthy that this issue was not raised initially. Part of what
makes the episode a vacant context is that the counting of the sides was
independent of the action of making the sides (appending an additional
unit). Later, the class was focused on the particular issue of how the
sides changed within the making—that is, within the repeated action of
appending a new unit. Eventually, there was a consensus that the shortened
half-side actually should count as a complete side. Shortly after that, the
group offered its explanation. John again was the spokesman. He begins
successively adding block units on the table while explaining what is hap-
pening. The discussion is framed in terms of the side that is lost in the
action of appending another unit: “Why is it that we are adding 8 when
we know that one repetition has 9, the second one only adds 8 so we are
losing a side somewhere. We are losing this side (pointing at the short side
of the left of the unit being appended). So that’s 9, but since we are losing
this one side here, it’s 9 plus 8.”

John then repeats the action of appending a unit with a similar explana-
tion. Other groups eventually offered similar explanations. In the final
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discussion, where the groups were asked if they could determine how
many sides there would be after 25 turns, 50 turns, or any large number of
turns, their reasoning reflected this understanding. For example, John’s
group described how to find the number of sides after 25 repetitions as 25
* 9: take 25 block units of nine, which would be sides. But 24 of these units
would lose a side when being appended, thus their calculation was created
as 25 * 9 – 24. Eventually they expressed this algebraically as S = n * 9 –
(n – 1).

This example is the story of one person’s construction of the relationship
between the initial unit (adding a unit of blocks to the pattern) and the
derived unit (the change in the number of sides). It also connects each of the
four goals set forth at the beginning of this chapter. Initially, we see John
simply seeking a pattern in his table with no reference to the blocks them-
selves. In this sense, he is not occupying his context, but rather has aban-
doned it in favor of the representational system that he established (i.e., his
table). Although the pattern he initially finds seems quite powerful at first,
when carried back to the context, John finds a contradiction. It is this con-
tradiction that motivates him to revisit the context and then to construct a
relationship between the constant action of adding another unit to the
blocks (the initial unit), the constant difference in his table, and the constant
in the linear equation. This provides a basis for the construction of certainty
between the constant action on the blocks and the constant in the equation.
Activities such as this can provide a curricular basis that supports students
in concretizing the symbolic representation of linear relationships and
eventually of more general symbolic representations.

CONCLUSIONS

The approaches to algebra and functions described herein are intended to
support the introduction of algebraic and functional concepts throughout
the elementary curriculum. At present, these are models intended to sup-
port the development of additional appropriate activities and their use
with these students. It is essential to develop contexts that allow students
to build functional relationships, connect actions in the context with the
representational system, and then build mathematical certainty about that
relationship through the coordination of repeated actions in the context
with the related elements of the representational system—the records of
those actions or their consequences. This is an essential aspect of symbol-
ization as described in chapter 2 (this volume).

For linear functions, the key is to focus on the construction of a derived
unit of constant addition as being the central concept of linearity—the idea
of constant rate of change. It is the focus on functions from a covariational
or rate-of-change perspective that allows this central component of linearity
to be realized.
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In most traditional algebra texts, situations where the students have
the opportunity to explore patterns that they find in tables and graphs
within the repeated action, which constitutes the initial unit, are often
minimized or avoided altogether. This has begun to change with the avail-
ability of the NSF-funded “standards-based” curricula (e.g., Investigations:
Russell, Tierney, Mokros, & Economopoulos, 2004; Connected Math:
Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997; Math in Context: Core
Plus Mathematics Project, 1997; Interactive Mathematics Program, IMP,
2002; etc). These curricula tend to place considerable emphasis on con-
necting compelling contexts and representations and offer a rich environ-
ment for creating tables, graphs, and equations that correspond with the
given context. Although this approach represents a major improvement
over traditional approaches to algebra, it is often not clear how many of
these problems support an occupied context where rate of change is
fundamental in connecting the action of the context to the creation of the
various prototypic functions, especially linear, exponential, and quadratic.
The approach developed in this chapter suggests that more work needs to
be done in this area. Indeed, several chapters in the next section illustrate
the kinds of work needed.
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II
STUDENTS’ CAPACITY FOR

ALGEBRAIC THINKING

Part II concerns algebra learning among relatively young students. The
contributors believe that it is important for students to learn algebra early
and as an integral part of mathematics instruction. Because readers may
not share their views, they have tried to make their assumptions clear and
to provide backing for their claims. This backing comes in the form of the-
oretical arguments, data, and even stories from classrooms. They have
attempted to write persuasively. But, there is also the realization that
readers will judge any claims not just in light of the evidence presented,
but also based on their own experience in teaching, learning, and inter-
preting research in mathematics education.

The authors in this part regard generalization as fundamental to learn-
ing algebra. They sometimes take differing stances about the nature of
generalization. Moreover, they may have different views about the
circumstances for promoting the development of generalization and alge-
braic understanding. 

The chapters focus on how conventional representation systems (i.e.,
graphs, written notation, tables, natural language) capture thinking of a
general nature. As Part II progresses, the authors increasingly argue that
learning to represent algebraic relations in conventional forms imparts
changes in the nature of students’ reasoning. 

In chapter 6, Bastable and Schifter approach algebraic understanding
as a growing awareness of the general properties of numbers. For example,
positive integers have a commutative property under the operations of
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addition and multiplication: The order of the addends (or factors, in the
case of multiplication) does not matter. Students come to notice such
properties even before they have learned to express them through
conventional algebraic notation such as a + b = b + a. An additional issue
concerns the (implicit or explicit) domain of generalization, by which the
authors mean the class of numbers to which a generalization applies. For
young students, numbers are the counting numbers (or natural numbers).
Only gradually do they extend their view of number to include integers,
rational numbers, and real numbers. 

In chapter 7, Tierney and Monk take a view consistent with that of
Bastable and Schifter. (This should not be surprising, given that they have
frequently worked together.) However, the number patterns to which
they refer are not the invariant properties of the number system(s) that
Bastable and Schifter speak of. Instead, they are properties inherent in a
set of data. For example, the changing measures of distance over time
convey information about speed for a particular person during a particu-
lar segment of a trip. These matters involve generalization to the degree
that students realize that changes in distance over time always provide
information about speed, for any values of distance and time (as long as
the difference in time does not equal zero). 

In chapter 8, Mark-Zigdon and Tirosh focus on the written forms of
number sentences. They find that the recognition of correct usage
precedes the production of correct forms. This finding is consistent with
learning in other areas, including language acquisition and the under-
standing of musical notation.

According to Aleksandrov, Kolmogorov, and Lavrent’ev (1969),
“Arithmetic and geometry are the two roots from which has grown the
whole of mathematics” (p. 24). Algebra is generally understood as having
derived from the arithmetical root. In chapter 9, Boester and Lehrer high-
light algebra’s indebtedness to the geometric root of mathematics, noting
that “spatial structure serves as a potentially important springboard to
algebraic reasoning, but also that algebraic reasoning supports coming to
‘see’ lines and other geometric elements in new lights.” Their argument is
not historical but rather psychological: “Visualization bootstraps alge-
braic reasoning and algebraic generalization promotes ‘seeing’ new
spatial structure.”

Carraher, Schliemann, and Schwartz (chap. 10) describe how “Early
Algebra Is Not the Same as Algebra Early” with respect to: the role of
background contexts and quantities, how notation is introduced, and its
connectedness to existing topics in the early mathematics curriculum.
They argue that algebra requires a shift in focus from the individual case
to sets of cases—a kind of generalization for which the concept of function
will play a key role. They find that young students can make remarkable
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progress in this shift when topics of early grades mathematics are reframed
in this way.

In chapter 11, Brizuela and Earnest look at students in the process of
trying to coordinate diverse representations of the same function.
Students are asked to decide which is a better birthday present: (a) receiving
$2 for each dollar one already has, or (b) receiving $3 for each dollar one
has, but having to return $7 to the giver. Nine-year-old students initially
favor one deal over the other. But when they consider a variety of scenar-
ios, they realize that the outcome varies according to the starting amount.
The authors focus on the students’ work of making and interpreting
graphs, and coordinating information in a graph with information in a
table.

Peled and Carraher (chap. 12) claim there is a mutually supportive
relationship between negative numbers and algebraic thinking: Negative
numbers can be meaningfully taught within an “algebrafied” curriculum
and, likewise, negative numbers can facilitate the development of con-
cepts important for the growth of algebraic thinking. The concepts in
question include functions, equations, and especially the additive struc-
ture. The chapter further discusses the extension of the additive
part–part–whole structure to deal with more than set inclusion situations.
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Classroom Stories: Examples of Elementary
Students Engaged in Early Algebra

Virginia Bastable
Mount Holyoke College

Deborah Schifter
Education Development Center, Inc.

We were active participants in 1990s discussions of the possibilities for the
development of algebraic reasoning in elementary grades and devised for
ourselves a working definition of early algebra. We began with the premise
that algebra provides concise notation for expressing generalizations
about number systems. Then we chose to look for occasions when children
engage with such generalizations—generalizations that they might later
express in algebraic language, but that they would now express in what-
ever means of communication are available to them. That is, we worked
with the notion of early algebra as the exploration of generalizations
about arithmetic operations.

From our experience in K–6 classrooms, we knew that when one listens
to students’ discussion of arithmetic ideas, one often hears them engaged
at a level of generality that can be considered algebraic. When the arith-
metic classroom environment is designed to follow children’s thinking
and provides elementary students with the opportunity to pursue their
own questions, they display interest and ability in formulating and test-
ing generalizations. Although these students do not, of course, use con-
ventional algebraic symbols to express their ideas, the kinds of arguments
they pose and the kinds of reasoning they display have parallels in formal
algebra. 
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Once we formulated this conception that early algebra involves
making and expressing generalizations, we reviewed our projects’ collec-
tion of classroom cases through this lens to locate examples of such think-
ing. This chapter presents classroom episodes from grades one to six that
illustrate a shift from thinking in terms of specific arithmetic statements to
exploring more general assertions. These examples can be used to analyze
the kinds of mathematical thinking involved, to consider the conditions
that allow such reasoning to take place, and to determine connections
between the mathematics of the K–8 curriculum and the formal algebra
program. For each set of episodes, we pose questions that arise as we
consider implications for what an early algebra program could be.

The episodes have been drawn from two sources. The first is a set
of narratives about classroom events written by participants in the
SummerMath for Teachers Program. Most were produced in the context
of a project designed to support such writing (Schifter, 1994, 1996a,
1996b). The original narratives are referenced; most appear in the profes-
sional literature. Teachers’ actual names are used; students are given
pseudonyms.

The second source is data collected in Teaching to the Big Ideas (TBI),
a 4-year teacher development project conducted collaboratively by the
Education Development Center, TERC, and SummerMath for Teachers
(Schifter, Russell, & Bastable, 1999). These examples are based on field
notes taken by project staff that visited the classrooms of participating
teachers or on teachers’ written accounts of episodes from their own
teaching. In these examples, both teachers and students are referred to
pseudonymously.

The teachers from whose classrooms these examples have been drawn
have all been working in teacher enhancement projects designed to support
the development of a teaching practice that focuses on children’s mathe-
matical thinking. Although by looking at these materials we can identify
ways in which the children’s thinking is algebraic, the teachers them-
selves actually had no intention to teach algebra. Rather, we claim that,
when instruction is designed to build on children’s mathematical ideas
and to foster children’s mathematical curiosity, children are likely to
exhibit algebraic ways of thinking by generalizing in the context of
lessons in arithmetic, geometry, or measurement. 

HOW GENERAL IS GENERAL?

As one develops an ear for children’s mathematical conversation, one
begins to hear their questions and observations. Children are curious
about such generalities as the commutative property and the inverse rela-
tionship of addition and subtraction. For example, children talk about
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backward facts or turnarounds and seem to act as if their generalizations
would hold for all whole numbers. However, adult listeners must be careful
not to impose their own understandings of generalization onto the chil-
dren. As the following episodes alert us, we must be careful to ask, what
is the domain over which this generality holds for these children?

Episode 1: Noticing the Commutative Property of
Multiplication

Virginia Brown (1996), a third-grade teacher, began a unit in multiplica-
tion by asking her class to mentally formulate an answer to the following
problem:

Kevin has three pencil cases in his desk with twelve pencils in each case.
How many pencils does Kevin have? 

After the class agreed on the answer of 36—adding 12 + 12 + 12—she
showed them that the problem could be represented as repeated addition
and expressed as a multiplication statement: 3 × 12 = 36. Although her
intention was that her students should then break into small groups to
work on a set of similar problems, the lesson at once took an unexpected
turn.

Taking a step back from the original problem context, Jeff looked at
number patterns and shared his observation that you could break each of
the 12s into two 6s, giving you 6 + 6 + 6 + 6 + 6 + 6, or 6 × 6 = 36.
Then, Tom suggested that you can break each of the 6s into two 3s to get
12 × 3 = 36. And, at this, Anna exclaimed, “Wow, we have found a lot of
things that equal 36. Oh. look! This one is the backwards of our first one,
3 × 12.” 

The children continued to find ways to break apart and then regroup
the numbers to total 36. Looking at the column of twelve 3s, Steve offered
that if you circle three 3s, you end up with four groups, giving you 4 × 9
= 36. At this, Joe declared, “And so we can add another one to the list
because if 4 × 9 = 36 then 9 × 4 = 36, too.”

Now, Anna reacted to this last claim, asking, “Does that always work?
I mean, saying each one backwards will you always get the same
answer?” Brown responded, “That’s an interesting question. What do you
think?” Anna replied, “I’m not sure. It seems to, but I can’t tell if it would
always work. I mean for all numbers.”

For homework, Brown asked the class to think about ways to determine
the truth of Anna’s question. The next day, various children explained
their thinking by noting such number pairs as 3 × 4 and 4 × 3. Whereas
some children used manipulatives to illustrate their examples, Anna was
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not totally convinced: “But I’m still not sure it would work for all
numbers.” The teacher decided to table the question but to continue to
explore multiplication by introducing arrays.

Two weeks later, Brown reminded the children of Anna’s question. She
asked if anyone could think of a way to use arrays to prove that the
answer to a multiplication equation would be the same no matter which
way it was stated? The class thought about this for a while—some alone,
others with partners—until Lauren timidly raised her hand. “I think I can
prove it.” Lauren held up three sticks of 7 Unifix cubes. “See, in this array
I have three 7s. Now watch. I take this array,” picking up the three 7-
sticks, “and put it on top of this array.” She turned them ninety degrees
and placed them on seven 3-sticks she had previously arranged. “And
look, they fit exactly. So 3 × 7 equals 7 × 3 and there’s 21 in both. No mat-
ter which equation you do it for, it will always fit exactly.” 

At the end of Lauren’s explanation, Jeremy, who had been listening
intently, could hardly contain himself. He said that Lauren’s demonstra-
tion had given him an idea for an even clearer way to prove it. “I’ll use the
same equation as Lauren, but I’ll only need one of the sets of sticks. I’ll use
this one.” He picked up the three sticks of seven. “When you look at it this
way,” holding the sticks up vertically, “you have three 7s.” Then he
turned the sticks sideways. “But this way you have seven 3s. See? . . . So
this one array shows both 7 × 3 or 3 × 7.”

Anna nodded her head. Although Lauren and Jeremy had demon-
strated with a 3 × 7 array, the representation convinced her of the general
claim. “That’s a really good way to show it, and so was Lauren’s. It would
have to work for all numbers.”

Once Anna raised the question of “will this work for all numbers?” for the
class, not only did Brown take advantage of her students’ interest and pro-
vide time for them to work on this idea, she also kept the question in mind
and asked them to reconsider it 2 weeks later after they had become famil-
iar with arrays and thus had additional tools for representing multiplication.

Episode 2: Does the Order of Addends Matter?

A group of third graders calculated that if they found $1 bill, 2 quarters, 5
dimes, 5 nickels, and 13 pennies in their bank, they would have $2.38. As
the children shared their strategies, the following question came up: Does
it matter what order you use to add? What might happen if you rearranged
the coins and bill? Would you still get the same answer? Their teacher,
Elizabeth Parsons, described the class’ response:

Everyone seemed eager to try their own sequence of money. The room
started to buzz with excitement. Before they began to work alone with
pencil and paper, I asked people to raise a hand if they were thinking we’d
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still get $2.38. About 15 of the 25 kids put hands up. There are always a few
indecisive ones with a hand sort of up, then sort of down. However, when
I asked about people who thought the amount of money may be a different
amount than $2.38, seven or eight hands were raised.

Parsons was surprised that so many of her students hadn’t internalized
that you can add numbers in any order and maintain the same sum. She
decided it would be time well spent to devote one and a half class peri-
ods adding up the coins in different ways. At first, the children worked
alone, and then discussed their strategies with partners, then in small
groups, and finally as a whole class. Several days later, Parsons asked the
class to think back on this work: “I asked them to write about . . . if they
were sure, sort of sure, had no idea, or something in between about the
answer turning out the same if we add the coins in other orders.”

Among the children’s responses (spelling and punctuation have been
reproduced):

• I thought that it woulden’t and I thought it would. I had a half and
half unbalenced maind. the first time I tried it I got $2.38 I tried it
again and I got the same exzact ansor. So I thought that $2.38 would
be the right ansor. So I stuck with the ansor $2.38 and kept it in the
corner of my head and put it up on the board.

• I wan’t to know if it troind out to be $2.38 or did it trin out to Be
something alise like $2.63 or did it trin out to be $2.00

• I relly had to work on it when I did it, it turnd out the sam as the
others $2.38. But when I tryd again I got, $2.33 but when I showd it
I had a mastak so I got, $2.38! I think that if any one in the world
did this, I think they would get $2.38. Because every one got that,
and we think it’s right.

• When L came up with his idya I didn’t know what it was going to
be or if it would be the same answer of 2.38

• I’m pretty sure it would come out to the same answer because there
are pitickuler coins

On reading her children’s responses, the teacher noted: “My understanding
of what goes on in children’s thinking has changed. . . . The ability to see
that a sum will stay the same no matter how the order of the addends is
switched is not a matter of ‘getting it’ or not.” Reflecting on years of expe-
rience with third graders’ work on addition, Parsons now viewed her
students’ process with new insights:

I now see children reaching a plateau of understanding when they can gen-
eralize [that] all pairs of single digit numbers can be reversed. They really
KNOW this when they don’t have to stop to try it out with each new pair.
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They may reach another plateau when they feel the same is true for two-or
three-digit pairs of numbers added in reversed order. It seems natural for
their understanding to take longer if there are many more than two
addends, many more possible orders, and bigger numbers to add.

Having formulated these new hypotheses about her students’ under-
standing, Parsons can now check them against her students’ thinking as
they continue to encounter these and similar questions.

Episode 3: Encountering the Inverse Relationship
Between Addition and Subtraction

Jill Lester (1996), a second-grade teacher, gave her students the following
problem:

I went for a ride to Vermont which is 54 miles from here. After traveling for
27 miles, I stopped to have a cup of coffee. How much farther did I have to
travel to reach Vermont?

As was routine in this classroom, first one child read the problem aloud
and then the students had time to think before offering possible answers.
When they began to discuss their ideas about the problem, Tom spoke up:
“I don’t know whether to add or subtract. It seems more like a plus than
a minus, but . . . ” Sam responded quickly. “I think it’s both. You can count
down from 54 to 27 or you can count up from 27 to 54.”

The class continued to discuss the problem, bringing out base 10 blocks
to model the calculation. And although they raised many mathematical
issues—subtracting 7 from 4, trading ten ones for one ten—the question
about adding or subtracting recurred throughout. After Mark solved the
problem by laying out two 10-sticks and 34 units and then removing 27
units from the pile, he exclaimed, “Now I’ll solve it by adding. I have 27
and I need to know how many more it takes to make 54.” As Tom watched
Mark, he commented, “Now I get it! I was mixed up with the plus and the
minus. I was mixed up about where to start.” 

Interviewed later, Lester explained that this was not the first time the
class had discussed whether you added or subtracted to solve missing
addend problems; the question arose quite regularly. Although there were
different levels of clarity, most of the children had come to realize that
either operation could be used, but they were still intrigued and wanted
to test out both ways. 

Lester added that in the last several years—since she had begun to
change the way she taught to allow her students to voice and follow their
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own lines of thinking—every group of students had raised and worked
through this relationship between addition and subtraction. One year, she
said, the first time she presented her class with a missing addend problem,
about half the students saw it as addition, the other half as subtraction,
and everyone wondered how that could possibly be. Taking advantage of
their curiosity, Lester assigned the children to work in pairs—one partner
solving the problem by addition, the other by subtraction—and the class
spent several days making up and then testing new missing addend prob-
lems. After a week they were satisfied that if adding on worked, so would
taking away, and vice versa.

Lester was able to recognize that as her students were working on
becoming proficient with subtraction computations, they were noticing
the interrelationship of the operations of addition and subtraction. She
shifted the focus of the lesson so it would include opportunities for her
students to examine this more general mathematical principle.

Commentary: How General Is General?

This first set of episodes illustrates children’s interest in considering oper-
ations as objects of study in themselves (Resnick, 1992). These children are
not just enumerating number facts, but are working to express relation-
ships that a set of number facts might exemplify. The episodes also raise
questions about precisely what generalizations children are making when
they encounter such properties as commutativity or the inverse relation-
ship between addition and subtraction. 

In the first example, Virginia Brown’s students quickly move beyond
the problem context, three 12-pencil cases, becoming curious about the
different factor pairs of 36. As they break apart and recombine numbers
to create new multiplication facts, they notice that some are “backwards
of” others: 3 × 12 = 36 and 12 × 3 = 36.

Once this observation has been made, some children are inclined to
generalize the pattern: “We can add another one to the list, because if 4 ×
9 = 36 then 9 × 4 = 36, too.” However, one child, Anna, objects: “Does that
always work? I mean, saying each one backwards will you always get the
same answer?” And it took another 2 weeks of explorations in multipli-
cation until members of the class, including Anna, became convinced
that, in fact, this backward property, commutativity, works when you
multiply ANY pair of numbers. 

Initially, it seems that Brown’s class makes a generalization more far-
reaching than Parsons’ class. Brown’s students make claims about all pairs
of numbers independent of any given context, whereas Parsons’ students
consider a particular problem: the total of a given set of coins and bills.
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However, as Parsons reflects on her students’ work, she alerts us to the
possibility that her students are operating at another level of generaliza-
tion. Parsons believes that her students already understood that addition
is commutative for small natural numbers: “All pairs of single-digit
numbers can be reversed.” Yet they did not necessarily extend this property
to addition of larger numbers or to sums with more than two addends.
When confronted with a problem involving the sum of 26 two- and three-
digit numbers, her children needed to work with the specific set of num-
bers to see if order makes a difference. Thus, although Parsons’ class was
working within the context of a single problem, they (or some of them)
may have actually been extending a generalization that they had already
made for a more restricted set. In fact, we do not know if Brown’s students
would still have to do analogous work if they were to encounter, say,
1,344 × 568, or 32 × 54 × 58 × 39.

The question of the scope of generalization arises again as we consider
Lester’s case. The children discuss how her trip-to-Vermont problem can
be solved either by adding or by subtracting: You can start with 54 and
take away 27, or you can start with 27 and add on to 54. And Lester rec-
ognizes the children’s curiosity as common—virtually all of her students,
year after year, become intrigued by the notion that any missing addend
problem can be solved by subtracting. 

However, the generalization is Lester’s and ours. On this day, the
children in her class talk about adding and subtracting using the numbers
27 and 54. And, Lester tells us, whenever confronted with a missing
addend problem, the children test out both solution methods. In one year
only, did her students spend days explicitly devising and testing a class of
problems until they were convinced of the general claim that any missing
addend problem can be solved by adding and subtracting. Were the
children in this class actually coming to a different, more general, conclu-
sion than Lester’s students in other years?

Thus, the episodes in this section lead us to the following questions:
When and how do students become aware that the operations, them-
selves, are objects with predictable properties? What is the connection
between reasoning within the sphere of arithmetic and the formation of
such algebraic concepts as commutativity and the inverse relationship
between addition and subtraction? What are indications that children are
moving from a consideration of particular number relationships to explo-
ration of the general patterns they instantiate?

HOW ARE GENERALIZATIONS EXPRESSED?

Certainly, much of the power of algebra comes from its concise notational
system. At the same time, a major problem with the learning and teaching

172 BASTABLE AND SCHIFTER



of algebra in its extant mode is that many students merely follow rules for
manipulating symbols without meaning. One of the goals of an algebraic
strand in elementary school would be to help students make meaning for
algebraic symbolization. To start working toward such a goal, we must
examine the language students already bring to their algebraic observa-
tions and consider how and when to introduce algebraic expressions.

Episode 4: Fourth-Grade Students Expressing the Relationship
Between Consecutive Square Numbers

Belinda Knox related the following story from her fourth-grade class: 

The homework assignment was “to represent as many square numbers as
possible on one piece of graph paper. They were to add a key on a separate
piece of paper which included: the color of the pencil they used to represent
a square, the square number, its square root, and the dimensions of the
square.” When the class met to discuss their homework, Adam said that he
had discovered “something amazing and it worked every time.” 

Knox explained that Adam had difficulty articulating his idea “even
though he knew exactly how to do it.” But with help, he was able to share
his discovery, which the group then began to explore: If you take two con-
secutive numbers, add the lower number and its square to the higher
number, you get the higher number’s square. For example, consider 2 and
3. Adam’s rule says add 2 plus the square of 2 plus 3 to get the square of
3, or 2 + 2

22 + 3 = 2 + 4 + 3 = 9. Knox writes: “[The group] had some dis-
cussion about whether it would work each time and Fred insisted that
it wouldn’t work with a higher number than that, so we tried 7 and 8: 7
× 7 = 49; 8 × 8 = 64; and 7 + 49 + 8 = 64.”

Adam then raised an additional question: What would you subtract
from a square to find the square below the one you have? 

Episode 5: Second-Grade Students Expressing Observations
About Square Numbers 

Although Rosemary Rigoletti (1991) had planned a set of lessons that
would go in another direction, her second graders became curious about
which numbers of cubes could be arranged into square shapes:

Ted: I found out that four is a square number and so is nine.
Rigoletti: How do you know that?
Ted: Well, you see, if you put two blocks across the top and two below

it, you get a square with four. Also, if you put three across the top
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and three below it and then three more, you get a square and
that’s a square with nine. . . .

Scott: There are certain numbers of cubes that when you put them together
they will make a square, like with four and nine. But like with two
and three you can’t make a square no matter how hard you try.

These comments, which took place near the end of a whole-group discus-
sion, prompted Rigoletti to suggest an investigation of square numbers
when the class convened for math the following day. Rigoletti writes:

After we reviewed the previous day’s discoveries, we talked about making
some predictions for the square numbers after 9. Evan said 16 for the square
of 4. There were some giggles and heads nodding in agreement. I asked
them how they knew, and Doug said, “Because I did it yesterday when I
finished my paper.” Others giggled and said, “Me, too!” Without any
prompting, Nick said, “And I will predict 20 for the next square number.”
Other responses of 21, 24, and 25 were written on the board. The class was
alive. Nick asked if we could make square numbers up to 100. When the
answer was yes, there were hoots and howls. They couldn’t wait to begin.
They scurried off to get their unit cubes and multilinks. 

Rigoletti organized her students into small groups to build and explore
square numbers. Each group had its own way of accomplishing this:
Some used addition to determine the number of cubes; some used multi-
plication; some added on cubes to an existing square to make the next
larger square; some built new squares for each example. As they built the
squares, the students noticed patterns in their work. Rigoletti, herself, was
intrigued with their discoveries. She wanted the children to share their
ideas, so she placed a chart on the board for them to record their findings.
Throughout the remainder of the math time, children came up and wrote
their conclusions:

• 1, 4, and 9 are square numbers.
• 16, 25, 36, 49, 81, and 100 are square numbers.
• Square numbers go odd, even, odd, even.
• If you times a square number by a square number, you get a square

number (4 × 4 = 16).
• Take any square number, add two zeros to it, and you will get

another square number (4, 400).
• When you add a row at the bottom and a row to the side and make

a corner, you get another square number.
• When you make a prediction for a bigger square, you always have

to add a higher number to the square you just made.
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Commentary: How Are Generalizations Expressed?

In these two episodes, children use English, a natural language, to
describe relationships that are more frequently expressed with algebraic
formalisms. Thus, many adults (including Knox and her colleagues when
she shared this episode with them, as well as the authors of this chapter)
who read Adam’s “amazing” discovery—“If you take two consecutive
numbers, add the lower number and its square to the higher number, you
get the higher number’s square”—feel the need to translate it into terms
more familiar to them: n + n

22 + (n + 1) = (n + 1)
22

(which we would then be
inclined to rewrite as n

22 + 2n + 1 = [n + 1]
22
). In Rigoletti’s class, children

expressed a similar relationship in terms more closely associated with the
representation they were using—“When you add [to a square] a row at
the bottom and a row to the side and make a corner, you get another
square”—which can be interpreted as n

22 + n + n + 1 = m
22
.

The properties explored in the earlier examples could also be described
in conventional algebraic terms, for example, a × b = b × a, and if a + b = c
then c – a = b. And, returning to Rigoletti’s case, “if you times a square
number by a square number you get a square number” can be written as
n

22
× m

22 = k
22

(Although, of course, k = n × m, the children in the case are not
so explicit. They simply state that the multiplication results in a square
number.)

Although one may appreciate children’s language to describe mathe-
matical relationships, the ambiguities of natural language may, at times,
cause concern (Ferrini-Mundy, 1996). For example, Rigoletti’s students
wrote, “Take any square number, add two zeros to it, and you will get
another square number.” In rigorous mathematical terms, this statement
is false; the result of adding zero (or two zeros) to any number is that
number, not another one. However, especially given their example—
4,400—it seems clear that the children did not mean add in the mathemat-
ical sense, but in a colloquial sense, intending something like concatenate.
In this sense, their statement is true. (In fact, readers might consider it a
corollary to the children’s previous statement. After all, we bring the
understanding that the original number has been multiplied 100; that is,
now m = 10.)

When is it appropriate to care about rigor in children’s use of mathe-
matical terms and conventional notation? Might the issue be analogous to
invented spelling in language arts? One does not want concern about
rigor to shut down students’ expression of mathematical ideas; nor
should issues of rigor be ignored. How should the balance be struck?

Further questions arise about when and how to introduce algebraic
notation. For example, consider Brown’s students’ discussion of commutativity:
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Might this have been an opportunity to introduce the notation “a × b = b ×
a,” or is it more reasonable to wait until children are older? How do children
connect their natural language descriptions of mathematical relationships
with conventional symbolic forms? What tools for expressing general con-
jectures should they develop and when should these tools be introduced?

THE ROLE OF CONTEXT

Previous episodes featured math problems that were situated in story
contexts. For example, introducing multiplication through a problem
about pencil cases, as in Episode 1, or using a trip to Vermont for work on
subtraction, as in Episode 3. The next episode offers an additional oppor-
tunity to consider the role of context. What is the purpose of setting a
mathematical problem in a context that is familiar to the students and in
what ways does the context limit their thinking? 

Episode 6: Contextualizing Even and Odd Numbers

Consider Anne Hendry’s (1988) story about her first graders. In prepara-
tion for the lesson, Hendry painted pictures of snowmen on dried lima
beans. In class, she distributed these snowmen and told her students that
the snowmen had received an invitation to attend the “Snow Ball,” but
they could not come unless they had a partner:

This problem led to several days of thinking about odd and even numbers.
They began to make observations about what numbers of snowmen could
and couldn’t go to the ball. [Using their lima-bean snowmen,] soon a few
children began exploring why six [snowmen] could [go to the ball], but not
seven; four but not five, and came up with a rule: “each time you add one
number to a group that can go, you get a group that can’t.”
We made journal recordings of this activity, recording rules named for the
children who developed them. For instance, Mike noticed that if you add
two to a number that could go (even), you got another even number. . . . Zack
showed that if you added together two groups that couldn’t go, you would
get a group that could.
Probing further with questioning, I was amazed to see that by using these
rules, the children soon became adept at applying them to larger numbers.
There was a sense of self-satisfaction and empowerment when they were
able to look at a number such as 69 and know not only that it was odd but
how to make it even using their own rules. [sic] (p. 3)

Commentary: The Role of Context

Hendry’s context, pairs of snowmen going to a ball, embody the mathe-
matical issue her students are to explore—numbers that can be broken
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into pairs and those that can’t. Listening closely to the first graders’
words, it is not easy to determine whether their reasoning is limited to the
given context or if they are thinking in more general terms about odd and
even numbers. For instance, the statement “if you added together two
groups that couldn’t go, you would get a group that could” appears to be
about the snowmen. Might the child be talking about snowmen groups as
a model of number and actually have in mind that the sum of two odds
is even? The statement “if you add two to a number that could go (even),
you get another even number” begins as a claim about groups of snow-
men, but ends as a claim about number. Does that offer more evidence
that children are using the snowmen model to think about numbers more
generally?

This episode raises broader questions concerning the role of context in
mathematical explorations. In what ways do problem contexts provide a
means for students to reason at a general level and when do problem
contexts limit their reasoning to case specifics? What is the role of context-
specific reasoning in the process of developing more general thinking pat-
terns? Further, what do teachers need to understand about the process of
representing numbers and operations in order to be able to analyze the
limitations and strengths of various contexts?

EXTENSIONS BEYOND NATURAL NUMBERS

We began with the question of how general is general. That is, we
observed that, when we listen to children’s claims of generality, we do not
always know over what domain they expect their generalization to hold.
However, in the previous examples, it appears that the domain under
consideration does not extend beyond natural numbers.

In our observations of elementary school classrooms, we find that
questions arise about the behavior of zero or the meanings of operations
with rational numbers. And it is here that we find powerful applications of
generalizations previously made. This also reminds us that some of the
more important consequences of generalizing may occur farther along in
the students’ mathematical development.

Episode 7: Generalizing to New Numbers—Is Zero
a Square Number?

Jenny Richards, a fifth-grade teacher, wrote a message on the board to
begin her math lesson: 

Dear Class, 
Yesterday we started a great debate about square numbers. We are thinking
about 3 × 3 and 9 × 9 and 4 × 4 and 179 × 179. They create perfect squares
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on graph paper. Then we wondered about 0 × 0. Hmm .. . what does that
mean?
Your friend,
Ms. Richards

The discussion began:

Lindsay: Zero times zero is zero. You can’t make anything with it. You
have to imagine it in your mind and when I do that I imagine a
square. 

Richards: What does this mean? 4 × 4. I don’t want the answer. I want to
know what it means. . . . What would it look like? 

Carolyn: Four rows with four in each row.
Richards: And 9 × 9?
Chris: 9 rows with 9 in every row.
Richards: And if you drew it on graph paper, you would get a perfect

square? What does this mean, “0 × 0”?
Lesley: Zero rows with zero in each row. 
Danny: When we were explaining 6 × 6, it was 6 rows with 6 in each.

Zero times zero is zero rows with nothing in it. So there is noth-
ing. It can’t be a square.

Richards: Because there is nothing there? 
Jake: If you count by two, you go 0, 2, 4, 6, 8. There is 0 there. If it is

nothing, why would they put it there?
Melissa: I did 5 times 5 and it made a box. 0 times 0 makes a box. It’s

nothing, but the box is still there. 
Katherine: To do 4 times 4 on graph paper you color four times four. For 0

times 0 you would color nothing. But it is a fact. It is still there.
Gail: It’s simple. 6 times 6 equals a perfect square. 4 times 4 equals a

perfect square. How come 0 times 0 doesn’t?

The discussion ended with some students supporting zero as a square
number, some disagreeing, and some not sure. 

Episode 8: More Generalizing—Is Zero Even or Odd?

Beginning a lesson on odd and even numbers, Sally Gordon distributed
both hundreds charts and multiplication charts to her third graders and
told them, “Yesterday we noted that an odd and an odd make an even.
Today I want you to find more rules like that and examples for each. You
can think of adding, subtracting, multiplying, and even dividing.” 

After the children had some time to work, a TBI visitor approached a
group of three girls and found that they had created a list of conjectures
using addition, subtraction, and multiplication. For example, they had
written out the statements, “Odd + Odd = Even, Even + Even = Even, Odd
+ Even = Odd, Even + Odd = Odd,” and under each statement they had
listed numerical examples to illustrate it: 
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Visitor: So those rules will work for all the numbers on the charts or just
the numbers you have listed?

Sandra: It’s for all of them. 
Visitor: How do you know?
Lesley: Wait a minute. What about zero? We don’t know if it is odd or even. 
Sandra: How can it be anything? It’s nothing.
Becky: But it has a line on the multiplication chart. It must be something.
Visitor: How can you decide? Can you use what you have already done?
Sandra: Let’s see if it fits our rules.

The girls began to check out examples in which one of the numbers is
zero. After testing a few cases, Lesley looked up:

Lesley: We think it is even, because it doesn’t mess up anything that way.
If you make it odd, it messes up the rules. 

Episode 9: Rethinking the Meaning of Multiplication
to Apply to Rational Numbers

When Joanne Moynahan (1996) began a unit on fractions with her sixth
graders, she knew they would need to reconsider generalizations they had
made from their work with whole numbers. To start, she gave them time to
work on the following problems, using whatever strategies they chose: 

1. The Davis family attended a picnic. Their family made up 1/3 of
the 15 people at the picnic. How many Davises were at the picnic?

2. John ate 1/8 of the 16 hot dogs. How many hot dogs did John eat?
3. One fourth of the hot dogs were served without relish. How many

were served without relish?

After working in pairs for some time, the class came together to share
their solutions. She describes what happened next:

As we discussed each problem I recorded a shortened version on the dry
erase board. . . . At the end of sharing the board looked like this:

1/3 of 15 = 5
1/8 of 16 = 2
1/4 of 16 = 4

We didn’t have much time left before the recess bell, but I thought I would . . .
give them something to think about and posed the following question:

Does anyone know what they were doing with these numbers? (Long pause.)
What operation did you use? Did you add, subtract, multiply, or divide?
(Another long pause.) What symbol could we put in here instead of “of”? . . .
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Mary: I think we should put division in there.
Teacher: Why?
Mary: Well, the problem said 1/3 of the people were Davises. I drew a cir-

cle and divided the circle into three parts—then I put the people in.
Jeff: I agree. We divided our cubes into three groups. . . .

It really did seem like division. They took 15 people and divided them into
three smaller groups, all the same size. However, that’s dividing by 3, not
15. The number sentence 1/3 ÷ 15 = 5 does not represent what they did
when they divided the 15 cubes (representing 15 people) into three equal
groups. They did not divide by 15.

Teacher: Does everyone agree? Should I erase the “of” and put in “÷“?
Think about what you know about division. . . .

Rebecca: I don’t think divide is right. 
Teacher: Why do you think divide won’t work? 

Rebecca came to the board and wrote 1/3 ÷ 15 = 5.

Rebecca: This (pointing to the 15) means how many 15s are in 1/3. That
(pointing to the 5) means five 15s are in 1/3. I know that’s not
right. There aren’t any! (pp. 28–29)

Rebecca’s objection convinced her classmates, but they weren’t yet ready
to give up on their sense that their actions were represented by division.
They rearranged the dividend and divisor to check 15 ÷1/3 = 5, but then
agreed that wouldn’t work, either:

Rebecca: I think it’s times.

I invited Rebecca to come to the board. She began writing a line of 1/3s.

Rebecca: That’s 1/3 fifteen times. Now add them up.

I could see that Rebecca had moved to the abstract. She was considering the
number sentence without connecting it to the Davises. Where in her dia-
gram were the Davises? Rebecca could see that she was not convincing her
classmates. She offered this final defense:

Rebecca: I didn’t multiply. I’m just trying to prove that you can. I divided
the 15 people. She (pointing to Mary) says divide and I’m trying
to show that multiply works.

R-I-N-G! That marked the end of class. (pp. 30–31)

When the class reconvened for math the next day, Moynahan asked if
anyone had further thoughts about yesterday’s question. In fact, many of
the students had done some thinking. Mark commented that, whatever
operation they used, they needed to think of 5 as the result of that opera-
tion on 1/3 and 15. Jacob suggested that they try out addition, but every-
one could quickly see that the result would be (expressed by the mixed
number) 15 1/3. They also tried subtraction and, although it took longer
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to figure out the calculation, they were quite clear that this was not the
appropriate operation, either. Then Mary had another idea:

Mary: Division is the opposite of multiplication. Take 12 × 2 = 24. Then 24
÷ 2 = 12. So. . . . If 1/3 × 15 = 5, then 5 ÷ 15 = 1/3. Does that work?

I liked Mary’s “if, then” strategy. She and many others were not sure what
5 divided by 15 was, but Mary was definitely trying to resolve this prob-
lem. She was using previously grounded concepts to make sense of a new
situation. 

Teacher: How many 15s are in 5?
Mark: There aren’t any. You can’t make any 15s if you only have 5. Wait.

You could make a part of a 15.
Jeff: I got it! You would have 1/3 of 15! It does work. Rebecca was

right—it is multiply! (Moynahan, 1996, pp. 32–33)

Commentary: Extensions Beyond Natural Numbers

In all of the examples in previous sections, children are exploring opera-
tions on the set of natural numbers. The fact that many of the tools and
models they employ (e.g., cubes, arrays, paired objects, squares drawn on
graph paper) apply exclusively to natural numbers is, however, not obvi-
ous to them. When children extend their explorations to include zero or
fractions, as in the examples of this section, they confront the need to
develop new tools, models, and criteria of justification.

For example, Richards’ students are trying to decide whether zero is a
square number. Because they rely on the criterion they used for natural
numbers—can that number of objects be arranged in a square array?—
they are unable to resolve the issue. Some students argue that they can
imagine zero objects as a square; others say they cannot. As long as the
class’ justifications remain in the realm of natural numbers, the argument
results in a stalemate.

Gordon’s students, however, use other means to decide if zero is an
odd or even number (after they decide that zero is, after all, a number).
The issue arises as they are devising rules about operating with odd and
even numbers and checking their rules against the hundreds and multi-
plication charts that had been handed out. When challenged to think
about zero, they initially believe the category does not apply—“How can
it be anything? It’s nothing.” On second thought, because zero appears in
their charts, they decide it must be a number, “it must be something.”
Eventually they conclude, “We think it is even, because it doesn’t mess up
anything that way. If you make it odd, it messes up the rules.” Thus,
Gordon’s students make the decision to consider zero even because that
choice will maintain consistency of the patterns they had discovered
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while working with natural numbers. Their belief that mathematics
should be consistent drives their decision.

Similarly, when Moynahan’s students are challenged to decide what
operation sign could replace of in “1/3 of 15 = 5,” the class is finally
convinced by Rebecca’s argument relying on maintaining consistency of
the system. The key for her is that multiplication and division are
inversely related—one operation undoes the other—and that “5 ÷ 15 =
1/3” is a sentence that makes sense in the context of the problem they had
been given. This convinces Rebecca and her classmates that “1/3 × 15 = 5”
also models the problem they had been given.

So, what tools for reasoning need to be introduced as students move
beyond the natural numbers? How are these tools extensions of previ-
ously developed approaches? In what ways can mathematical structure
itself become a tool for reasoning? What experiences allow students to
reason from the structures they have built? How do they determine which
conclusions about the set of natural numbers remain valid as they expand
their sense of what constitutes number? 

PREREQUISITES TO ALGEBRAIC THINKING
IN ELEMENTARY SCHOOL

This chapter has presented classroom episodes illustrating children making
a shift from thinking in terms of specific arithmetic statements to explor-
ing more general assertions. For us, these are examples of children engag-
ing in early algebraic thinking. They express their generalizations using
language, diagrams, and story contexts that capture the actions of the
operations rather than in formal symbolic notation. The compact notation
of symbolic algebra is in their future and should be built on these early
algebraic experiences.

Based on these episodes, we have posed a set of questions that we feel
must be considered by those who intend to support the development of
algebraic thinking in the elementary school. However, although the
children in the classrooms depicted here are typical, the classrooms, them-
selves, are not. That is, these classrooms in which children are invited to
articulate their mathematical ideas are not representative of extant prac-
tice in the United States, although they do represent the kinds of practice
that are envisioned in such reform documents as the NCTM Standards
(1989, 1991, 1995a, 1995b, 2000).

To wit, the mathematics in these classrooms is conceived as much
more than a sequence of facts and procedures to be memorized. Rather,
mathematics is a realm of exploration, and doing mathematics is a social
process: Children learn to actively and purposefully conjecture, revise
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ideas, offer proof, and argue mathematically. Children in these class-
rooms are seen as rational beings that have mathematical ideas worth
the attention of their classmates and their teacher. The process of learning
mathematics is largely a matter of engaging with ideas. The teachers in
these classrooms believe that children create meanings for mathematical
concepts when they work within contexts that already have meaning for
them. For example, their understandings of addition, subtraction, mul-
tiplication, and division develop as they come to see them as models of
situations. Thus, the teacher presents mathematical tasks grounded in
familiar situations.

Whereas the teachers in these episodes had no specific intention of
introducing algebra into their instruction (in contrast to the teachers
depicted in chap. 16 ), they do believe their instruction should be orga-
nized to elicit students’ mathematical ideas and those ideas should
become the explicit focus of instruction. This sometimes means the
teacher’s planned agenda for the day is altered when an individual stu-
dent brings an idea that is especially intriguing or when the class
expresses curiosity about or enthusiasm for a particular question or
investigation. In fact, as seen in Moynahan’s case, students will continue
to think about their mathematical ideas beyond the formal classroom
setting.

Once classroom cultures are established in this manner, we see that
children will express the regularities they note in their work as mathe-
matical generalizations; these generalizations later will become codified
and expressed in formal mathematical language, such as the commutative
and associative laws. We see that as teachers establish a classroom prac-
tice in which children’s arithmetic thinking is fostered, their thinking nat-
urally takes the form of generalization. 

The questions we have posed in this chapter 6 are intended to raise
issues for all engaged in this work: researchers, curriculum developers,
teachers, and staff developers alike. How might teachers actively support
the development of algebraic thinking? We believe the answer to this
question will be found by researchers and teachers working in partner-
ship and must be built on what students already bring to this effort. In
chapter 16, we look further into how this generalizing and justifying
process can be supported in the materials that teachers can use and how
the surrounding cultural views of mathematics interact with this process.
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Children’s Reasoning About
Change Over Time

Cornelia Tierney
TERC

Stephen Monk
University of Washington

Until recently, the accepted view of algebra among many mathematics
educators has been that it is too abstract and too difficult for children to
learn before secondary school. This chapter argues against this viewpoint.
We believe this view arose from the narrow way the subject has come to
be construed in U.S. schools and the way children are viewed in relation
to it. In the past two decades, much effort has been devoted by mathemat-
ics educators in the United States toward determining what algebra and
algebraic thinking are and when children are capable of doing it
(Carpenter, Franke, & Levi, 2003; Chazan, 1996; National Council of
Teachers of Mathematics, 1998; Schifter, 1999). A separate, but related,
strand of mathematics education research and curriculum development
has investigated children’s understanding of the mathematics of change
here and abroad (Barnes, 1992; DiSessa, Hammer, Sherin, & Kolpakowski,
1991; Krabbendam, 1982; Swan & Shell Centre Team, 1989).

Our work reported here is rooted in the latter strand. In exploring
children’s understanding of the mathematics of change, we have come to
see that children in elementary school are capable of forms of thinking
that underlie algebra. Among the themes common to the mathematics of
change and algebra is the use of the notion of variable (Monk, 2003).

185



There is probably no richer area of children’s life experience connected to
variation, than change over time. The notion of varying events over time
underlies stories that children tell from an early age. In our research on
change over time, we engage children in telling stories about one variable
changing over time, and in representing these stories in tables, graphs,
and groups of additive changes. Students come to use these representa-
tions and reason about them as symbol systems with conventional mean-
ings, arranged according to accepted rules to provide a description of
phenomena that change over time. 

We describe episodes from three classroom conversations and one indi-
vidual interview in which children from age 8 to 10 interpret and create
representations to tell a story about change. In our discussion of each
episode, we elaborate on the varied means children have of carrying out
the given problems and the particular thinking processes we believe are
indicated by their solutions. By providing these descriptions and discus-
sions, we hope to make real and convincing our view that algebra can be
construed in ways that are not only possible for children to learn, but can
be experienced as exciting and challenging during the learning process. 

The data for the classroom vignettes (Episodes 1, 3, and 4) is taken from
research done in developing a strand of curriculum materials about change
over time for the Investigations in N umber, Data, and Space (Russell, Tierney,
Mokros, & Economopoulos, 2004) mathematics program for grades K–5. In
a progression of activities, children observe and represent varying speeds,
heights, population, events in their lives, and changing number of objects.
The interview (Episode 2) is part of an earlier research study in which we
interviewed children about the relationship between the observation and
measurement of physical phenomena and its mathematical representations
(graphs, number sequences, etc.) in the context of learning the mathematics
of change.1 In further work with elementary children,2 we continued look-
ing at how children use their own activity with motion detectors, tables,
and graphs to make sense of and analyze change over time. 

EPISODE 1: FINDING THE MISSING
BEGINNING NUMBER

This episode shows children sharing multiple approaches to the problem
of finding a missing value, a type of problem at the very core of algebra.
Solving such a problem almost always calls for making generalizations in
one of several ways. 
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In the unit called Up and Down the Number Line (Tierney, Weinberg, &
Nemirovsky, 1994), written as part of the third-grade Investigations in
Number Data, and Space curriculum, students are asked to imagine a sky-
scraper that has floors “forever underground” and “forever above
ground.” In the elevator, illustrated by a vertical number line as in Figure
7.1, the button that is pushed (which can be any integer between –3 and
+3) determines how many floors up or down the elevator will move
rather than the floor it moves to; for example, pushing +2 moves the elev-
ator up two floors, pushing –1 moves it down one floor. Students have
been working on problems in which the starting floor and the changes are
given and they must find the ending floor. Now the teacher challenges
them with a backward problem:

Teacher: This time I don’t know the starting floor. I go on the elevator. I
push the plus two and the minus three and I end on floor one.
[She begins to make a record on the board, Table 7.1]

Kadisha: We’re supposed to end on floor 1. If I were to go +2 and –3, I
would end up one below where I started, so I must be one above
the ending floor, so that’s plus two.

Sylvia: I just switched them around. I made the plus two a minus two and
the minus three a plus three and then I did it.
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Table 7.1

Starting Floor Changes Ending Floor

?? +2, −3 1



Teacher: How did you think of that?
Sylvia: If I’m starting on floor one and I don’t know my ending place, I’d

have to switch the whole way.
Mosi: If I started on the fourth floor and I did minus three and plus two,

I’d wind up on three so I tried three. Then I tried plus two and it
worked.

Teacher: That’s called trial and error.
Luke: I did the same thing.

The teacher poses another problem and waits a few minutes for the
students to figure it out (see Table 7.2)

At the end of this time, all have an answer except two students, who
haven’t found a way to get started. The teacher directs one of these
students, Nora, in doing the problem by what she calls trial and error, try-
ing a number and then trying a higher or lower number, depending on
whether the ending number is above or below the target ending floor:

Teacher: Let me do this with Nora. Give me a floor. We’ll do trial and error.
Nora: +1
Teacher: Okay. Let’s do it. Minus one, plus three. Did it work?
Nora: Plus three. No.
Teacher: So what could we do?
Nora: Start at 0.
Teacher: Does that work?
Nora: Yes.

Next, Kadisha and Sylvia describe the methods they used to solve this prob-
lem, and then Holly says she used the teacher’s trial and error method:

Kadisha: I started on plus two and then I said. . . . No, I actually didn’t start
anywhere. Let’s see. Minus one and plus three makes the minus
one cancel out one of the three so I have plus two and I want to
end up at plus two so I must have started at zero.

Teacher: Sylvia, did you do it a different way?
Sylvia: Yes. I made minus one a plus one, and the three a minus three. I

started at plus two.
Christina: And I did that to check it over.
Sylvia: And I start at zero and do it the regular way to check it.
Holly: I did trial and error for the starting point and kept adjusting

downward.
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Starting Floor Changes Ending Floor

?? −1, +3 2



Discussion of Episode 1

Mosi, Luke, and Holly used the method most common among third- and
fourth- grade students we have worked with, as did Nora with the
teacher’s help. This is the method the teacher calls trial and error.
However, this, in our judgment, is not just trial and error when the
children recognize that, after starting with a number and ending up too
high (or too low), they should adjust their starting number to one that is
lower (or higher). As Holly puts it, they “kept adjusting downward.”
Sometimes this requires three or four guesses in all. 

Most students we have observed eventually manage to fine-tune this
method to get the correct starting number in two guesses. Instead of
adjusting their guesses by one each trial, they jump directly to the exact
starting number after seeing the result of their first trial. This is not evi-
dent in this episode. Had Mosi done this, after finding that starting with
+4 left her at 3 (two higher than her goal of 1), she would have immedi-
ately tried +2. Children who perfect this method continue to start to solve
these backward problems with a guess, rather than with a view of the
whole problem. Although their initial guess may be quite sensible, they
do not articulate reasons for that guess. 

Kadisha and Sylvia have a broader view. They articulate ways of han-
dling numbers that are not particular to the given numbers. As Kadisha
says herself, she “doesn’t start anywhere.” She figures out the relation-
ship between the starting and ending numbers before she considers the
particular value of either. She determines the net effect of the changes and
then looks at the ending number in order to determine her starting num-
ber: “I would end up one below where I started, so I must be (start) one
above the ending floor.” Sylvia works backward from the ending number,
changing the signs of each change to its opposite. Her reasoning is simi-
lar to that of a student, Joseph in a different class3 when solving the prob-
lem: ? + 1 – 3 + 1 – 1 + 2 – 1 = 6 in the context of putting blocks in and out
of a bag. Joseph sums the positives, on the one hand, and the negatives,
on the other hand, and then works backward. He says: “That’s putting in
4 and taking out 5. Eleven minus 5 would equal 6 so it’s what number
plus 4 would equal 11.” Sylvia and Kadisha, as well as Joseph, generalize
from knowledge about combinations of arithmetic operations.

The variety of approaches the children bring to this problem suggests
that the question of what is or isn’t algebra does not lie in the problem,
but in the way the children think as they do the problem. Some of the
children used an almost random process of trial and error, but still others
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(Mosi and Holly) began to use a heuristic on their trial and error approach
that because the elevator ended too high, they had better start lower. Is
Mosi’s and Holly’s thinking algebraic? Perhaps it is not. Perhaps it is only
a utilitarian rule based on repeated experience such as that often heard in
algebra class: “When you move it [a term] to the other side of the equa-
tion, you change the sign.” Kadisha did the problem by compressing the
two operations of subtracting 1 and adding 3 into a single operation of
adding 2, whereas Sylvia kept the operations separate. Both girls reversed
the operation in order to find out what number one must start out at to
end up at a given place. These are all, including Mosi’s and Holly’s short
cuts, ways of thinking that involve making generalizations. 

EPISODE 2: IDENTIFYING MAXIMUM AND
MINIMUM ACCUMULATION

In the next episode, we see a student reasoning about the results of
combining sets of numbers without finding specific numerical
answers. This is a form of making generalizations, a common theme in
early algebra.

This episode comes from an individual interview with Rose in the
summer between her third- and fourth-grade years, on the day before her
ninth birthday. It is from an interview that had a single session lasting
about 1 hour, during which the interviewer put blocks in and out of a
paper bag to illustrate problems similar to those the students in episode
1 did using the elevator model. In the previous task, Rose looked at the
series 3 + 6 + 1 – 5 – 3 + 2 to decide, without computing, when the bag
would have the most and the least blocks in it. She said of this example
that the most is after the + 1 and “the least is between the minus three and
plus two . . . because you’ve taken away five and three . . . and then you
spoil it by putting in two.” 

Now the interviewer gives her a new task, of telling when the most and
least number of blocks will be in the bag, based on whether blocks have
been added or taken away, but without telling her how many blocks he
has transferred:

Interviewer: I want to write one out for you. I’m going to show you some
changes but I’m not even going to tell you what they were exactly. [Okay.]
Let’s just say (writes 4) you start with four, okay? Here’s a bunch of
changes. I’m just going to show you the sign as you called it, of what each
one was (writes series of signs without numbers) equals some number at
the end.

4 + + + – – + +
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Rose: What do I get to do, put in the numbers?
Interviewer: Well, not first off. First off I’d like you to tell me, if you can,

where I had the most in the problem.
Rose: Right there (after the third plus) because you’ve just had a lot

of plusses and then you have to go through minuses to get
back to plusses so I think you would have the most right there.

Interviewer: Because “you’ve gone through.” And what does “going
through” plusses do? 

Rose: It adds more and more and more. Because there’s three
plusses. More and more and more (touching each of the first
three plusses). And then if you go through the minuses there’s
less and less and then you go back to the plus there’s more but
you have already taken out two of these guys. Say they’re all
one. I’m just trying to give an example. There’s one all the way
across.

Interviewer: By one, you mean each change is a one?
Rose: I mean every number is one. Anyway. You take away two of

the ones and then you add one more. That’s only, that’s only
six but here (after the initial 4 and + + +) you’ve got seven.

Interviewer: So if it’s all ones, it works out like you said. That’s where
you’ve got the most?

Rose: Yes.
Interviewer: And is there any situation where it wouldn’t work out that

way, or it might not?

Rose, thinking aloud, seems to change her mind, but then sticks with her
idea that the end of a series of pluses is when there are the most, even if
you start with a minus:

Rose: I don’t think so because if you. I think the first as far as you can
go without going through minuses is where you are going to
have the most. Unless, unless like the first sign is a minus and
then there’s a whole line of plusses all stuck together like this
(draws + signs touching). And there’s another minus and you’ll
probably have the most right there (before the minus).

Interviewer: Is there anything about this plus (at the end) that would make
you change your mind, imagining all the numbers that it
could be?

Rose: Mm. Only one thing—if that one (the last +) was a lot.
Interviewer: If the last one was a lot?
Rose: Yeah. Like 10 or so. Then it would probably be okay. Then

probably that would be the most provided these (the first
three plusses) are not too much and these (the minuses) are
not too much either.

Interviewer: In other words, you have to have a real big one after the tak-
ing out part to end up with the most at the end. Okay.
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Discussion of Episode 2

Although Rose describes what will happen when blocks are added or
taken away in unspecified quantities, she moves freely back and forth
from the general to the specific, from relative quantity to exact quantity.
For instance, she suggests the specific case of considering every number
to be 1 to illustrate the general problem, but does not insist that this must
be the case. When she chooses “10 or so” as a lot, this is relative to the small
numbers she has been working with. Rose seems to be working at first
with a rule that says, “If you add positives and then subtract, you will have
a maximum before the subtraction.” But her thinking is quite flexible. She
is able to imagine obtaining a maximum at the end of a series in quite a dif-
ferent way—it does not come as the result of a series of positives followed
by a negative, but by one positive that is relatively much larger than the
other changes. Her ability to imagine these possibilities is built on her con-
crete experience of actual numbers of blocks, perhaps on a mental image
of the blocks, but it has gone beyond that so that she is able to imagine sit-
uations that she has not actually experienced. (These episodes are more
fully described in Nemirovsky, Tierney, & Ogonowski, 1993.)

Whereas some of the children in Episode 1 were generalizing from pat-
terns and regularities they had observed in many examples, the kind of
generalization we see Rose making is closer to one in which a person sees
a logical necessity of a general statement based on a sense that “it could be
no other way.” Thus, we might know that a multiple of 4 must be an even
number, because a multiple of 4 is a multiple of 2 and not because we have
studied many numbers of this kind. This type of generalization is the one
associated with traditional algebra, which is based on the implications of
formal laws, rather than on generalizations from many cases. However,
once this distinction is made between generalization from patterns and
regularities and generalization from a sense of logical necessity, we see,
even in Episode 1, evidence of a generalization that combines elements of
both kinds. Kadisha and Sylvia work with finding net change with partic-
ular numbers, perhaps generalizing several cases. Yet, when they work on
the backward problem to infer what floor they would have to begin at in
order to arrive at a given floor, there is sense of the logical necessity of their
answer. The difference between their approach and Rose’s is that they con-
sistently work with specific numbers, while she works with unspecified
symbols standing for numbers. Such movement on the child’s part is
widely considered an important step in the transition from arithmetic to
algebra. The literature on children’s early development establishes that
young children are quite adept at generalizations from examples. In fact,
they are often described as generalizing too freely from a few examples
(Smith, DiSessa, & Rochelle, 1994). We claim that children have rich
resources for these other kinds of generalizations as well. 
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EPISODE 3: SLOPE AS INDICATING
VARIATIONS OF SPEED

In this episode, we see students analyzing graphs of plant height over
time in order to compare changes in the plants’ heights, as well as rates of
change. This illustrates an early and productive use of a symbol system as
a preliminary to the use of literal variables, formulas, and equations
(Swan & Shell Centre Team, 1989).

This episode comes from a conversation in a classroom in which
fourth-grade students are using a unit called Changes Over Time (Tierney,
Nemirovsky, & Weinberg, 1994) from the curriculum series Investigations
in Numbers, Data, and Space. The children have grown plants from seed
and have recorded and graphed their plants’ heights each day for two
weeks. Now they are asked to interpret qualitative graphs of plant height
over time in which no quantities are shown on the axes; only the shapes
of graphs are provided and the labels height on the vertical axis and time
on the horizontal axis (see Fig. 7.2). All the students interpreted steeper
graphs as meaning the plant was growing faster and higher graphs as
showing a taller plant. In the episode described here, they are working on
a problem that has two graphs, one that is higher, but not steep, and the
other that is lower, but steeper. The problem provokes disagreement in
which students deal with the issues of change of height versus height and
rate-of-change versus change.

When the teacher asks which plant is growing faster, Michelle, Sean,
and James describe rate of growth. Michelle compares the growth of the
two plants by comparing the changes in height in a fixed amount of time: 

Michelle: The light line [is faster]. It started really small and got bigger and
bigger and took the same amount of time to get to the same height.

At first, Sean and James respond directly to the shape by interpreting it in
terms of comparative change:

Sean: The light one [grows faster], because it always going up. The dark
one is kind of steady and kind of going across.

James: The dark one is slightly going up and it’s not going fast.

When Darius disagrees, James adds an argument like Michelle’s of con-
sidering growth in time:

Darius: It [the dark line] is going fast
James: It didn’t grow high in a short time.

When the teacher questions him, James bases his answer on the shape of
the line, describing it in a language appropriate for the plant it depicts:
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Teacher: Tell me about the changes.
James: The dark line is only growing a little bit over a long time. The

light line, the changes are bigger over the same amount of time.

Instead of focusing on change-in-height illustrated on the graph, other
students focus on current height and how the plant reached that height
before the part of the story shown on the graph. Bobby and Sarah speak
of the plant before and after the time depicted on the graph:

Bobby: The dark line grew faster at the beginning, before the graph.
Sarah: I chose the dark line. The light line takes time to grow up. It’s

going to take it a long time to catch up with the black line.

The teacher asks Bobby to come up to the board and draw the dark line
as he thinks it might have been before the graph began. He starts at left
end of the dark line and extends it leftward, making a line that curves
down to the horizontal axis (see Fig. 7.3):

Bobby: [Moving his finger from left to right along the line he drew] It
grew fast, then still fast, then started to get steady.

Discussion of Episode 3

These children are involved in a lively discussion in which genuine issues
about comparing changes and various meanings in a graphical symbol
system4 arise. Students agree about the interpretation of the graph, but dis-
agree about whether to take into account data previous to the graphed
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FIGURE 7.2.



data to answer the question of which plant grows fastest. They are using
their understanding of how plants grow to make sense of the graphs, and
they are interpreting the complex meanings in the graphs in order to elaborate
richer possibilities for relations between sizes of plants, changes in size,
and rates of change. For instance, to discuss the issue of which plant is
growing faster, some children focus on its visual aspects, such as steep-
ness, whereas others focus on quantitative information carried in it. (For a
full discussion of students’ use of the visual aspects of graphs, see Monk
& Nemirovsky, 1994.) Bobby’s view that there is a part of the graph that
was missing from the original one raises an important issue in the use of
symbols. What is the status of the graph in relation to the problem situa-
tion? Is it a complete record, the only source of available information
about the event, or is it like an illustration that tells part of the story to be
supplemented by other things we know and believe? 

EPISODE 4: FROM CONTINUOUS TO DISCRETE—
MAKING TABLES TO FIT STORIES

This episode shows a class deciding when two tables that were made by
students to depict the same event are in fact the same or different.5 In
using any symbol system, even one as apparently straightforward as tables,
questions often arise as to whether or not two different arrangements of
symbols really have the same meaning and whether a given arrangement
could possibly have two very distinct interpretations. This is the underly-
ing problem in making abstractions: to decide which of the many aspects
of a symbolic array or situation are to be paid attention to and which are
to be ignored. Seeing anything is a matter of highlighting, organizing, and
structuring (Arnheim, 1969).
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In one of the activities in the Investigations unit for fifth grade, Patterns of
Change: Graphs and Tables (Tierney, Nemirovsky, Noble, & Clements, 2004),
students make tables to fit with trips they plan and act out along a 10- to 15-
meter line. This activity takes advantage of children’s strong inclination to
use narrative to describe an event such as walking along a line at varying
speeds. Each student chooses one of three stories provided of trips that
could be made along a line and makes a table to go with the story. The
students exchange their tables and then each is supposed to post this new
table on a bulletin board near the story they believe the table belongs with.
They discuss the tables posted with each of the stories to decide if they are
posted with the right story and to compare tables that fit the same story.

Nadine has made a table (Table 7.3) that has been placed with the story:
“Walk very slowly about a quarter of the distance, stop for about 6 seconds,
and then walk fast to the end”: 

David: I don’t think that Nadine’s goes with the story. It says walk very
slowly for about a quarter of the distance. But then it says stop for
6 seconds. She keeps going.

Teacher: [pointing the entries in Nadine’s table: 5, 8, and 10], Then what
would you have put here, here, and here instead?

David: Threes.

Nadine agrees with David that it does not belong there. The teacher asks
April, who placed it improperly in the first place, to figure out which other
story Nadine’s table belongs to. She puts it with the story, “Run about
halfway and then go slower and slower until the end.” She indicates that
this partly fits Nadine’s table, although there is still a discrepancy because
Nadine’s table goes almost the same speed at the end instead of continuing
to slow down. Thus, April considers ways in which this table and the three
stories differ, and decides this story is similar enough that it might have
been the one Nadine was thinking of.

The teacher then draws attention to the other tables (Table 7.4) that go
with the first story (“Walk very slowly about a quarter of the distance,
stop for about 6 seconds, and then walk fast to the end.”), and asks if they
are the same or different: 

Elena: Me and Judith’s are the same. We were in different parts of the
room. Somehow it got the same.

Teacher: How does Anita’s table differ? What does she point out?
Judith: There’s more time. She figured that to get to 14 she needed 23

seconds.
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Teacher: What part of the script did Anita take very seriously? Hers is a bit
different. But it’s got similarity. She has the person waiting four
chunks of time (as Judith and Elena do).

David: Six seconds.
Nick: In it she goes only 1 meter in 2 seconds. Theirs is 2 seconds 2

meters.
Teacher: So they went a little further in walking slowly.
Judith: Her trip took a longer time. Her going slow was really slow.
Anita: It (the story) says “very slow.”
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Table 7.3
Nadine’s Table

Time in Seconds Distance in Meters

2 3
4 5
6 8
8 10
10 11
12 12
14 13

Judith’s Table

Time Distance

2 2
4 3.5
6 3.5
8 3.5

10 3,5
12 9
14 14

Elena’s Table

Time Distance

2 2
4 3
6 3
8 3

10 3
12 9
14 14

Anita’s Table

Time Distance

2 1
4 2
6 3
8 4

10 4
12 4
14 4
16 6
18 9
20 11
22 13
23 14

Table 7.4



Discussion of Episode 4

Elena expresses amazement that she and Judith have made the same
table, although we see that the corresponding entries in their tables are
not identical. However, although the three tables fit more or less the same
story, the students recognize that Anita’s table is different from the other
two. This is not only because it is longer, but because Anita’s tells a diff-
erent story. “Her going slow was really slow.” In making such distinctions
about how things might be different while being the same, these children
show an early capacity for abstraction. Elena sees a pattern in her and
Judith’s table. The students recognize a different pattern in Anita’s.
Earlier, April picked out a pattern in Nadine’s table that was different
from the slowing down pattern she expected for the story it was to fit.
These overall patterns are features abstracted from the table, which the
students connect to the relationship between distance and time.

Many of the tasks children do in our interviews and in the Investigations
curriculum involve thinking qualitatively and constructing representa-
tions: How do two things compare? Where is the maximum? Which plant
represented in this graph is growing faster? How are two stories of
change alike or different? 

The children’s grasp of these situations suggests that it is possible to
develop a curriculum that engages children, starting in the early grades,
without getting enmeshed in the details of procedures of calculation, setting
up of scales, or other issues associated with teaching conventional graphing.
Such a curriculum might move children from the arithmetic of specific
quantities to thinking about relationships among varying quantities through
qualitative representation in stories, graphs, and literal variables.

This qualitative comparison appears in the kind of problem described
in chapter 7 by Carraher, Schliemann, and Earnest (this vol.) as an invita-
tion to think about the relationships among variables. This comparison
and examination of relationships can be about quantities or just about
generalized numbers. This work can include analysis of purely numerical
relationships as children move from the specifics of a particular instance
or a group of instances to a conjecture in which they establish a general-
ization of necessity being true. Thus, students can generate conjectures
about and discuss open sentences that are always true (a + b = b + a), some-
times true (a – b = b – a), or never true (a + 3 = a – 3), an activity suggested
by Davis (1964) for middle school many years ago. When students work
at algebra of literal variables, the students build on their experiences of
reasoning about these quantities in context.

Behind the argument that algebra cannot be taught to students before
eighth or ninth grade is a view of school mathematics sharply divided
into two worlds: a world of operations on specific, concrete numbers, and
a world of operations and reasoning on unspecified, abstract variables.
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The children we work with are exploring the vast middle ground in
between. Students reason about the outcome of specific arithmetic opera-
tions on possible numbers and making generalizations on these (Episode
1); finding patterns and making generalizations of a logical kind in num-
ber sequences (Episode 2); making qualitative interpretations of symbolic
but situated representations (Episode 3); and judging the possibilities that
two symbolic representations might belong to different or same events
(Episode 4). Through living in this middle ground and becoming confi-
dent and familiar with these mental processes, students can grow to be
masters of the world traditionally called algebra.
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8

What Is a Legitimate Arithmetic Number
Sentence? The Case of Kindergarten
and First-Grade Children

Nitza Mark-Zigdon 
Dina Tirosh

Tel-Aviv University

There is a growing awareness nowadays in various countries, including
Israel, that basic algebraic ideas should be enhanced as early as possible
(Ministry of Education, 2005). The ability to represent symbols is essential
to the learning of algebra. This chapter describes a study of the informal
knowledge of addition and subtraction number sentences that preschool
children in Israel bring with them to school. The study continued
throughout the first year of schooling in order to follow the development
of this knowledge.

The development of algebraic reasoning is taken by many, including
several authors in this volume, as having a sound starting point in the use
of number sentences to build generalizations of arithmetic operations and
their properties. Others use the semiotic features of number sentences as
bases for building the kind of symbol sense that serves algebraic reasoning.
Hence, we feel that it is important to understand what students bring to
this enterprise in terms of what they think number sentences are.

This chapter covers three main topics: the theoretical framework that
we used to construct the research tools and to analyze the data, the study,
and the main findings, and raises issues in need of further exploration. 
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THE DEVELOPMENT OF CHILDREN’S KNOWLEDGE OF
THE SYMBOLIC ARITHMETIC SYSTEM: WHAT DO WE
KNOW FROM RESEARCH?

The main function of the symbolic arithmetic system is to represent the
arithmetic concepts, operations, and relations, to transmit information
and to enable students to arrive at the mathematical meaning behind the
symbol (Bialystok, 2000). There are two major components of the sym-
bolic arithmetic system. First, there are symbols: namely, the numerals,
which are the symbols of the basic operations; the equals sign; and the
other two order-relation signs (“>” and “<”). The second component is
constituted by the rules for operating on the symbols. These rules
are based on the positional principles of the decimal system and on
the conventional ways of writing the basic operations. In our study, we
attempted to assess kindergarten and first-grade children’s knowledge
about these two components of the symbolic arithmetic system, with
particular focus on the differences between recognizing and producing
addition and subtraction number sentences. 

WHAT FACTORS INDICATE A CHILD’S ABILITY TO
DERIVE THE MEANING OF A SYMBOL?

Certain symbols, such as the numerals standing for numbers, the opera-
tion symbols and the equals sign, stand in an arbitrary but conventional
relationship to their referents, so students need to supply the connections
between the symbols and their referents (Bialystok, 1992; Dorfler, 2000;
Mandler, 1992). Children’s ability to grasp the meanings of a symbol is
determined by three major factors: the representation space of the user of
the symbol, the development of symbolic thinking, and the conceptual
mathematical knowledge base. 

Representation Space

The representation space includes the database of symbols, metaphors,
and the representation structures that are embedded in the personal expe-
rience of the interpreters of the meaning, and their knowledge of the prin-
ciples for operating on the representation systems (Nemirovsky & Monk,
2000; von Glaserfeld, 1991). Included in this factor is the user’s ability to
differentiate between the components of the representation system that
are relevant to the mathematical concepts and those components such as
size, color, and font that might be visually prominent but are irrelevant
from a mathematical point of view (Janvier, 1987; Kaput, 1987, 1991; Lesh,
Post, & Behr, 1987).
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Symbolic Thinking

To engage in a developing ability to perceive the symbol as representing
the meaning of an object or idea, without the latter being literally
expressed within the symbol itself, is at the heart of symbolic thinking.
Here we focus on the changes from fusion of signs and objects to differ-
entiation (Nemirovsky & Monk, 2000; Werner & Kaplan, 1963). In a situ-
ation of fusion, the symbols are perceived as the object of representation.
Consequently, at the early stages of the development of symbolic thinking,
children perceive the objects as possessing traits and, in various situa-
tions, they identify the features of the symbols with those of the object
that it represents. Thus, for example, children will write names of large
objects in large letters (Thomas, Jolley, Robinson, & Champion, 1999).
When symbolic thinking is at the stage of differentiation of sign from ref-
erent, the children exhibit their ability to relate separately to the object
being represented and to its symbol (Nemirovsky & Monk, 2000; Werner &
Kaplan, 1963).

Conceptual Knowledge Base

In the absence of a proper knowledge base regarding the mathematical
entities of arithmetic, the child will not be able to access the appropriate
meaning of the representation (e.g., children who are unfamiliar with the
structure of the decimal system will not be able to deduce the meaning of
combinations or strings of numerals such as 23; Hart, 1981).

WHAT IS KNOWN ABOUT THE DEVELOPMENT OF
THE SYMBOLIC ARITHMETIC SYSTEM?

Studies reveal that newborns are cognitively equipped from the very out-
set to recognize quantities and operations with quantities (Butterworth,
2000) and that the ability to symbolize begins to develop in children from
very early life stages (DeLoache, Miller, & Rosengren, 1997; Mandler,
1992, Piaget, 1962). In many cultures, children are exposed, from a very
early age, to conventional symbolic systems, including the symbolic
arithmetic system and, consequently, they acquire various types of
knowledge about this system (Bialystok, 1992). Tolshinsky-Landsmann
and Karmiloff-Smith (1992) reported that children from about age 4 dis-
tinguish between symbols that belong to the number system and those
that do not belong to it. They found that children at age 4 differentiate
between letters and numerical symbols. They reported, for instance, that
children at that age perceive a repetition of the same number as a number,
but a repetition of the same letter is not considered a word. Still, several
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researchers noted that the ability to attribute meaning to numerals develops
gradually (e.g., Bialystok, 1992; Hughes, 1986). 

This study employed the detailed, four-stage hierarchical model of the
development of the symbolic representation of numbers that is offered by
Hughes (1986), who describes how, at the first stage, children represent
numbers by means of idiosyncratic representations. These symbols are not
linked to the shape and quantity of the objects that they represent. At the
second stage, children represent the numbers by means of pictographic
representations. At this stage, they employ the graphic expression appro-
priate to the quantity, shape, situation, color, or direction of the objects
(e.g., the child draws five children to describe a given situation relating to
five children). At the third stage, children employ iconic representations.
Here they represent the numbers by means of a symbol system based on
one-to-one correspondence between the number of shapes drawn and the
given number of objects, such as lines or circles. At the fourth stage,
children use the conventional symbols to represent the numbers. Here they
employ number symbols (numerals) on the basis of their understanding
of the meaning that these symbols represent, and their awareness that
the very use of the symbols activates their meaning. The development of the
symbolic knowledge related to the basic arithmetic operations, to the equals
sign, and to the order relation signs occur later—and in that order. In this
respect, A. Sinclair and H. Sinclair (1984) noted that when children reach
school they are familiar with the numerals but not with the symbols of the
basic arithmetic operations and of the order relations.

KINDERGARTNERS’ AND FIRST GRADERS’ KNOWLEDGE
ABOUT NUMBER SENTENCES: THE STUDY

Participants

One hundred and fifty-four children from upper middle-class families (48
kindergarten children and 106 first graders) participated in the study.
Half of the participants in each of these two age groups were male and the
other half female. The kindergarten children (ages 5–6) attended two
nursery schools where no formal instruction related to the symbolic arith-
metic system was evident. The first graders (ages 6–7.5) studied in five
classes at two schools. All the students came from upper-middle-class
families.

Tools and Procedure

A structured, individual interview was developed for this study. The
interviews consisted of two main sections, in accordance with the two facets
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of symbolic knowledge: production and recognition. The interviews were
conducted by the first author, in a quiet room. Each child was interviewed
twice: first on the production section and then on the recognition. Each
interview lasted at least 30 minutes.

Production. Participants were asked to write four numbers (5, 8, 13, 20),
two addition number sentences (i.e., 4 + 2 = 6 and 13 + 4 = 17), and two
number sentence involving subtraction (5 – 2 = 3 and 12 – 3 = 9). Each
number and each number sentence was written on a separate, empty card.

Recognition. This section consisted of 12 cards, 6 with addition
and subtraction number sentences: 2 in the canonical form (3 + 2 = 5 and
9 – 5 = 4), 2 with the operation sentence on the right side (8 = 12 – 4
and 7 = 3 + 4), 1 multioperational number sentence (4 + 2 + 1 + 3 + 2 = 12),
and 1 addition number sentence written in vertical format. Six cards con-
tained inappropriate writing of number sentences: two with missing sym-
bols (i.e., 2 + 9 _ 11 and 3 _ 8 = 11) and four with letters or pictorial
symbols instead of some of the numerals (e.g., _ + 3 = 8). The interviewee
presented the child with one card at a time. The child was asked to deter-
mine whether what appeared on the card is a correct way to write a num-
ber sentence. The interviewee explained the task to each child in the
following way: “I asked you, at the first meeting, to write on cards, like
4 + 2 = 6 …Do you remember? I asked other children to do the same. I will
show you cards that the others wrote. Look at the card and tell me if what
is written on it is a correct way to write addition/subtraction. If it is, put
it in the red box, if it is not, put it in the blue box. Please, while you do
this, explain why.” At the end of the classification, the child was encour-
aged to look at the two piles of cards and to make changes, if they felt that
such changes were needed. 

Main Findings

Production. All the first graders who participated in this study correctly
wrote the two numbers below 10, 90% correctly wrote the two numbers
above 10, and 86% correctly wrote all four addition and subtraction number
sentences. Those who wrote inadequate number sentences wrote the
expressions from right to left. In the case of writing addition number
sentences, such writing resulted in correctly written expressions. This,
however, is not the case for the subtraction number sentences.

Almost all the kindergartners (93%) correctly wrote the number 8 and
about half adequately wrote the numbers 5 and 13. The number 20 was
the most difficult to write (21% kindergartners wrote it correctly). Only
about 10% of the kindergartners correctly wrote the four addition and
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subtraction number sentences. The others did not write any of the four
number sentences in a correct manner. About 50% of the children wrote
the numbers and the number sentences from right to left. In the number
sentences, they wrote only the numbers (the symbols of the operations
and of the equals sign were not written). The children’s comments during
the interviews suggest that they assumed that numbers, words, and
sentences are written in the same direction: from right to left. (In Hebrew,
the direction of writing is from right to left.)

A substantial number of kindergartners (about 40%) avoided writing
the numbers and the number sentences. The explanations given by these
children were of the type: “I know that I don’t know how to write this,”
“I know it’s with two numbers but I don’t know how to write it.” This
might imply an existence of an intermediate, awareness–avoidance stage
between Stage 3 and Stage 4 (Hughes, 1986). This awareness–avoidance
stage is characterized by “knowing that—but not how,” that is, the aware-
ness of the existence of the rules for writing numbers and number sente-
nces is coupled with a lack of knowledge of these rules. Obviously, there
is room to expand the research in this direction in order to test this
hypothesis.

Recognition

Conventional Writing. Of the six cards that are included in this cate-
gory, the two number sentences that were written in the canonical format
were identified as correctly written addition and subtraction number
sentences by almost all the children (98% and 89% of the kindergarten and
in first grade, respectively). However, other representations of addition
and subtraction number sentences were not accepted as such by the vast
majority of the children. The representations of the two number sentences
in which the operation sentences were written on the left side of the
number sentence were identified as correct number sentences by about
40% of the children in each group. The explanations of the first graders
who argued that these were incorrect representations of addition and sub-
traction number sentences revealed that they tended to interpret the
equals sign as expressing a result of an operation (e.g., 2 + 3 results in 5)
and not as an indication of equivalence between two expressions (see e.g.,
Kieran, 1981). The kindergartners typically argued that: “I don’t know if
this is how we write it.” This could be regarded as another instance of the
awareness–avoidance stage. 

The vertical representation of the addition number sentence was
accepted as an adequate representation of an addition number sentence
by about 30% of the children in each group. Most children who did not
accept this representation explained, “The numbers should be in a row”
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or “The numbers and the + are not arranged correctly, they are not in
a row.” Some first graders further commented, “The equals sign is miss-
ing.” The addition number sentence 4 + 1 + 1 + 3 + 3 = 12 was regarded as
an adequate number sentence by about 60% of the children in both
grades. The first graders who did not accept it as an adequate representa-
tion argued that “there are too many numbers and too many +” or that
“there must be only three numbers.” Most of the kindergartners that did
not choose this as an adequate expression explained that they did not
know if it is “OK to write in this way.” 

Inappropriate Writing

Missing Symbols. Two thirds of the first graders correctly argued that
the expressions that did not include an operational symbol or an equals
sign “are not number sentences.” They clearly stated the signs that were
missing in each expression. About half of the kindergartners were aware
that “something was missing” in the expression without an operation
sign, and about 20% regarded the expression that lacked the equals sign
as an inappropriate number sentence. These findings are in line with
previous research findings indicating that the development of the recog-
nition of the necessity to include operation symbols in number sentences
precedes that of the inevitability of including the equals sign.

Mixture of Arithmetic Symbols and Other Symbols. Almost all the first
graders (about 90%) argued that expressions, including pictorial symbols
or Hebrew letters, are not number sentences. Typical explanations were
“When you write a drill you do not draw” or “When you write a drill you
write numbers, you don’t write letters.” About one third of the kinder-
gartners accepted these sentences as addition and subtraction number
sentences. They explained that these expressions contain numbers and
therefore they “Should be put in the red [number] box.” Again, more than
half of them explained that they do not know if this writing is “OK.” 

The overall picture regarding the kindergartners’ and the first graders’
ability to differentiate between expressions that are conventionally
regarded as addition and subtraction number sentences and those that are
not show that a substantial number of first graders accepted only canon-
ical representations as adequate number sentences. Probably, these are the
(only) number sentences that they encountered in class (see also, Franke,
Carpenter, & Battey, chap. 13, this volume). About one third of the kinder-
gartners accepted expressions that included numerals and other,
nonmathematical symbols as addition and subtraction number sentences.
It seems that first graders made a decision that a certain expression
presents a number sentence on the basis of three criteria: The expression
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contains arithmetic symbols, the expression contains only arithmetic
symbols, and the numerals and the other symbols are written in the
canonical format. A substantial number of the kindergartners argue that
they lack the knowledge needed to reply to these tasks. Those who did
tended to relate only to the first criterion and, consequently, they consid-
ered expressions that included arithmetic signs together with other,
nonarithmetical signs as numbers. 

CONCLUSIONS

This research has expanded the knowledge base on kindergarten and
first-grade children’s informal and formal knowledge of the symbolic
arithmetic system. The results suggest that for kindergartners, the recog-
nition as such of canonically written number sentences was profoundly
easier than the production of such number sentences. First graders, how-
ever, highly succeeded in both these tasks, although their performance on
the recognition tasks was better than on the production tasks. 

Had we stopped our analysis at this point, we might have concluded
that, for both kindergartners and first graders, recognition of addition and
subtraction number sentences is a less demanding task than their production.
However, the data reveal a rather complex situation. The kindergarten
children were indeed less successful in each of the production tasks than
in each of the recognition tasks. This suggests that before formal instruc-
tion, production is a highly demanding task. However, for the first
graders, all the recognition tasks included in the interview, apart from
those related to number sentences written in the canonical format, were
profoundly more demanding than those that involve the production of
number sentences. One possible recommendation for instruction, accord-
ingly, is to devote more attention to discussing, in class, the nature of
addition and subtraction number sentences and of each of the arithmetic
symbols, and to describing critical and noncritical properties of these
sentences.

A phenomenon that was identified among kindergartners in this study
is that they tend to avoid both producing and recognizing addition and
subtraction number sentences. It seems that such avoidance reflects their
awareness both of the existence of rules for writing number sentences
and of their own lack of knowledge of these rules. Issues related to this
phenomenon, such as whether this is a general, awareness–avoidance
stage, should be explored further. 

All in all, this study provides some indications that many kindergartners
and first graders are beyond the third, iconic stage in the development of
the symbolic representation of numbers described by Hughes (1986). The
fourth stage, in which children symbolically represent numbers and number
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sentences should, however, be further explored. This exploration should
take account of both the production and the recognition facets. This
chapter could be viewed as a first step in this direction.
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Visualizing Algebraic Reasoning

Timothy Boester
University of Wisconsin–Madison

Richard Lehrer
Vanderbilt University

In this volume, algebra and algebraic reasoning are proposed as a core
constituent of a general mathematics education that extends throughout
schooling. We share this conviction with the contributors to this volume,
but we aim to extend the franchise to space and geometry as a comple-
mentary strand in a general mathematics education (Lehrer & Chazan,
1998). Rather than place these two strands in competition for curricular
space and time, we propose synergy: Visualization bootstraps algebraic
reasoning and algebraic generalization promotes seeing new spatial
structure (Goldenberg, Cuoco, & Mar, 1998).

We explored prospective relations between geometry and algebra by
conducting a 2-year sequential design study (Brown, 1992; Collins, 1992)
with two cohorts of a sixth-grade classroom. Design studies are con-
ducted to explore prospective trajectories of student learning along with
the means to support learning (Cobb, Confrey, DiSessa, Lehrer, & Schauble,
2003). This study investigated students’ reasoning about Cartesian graphs,
linear functions, and tables when these forms of representation were
deployed as tools for describing visual patterns. In this instance, students
characterized similar two-dimensional figures, namely, rectangles. The
design was informed by previous studies in which younger students
(third and fifth graders) were introduced to algebraic reasoning via study
of geometric similarity (Lehrer, Strom, & Confrey, 2002). Foreshadowing
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our conclusions here, the results of these earlier endeavors with younger
children were much like those we later describe in this chapter, suggesting
that synergies between algebraic and spatial reasoning, and opportunities
to learn about them, may be far more important than distinctions based
on age.

META-REPRESENTATIONAL COMPETENCE

The emphasis in both the previous and current work was on supporting
student learning by fostering the development of meta-representational
competence, that is, competence to represent similarity in multiple ways
(e.g., ratios, graphs, equations) and to develop conceptual relationships
among these different representational forms (DiSessa, 2002, 2004; Lehrer
et al., 2002). Although traditional accounts of learning mathematics tend
to view representational forms as mere adjuncts to learning, we accord
them a more central role (Kaput, 1991; Lehrer & Lesh, 2003). In our view,
each representational form embodies a different conceptual sense, or
niche (Hall, 1990), and mathematical reasoning evolves as a coordination
or resonance among these different senses and associated representations
(Lehrer et al., 2002). For example, one might view a ratio as a quotient, or
as occupying a slot in the equation of a line (e.g., Schoenfeld, Smith, &
Arcavi, 1993). Conventionally, these are equivalent shadows of the same
referent. That is, there is an underlying construct of ratio, and one merely
inscribes (following Latour, 1990) the referent differently. In contrast, our
stance (Peirce, 1960) interjects the interpretant between the sign and the
object (the signifier and the signified), thus providing space for the
process of signification, that is, the telling of in what respect the sign
stands for the object. In Peirce’s (1960) words:

A sign or representamen is something which stands to somebody for some-
thing in some respect or capacity. It addresses somebody, that is, creates in
the mind of that person an equivalent sign, or perhaps a more developed
sign. That sign which it creates I call the interpretant of the first sign. The sign
stands for something, its object. It stands for that object not in all respects,
but in reference to a sort of idea, which I have sometimes called the ground.
(p. 135) 

This triadic model of semiosis suggests a niche view of symbolization,
where different notations convey different senses of the same mathemat-
ical object. Later, we describe how a ratio participating in an equation (one
notational system) or in a line (yet another notational system) has very
different meanings for students, although from a conventional perspec-
tive, the ratio signifies the same relation (the ratio of sides of rectangles).
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In short, symbolic media have conceptual consequences because they
afford different patterns of reasoning: For example, a figure constructed
with traditional tools and media is reasoned about differently than one
constructed with electronic tools and media (e.g., Lehrer, Randle, &
Sancilio, 1989), even though the products are identical from a disciplinary
point of view (e.g., both are rectangles).

Designing to Promote Representational Competence 

The instructional design in this study was intended to create opportunities
for students to develop competence with (at least) four representational
forms typically introduced to students during their first course in algebra,
each of which provided entry to a way of thinking—a mathematical sense—
of similarity. The four different representational forms explored were rules
in the form of verbal descriptions (e.g., long side is twice short side),
re-expressed and re-interpreted as symbolic equations (e.g., LS = 2 × SS),
Cartesian graphs, tables, and quotients representing ratios. 

We introduced similarity in a context of modeling, employing an over-
head projector and changing its distance from a screen as it projected an
image of a rectangle. We asked students to characterize what stayed the
same and what changed as the distance varied. Our intention was to place
additive (the sides were growing or shrinking additively) versus multi-
plicative (the sides were growing or shrinking multiplicatively) relations
in competition as explanations in order to promote multiplicative thinking
for the rest of the curriculum.

We employed classification as a second context for considering simi-
larity. Students sorted cutout models of rectangles into groups using
whatever criteria they liked. Our intention was to support the notion that
similarity was one kind of invariance among many potential ways of clas-
sifying the same objects, but that classifications based on similarity were
in accord with the behavior of the projector. We employed variations of
classification three times during the instructional sequence, beginning
with whole number ratios and eventually including rectangles that were
not similar, yet that were described by the same linear function (one
group of nonsimilar rectangles followed the equation LS = SS + 5). The
intention for the latter was to generalize the concept of line, so that
students could come to see a line described conventionally as a two-part
schema.

Rules were introduced as a way of expressing students’ conjectures
about the nature of the visual pattern observed (e.g., by growing and
shrinking images with the projector, rectangles could be superimposed to
form a visual trace of similarity in the classification task), such as “one side
is always twice as long as the other side.” These rules were encapsulated
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by more formal, symbolic expressions, such as “LS = 2 × SS,” which
expressed a generalization about the nature of the structure observed in a
few instances. The symbolic expressions could be rearranged and other-
wise manipulated in ways that were comparatively more difficult to con-
sider informally, and these syntactic manipulations turned out to be
important for establishing the sensibility of considering a rule as expressing
a quotient (e.g., LS/SS = 2).

Yet another sense of the general structure of similarity was supported by
Cartesian graphs (e.g., an invariant ratio as a property of a locus of points
on a line), and a step emerged during instruction as a bridge between the
systems of equations, on the one hand, and the visual appearance of steep-
ness of lines, on the other. Tables too served as an alternative means of
describing similar ratios, especially consideration of first-order differences
between successive entries. These were employed to explore the behavior
of graphs and of equations, and as bridges between them. Because these
forms of representation are employed more generally to support algebraic
reasoning, we included opportunities for students to use them in broader
contexts (e.g., modeling relations between body measures).

Promoting Meta-Representational Competence 

Many classroom activities were designed to support developing meta-
representational competence, to examine the connections between differ-
ent senses. Most of these activities focused on moving between grouping
the physical rectangle cutouts, forming rules or equations, and graphing,
although tables and steps were also explored in concert with other senses
of similarity.

After grouping the physical rectangle cutouts in each collection,
students were encouraged to make tables of each group of rectangle
dimensions. They were also asked, using the table, to write down the
dimensions of a few new rectangles that would also belong in the same
group. Some students used the tables to help form rules for the groups of
rectangles, and these rules also helped in finding the new rectangles that
belonged to the group. Occasionally, after initially grouping the rectangles
and creating tables, a few students regrouped the rectangles once the
graph had been created, finding that the graph did not support their ini-
tial conjectures about the ratio groups. Thus, the rectangle cutouts (afford-
ing practical visualization of similarity) were expected to typically
influence the formation of the groups and their respective tables, which in
turn would help to create the rules and graphs, although the reverse
process also occurred. 

When forming rules and equations from rectangle groups, students
were asked to state their rules in words and/or symbols using the terms
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long side and short side to designate the different sides, respectively. Using
these rules, students were asked to create new rectangles that would fit
their rules, just as they were asked with the tables. Students also had to
determine, with the third collection of rectangles, how to adjust their rules
and equations to fit nonsimilar groups, those with a nonzero intercept.
For example, given the rectangles 1 × 6 and 2 × 7, students would form the
group LS = SS + 5 and might create the new rectangle 3 × 8 to fit the group.
We chose collections that emphasized the intercept as a translation, so
that students would encounter a dilemma: What accounted for paral-
lelism with a corresponding similar group? Continuing the previous
example, students would have been simultaneously given a rectangle set
which followed the rule LS = SS in order to compare the two sets.

When forming graphs from rectangle groups, students were asked to
put the physical rectangle cutouts onto the grid paper, with the bottom,
left-hand corner of each at the origin, and mark off the top, right-hand
corner as the coordinate. The coordinates of each group were connected
by a line to form the graph (see Fig. 9.1). Students created new rectangles
that would fit on their graphs, an activity that paralleled creating new
rectangles from the tables and equations.

Different conceptions of infinity were examined when students
indicated where and how many different new rectangles could be placed
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on the graph. Students also considered which types of rectangle groups
were represented by vertical and horizontal lines, and compared the
graphs of nonzero intercept groups with those of similar groups. 

A large portion of the activities in the curriculum focused on providing
opportunities to strengthen meta-representational competence by com-
paring the same action over multiple senses of similarity. Students were
asked, given a graph, what would be the corresponding equation and,
given an equation, what would be the corresponding graph. Students
also considered how the adjustments for intercept groups for equations
and graphs are similar. Comparing the three senses of physical rectan-
gle cutouts, equations, and graphs, students formed new rectangles from
each group using each sense, and then established correspondences
among each system. Students considered how procedures for creating
new rectangles within one representational system related to creating
new rectangles in other representational systems. As another way to gen-
erate new rectangles, given one length measure of a rectangle and a rule,
equation, or graph, students found the corresponding length. They then
were asked to consider how these methods of finding the other dimension
with one particular form related to means employed for another. For
example, given an equation, some students might generate new rectan-
gles by substituting different values for a short side and then use the func-
tion to find the corresponding long side. Others might use the graph to
locate a point and read off the corresponding coordinates. How were
these very different actions related? In the graphical case, the method
could be perceptually, albeit informally, tested: Did the result look as if it
belonged (i.e., Was it similar?)? Of course, we did not rely on informal
visualization only: Given a few rectangles, students used any of their
representational systems to determine whether or not the rectangles
comprised a similar group. Our intention was to foster ratio as a concept
unifying these alternative descriptions of membership in the same group.

Finally, students created steps from their graphs, by moving from one
coordinate to the next, making note of the up and over of the step. Some
students actually drew in the steps on their graphs, making them look like
a staircase, whereas others simply traced out the steps with their fingers
and noted the dimensions. A few students used the rectangle cutouts to
form their steps; others used the tables to find the differences between the
coordinates. Students also examined the different ways that steps could
be created, from the physical rectangle cutouts, graphs, or tables. For
example, with graphs, a step was often interpreted as a physical move-
ment (going up, then going over), but in a table, a step was a coordination
of differences. Students looked for commonalities and differences
between these representations. Commonalities were not always obvious
(e.g., Why would physical movement on the graph have anything to do
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with tabular, first-order, differences?) and were compounded by the fact
that the values generated via various representations for the steps were
not always the same (students tended to retain the smallest step gener-
ated by the graph, while table calculations had no such interpretation).

ASSESSING STUDENT CONCEPTIONS

We developed a flexible interview (Ginsburg, 1997) to probe students’
conceptions of each form of representation deployed during the course of
their investigations. 

Baseline 

To get a sense of basic representational competence, students sorted
cylinders in two different whole number ratios of height to circum-
ference into similar collections. Tools provided to students included
paper, pencil, and graph paper. Students had no experience with three-
dimensional objects during the course of study, but we expected that the
simple whole number ratios employed to generate each collection would
be readily recognized. Students also commented on whether or not cubes
would be considered similar, and why. We recorded students’ reasoning
in each task and noted which, if any, tools they employed to reach their
conclusions.

Complicated Sorting 

Mirroring classroom activity, but increasing its complexity, students sorted
a collection of 15 rectangles (four ratio groups and one nonzero intercept
group: 1:1, 1:2, 1:5, 2:3, and LS = SS + 7 arranged randomly, into groups,
however they chose to define them. Figure 9.2 displays a Cartesian repre-
sentation of the groups (1:1 group with dimensions 2 × 2, 3 × 3, 5 × 5; 1:2
with dimensions 1 × 2, 2 × 4, 3 × 6; 1:5 with dimensions 1 × 5, 1.5 × 7.5, 2 ×
10; 2:3 with dimensions 3 × 4.5, 4 × 6, 6 × 9; nonsimilar but linear with
dimensions 1 × 8, 2 × 9, 3 × 10). Students again were provided with paper
and pencil, and graph paper. We noted how students accomplished this
classification, especially their spontaneous use of representational forms.
We followed up with probes of students’ understanding of relations
between different representational forms, and also of their understanding
of two senses of infinity expressed on a graph: infinitely many (the most
basic understanding expressed as moving away from the origin in typically
whole number multiples of a seed rectangle) and infinitely dense (moving
toward the origin). We employed these senses of infinity as indicators of
how students understood the generalization inherent in graphs. Would
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students think of graphing primarily as connect the dots or would they
conceive of a line as representing a generalization?

Representational Competencies 

Four additional tasks probed students’ representational competencies.
The first assessed their strategies for using a table as a tool to identify if
three rectangles were similar. What strategies did students employ? The
second assessed their ability to use scaling (up and down) as a strategy for
identifying additional similar rectangles. We included this task to probe
students’ understanding of similarity as growth from a seed, a view
supported by the projector experiments, but one that received less atten-
tion during the classification activities. The remaining two tasks probed
students’ understanding of the equation of a line. In one task, students
saw two equations with the same slope. The interviewer pointed out that
the slopes of two lines were identical, so why weren’t the lines the same?
In the final task, students saw an inscription of a line without a frame of
reference. This last task involved presenting a line drawn on a sheet of
8.5 × 11 paper without any other markings (but with the convention of the
paper arranged vertically with a top and bottom). We looked to see how
students might elaborate the inscription to render it sensible, asking
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students how they might write an equation to represent the line (and
what they would have to do in order to accomplish this goal).

DESIGN STUDIES

We conducted the design studies over two successive years. Our aims
included documentation of the growth of student reasoning during the
course of instruction, documentation of relations between teaching prac-
tices and student activity, and assessment of student learning following
instruction. Following analysis of design failures in the first year, we
redesigned instruction during the second year with an eye toward
improving instructional efficiency.

In the first year, 20 sixth-grade students and their teacher participated.
The students consisted of 11 females and 9 males. In the second year,
14 sixth-grade students, 2 females and 12 males, and their teacher (the
same as the first year of study) participated. During each year of the
design study, occupations of parents were diverse, ranging from unem-
ployed and homeless to high status professionals. 

Instructional Practices

The pedagogical structure of the classroom was based on using student
group work and collective thinking to generate and assess mathematical
ideas. On most days, the teacher would start the class by summarizing pre-
vious work and previewing the day’s activities. Students would break up
into two to four student table groups, and the teacher would walk around
and assist the groups when they needed help, direction, or additional instruc-
tions. The teacher would call for whole classroom discussions at the end of
class, when enough students had made progress on the activity, or when an
important discovery had been made. During the first year, sessions varied in
length from 1 to 3 hours for 30 days across 10 weeks beginning in March.
During the second year, sessions varied in length from 1 to 2 hours for
14 days during 3 weeks beginning in May. Students kept track of all their
work, notes from whole classroom discussions, and summaries of thinking in
a math notebook that was reviewed each week by teachers and student peers.

FIRST ITERATION OF DESIGN

We first summarize some of the obstacles and opportunities we observed
in the classroom during the first iteration of the design (our first attempt).
We go on to summarize students’ competencies and forms of reasoning as
revealed by their responses to the flexible interview.
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Design Failures as Opportunities 

We selectively present some of the observations we made during the
course of instruction. Our observations are selected to emphasize failure,
because it is failure that motivates re-design. 

The initial context of modeling with the overhead projector provoked
much conversation and also much contest between additive and multi-
plicative accounts, just as we anticipated. However, because the instru-
mentation had error and because students had no prior experience with
modeling (teacher report), the error in measure made either account indis-
tinguishable from the other. For some students, the image of the projector
was one of motion, so they understood the task as designing an animated
picture of the progress of the image, not developing a mathematical
account. This made for a poor bridge to the classification context, and,
indeed, there was little evidence of transfer (in word or deed) from the
projector to classification contexts. The apparent inability to come to any
kind of consensus also proved frustrating for the classroom teacher, who
appeared ready to abandon the study at its inception. 

A second obstacle was our failure to account for students’ lack of
knowledge about the mathematics of measure. In many classroom activi-
ties, we relied on a sense of relation as measured: the relation of one side
as measured in units of the other, slope as a measure of steepness, and a
sense of fraction as measured quantity. Instead, we found that students
had little experience with measurement and their predominant sense of
fraction was a part–whole relation (Thompson & Saldanha, 2003). This
was especially apparent when the dimensions of the rectangles were not
whole numbers. For example, during the course of one the classroom
activities, we asked students whether or not 2/3 could ever be the same
as 3/4 and, if so, in what sense? Students took this question as nonsensi-
cal. They then proceeded to explore a situation involving two different
lengths, splitting the lengths to develop respective measures of 2/3 and
3/4, and eventually considered the importance of unit when considering
the question. Nevertheless, students’ conceptions of measure and of frac-
tions as anything other than part–whole relations proved a significant
obstacle throughout the course of the study because the design relied on
coming to see one side of a rectangle as measured by the other.

A third obstacle consisted in our overreliance on classroom norms that
we had observed in the classroom prior to this study. The teacher always
elicited students’ thinking, nearly always insisted on justifications for that
thinking, and generally conducted a classroom emphasizing mathematical
conversations. She also promoted mathematics as a form of literacy, and
students kept mathematics journals that she employed to keep track of tran-
sitions in student reasoning (and she encouraged students to do the same).
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In many ways, the teacher’s norms were ideal from a mathematics reform
perspective (e.g., the communication and reasoning strands of the NCTM
Principles and Standards). Yet the teacher had little experience with these forms
of mathematics and, in fact, was learning them along with her students.
Practically, this meant that she often had difficulty orchestrating mathemati-
cal conversation in the classroom, although conjectures and justifications
were abundant. One of the major transitions we noted during the course of
instruction was the development of the teacher’s repertoire for weaving
students’ often-disparate conversations into mathematical wholes. This
process is discussed extensively elsewhere (Seymour & Lehrer, 2006), so here
we simply note that the teacher’s pedagogical content knowledge appeared
to be transformed during the course of the first year’s design study. 

Opportunities

Despite these design failures, we also noted several recurrent opportunities
presented by the sequence of tasks and tools developed for this study. First,
visualization often supported the development of reasoning. For example,
during the first classification task, some students noticed that the upper
right vertices of superimposed rectangles formed a line, and this imagined
line had a counterpart in the Cartesian coordinates. Furthermore, the per-
ceptual difference between groups of similar and nonsimilar rectangles
described by the same slope supported sense making: It was (perceptually)
clear that the figures did not conform to the same system of description, but
nonetheless something was common to both sets. This led to generation of
some alternative perspectives. Some students suggested cutting off the
extra part of the long side coordinate to get back to a ratio line with no inter-
cept (LS – b = m × SS), and others suggested translating from the ratio line,
adding the intercept point to get to the nonzero intercept line (LS = m × SS
+ b). Uses of tables clarified what might be the same (ratio) yet different
about the two systems of description. 

Second, the use of natural language bridged easily to symbolic expres-
sion, so that, for example, “the long side is twice the short side” was readily
re-expressed symbolically as LS = 2 × SS. This made sense because the
symbolic reference was easily associated with natural language, which
was in turn supported by perception of a figure (stacks of paper cutouts
of rectangles). Many alternatives were spontaneously proposed by
students, such as 1/2 × LS = SS or SS/LS = 1/2. 

Third, the activity structure of sharing solutions across small groups
put features of representation “in play.” For example, when comparing
the graphs generated by different groups to describe the results of the first
classification task, some groups extended their lines down to the origin,
whereas some stopped at the smallest rectangle coordinate of the group.
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Similarly, some lines stopped at the last data point, whereas others
continued past the largest rectangle coordinate of the group. This prompted
a discussion about infinity, using the extension past the final coordinate to
talk about infinitely many, and using the extension down to the origin to
talk about infinitely dense. Many students quickly recognized that they
could keep drawing the line forever (provided they had enough paper),
and that more and more rectangles would fall on the line, and thus would
be in the same group. Many students relied on scaling or multiplying a
seed rectangle by whole numbers to generate larger and larger rectangles,
whereas others appealed to symbolic expression as a generator by using
the ratio represented by an equation and generating a long side from a
short side (or vice versa).

Fourth, the orientation toward coordinating representations and
re-describing the same action in terms of different systems of representa-
tion often led to bootstrapping, where one system of representation
served as a bridge to another. For example, when students first attempted
to determine a symbolic expression for rectangles in the ratio of 1 to 4,
they were stymied because it was one of the first groups to contain a
rectangle with non-whole number dimensions. Whereas there was a 1 × 4
rectangle in the group, the next largest rectangle was 1 1/2 × 6. Students
found that a step on the graph between these two rectangles (2 up by 1/2
over) did not translate as easily into a ratio as all whole number steps had
for past rectangle groups. The teacher helped one student overcome this
by first suggesting making a table, then measuring how many short sides
fit into a long side of each rectangle to find the 1:4 ratio. Instead of going
directly from the graphical to the symbolic representation, this student
used a table and measurement to bootstrap her understanding. Over time,
the teacher came to recognize these opportunities as especially fruitful
and became skilled in orchestrating conversations around them.

ASSESSMENT

As we described previously, we interviewed all students at the end of
instruction. Our aim was to document individual conceptions in contexts
with less assistance than was typical of the classroom. We present the
results of the assessment in three parts. First, we focus on students’ degree
of representational competence in a baseline condition involving finding
groups of similar cylinders by attending to ratios of circumference to
height. This was a near-transfer task because students had not worked
with three-dimensional forms. We supplement this baseline with results
obtained from a portion of the more complicated sort of rectangles that
employed whole number ratios (1:1, 1:2). We then present results from the
portions of the second classification task where students were confronted
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with non-whole number ratios and also nonsimilar figures. We go on to
describe students’ conceptions of infinity (infinitely many and infinitely
dense), their ability to employ tables to generate alternative representations,
and conclude with probes aimed more specifically at students’ conceptions
of the equation of the line. 

Baseline Performances 

All students generated similar groups of cylinders in ratios of 1:1 and 1:2.
Students in both instances primarily employed an internal ratio strategy,
thinking of the relation between the circumference and height for a partic-
ular ratio within an instance, and then testing for that ratio in other
instances. All students moved with relative ease between representations,
and each readily generated equations and graphs to check on the results of
their initial sorts. The same tendencies were observed for rectangles with
simple whole number ratios of sides, although these were embedded in a
set that included other ratios (1:5, 2:3, and LS = SS + 7). All students dis-
covered all members of the 1:1 and 1:2 groups. The predominant strategy
for the 1:1 group was again anchoring to an internal ratio, but students used
either a graph or an internal ratio as their initial strategy for the 1:2 ratio
group. Again, students appeared to move freely among representations, so
that we considered students’ to have a fused or highly overlapping sense of
the systems of representation employed (with the exception of two
students who were not able to generate an equation for the 1:2 group of
rectangles when embedded in the more complicated sort, described next).

Complicated Sorting 

Although students were largely successful in finding the remaining
groups of similar rectangles (85% for 1:5 and 90% for 2:3), we noticed that
representational performance (here, being able to classify rectangles into
groups through various representations) was more often characterized by
bootstrapping (60%) than by fluid translation. For example, students had
difficulty classifying the 1 1/2 × 7 1/2 rectangle, and would leave that rec-
tangle aside while trying to initially group by symbolic expression. Most
commonly, students had difficulty with fractional lengths (e.g., 3 × 4 1/2
as a member of the 2:3 group), and often located membership for some of
these instances by employing the Cartesian system. Thus, through graphing,
students would clean up these residual rectangles left over from their
initial symbolic sort. They then usually checked on the membership with
an equation, determining whether or not the dimensions given fit an
equation already developed to describe the ratio groups. The remaining
participants were split equally between those who again translated fluidly
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between representations and those who seemed to experience each system
as distinct, although when information conflicted, the graphical sense
tended to dominate.

Students experienced the most difficulty with the nonzero intercept
group. Only 45% of the students spontaneously assembled the three
members of this group and of these, only one third (15% of all partici-
pants) could write an equation without assistance. When assistance was
rendered in the form of a partial equation (LS = SS + __), students who
had grouped these rectangles rapidly completed the intercept. When we
pointed out the members of the group to the remaining students, we
found that half had assigned at least one of the members to another group
because in fact the dimensions of at least one rectangle were consistent
with members of another group.

Infinity 

Because all students could construct a graph of the line describing the 1:2
rectangle group, we asked students how many rectangles would fall on the
line. Most students (85%) recognized that there were an infinite number of
larger and larger rectangles as one moved away from the origin (typically
expressed as whole-number multiples of a seed rectangle). Most (75%) also
recognized that as one moved toward the origin, the number of potential
rectangles was infinitely dense. Perhaps most interesting were the 5 (25%)
students who suggested that lines consisted of a locus of (infinite) points,
meaning that the whole line had infinitely many points (which are not
restricted to whole number multiples of a seed rectangle) and they were
infinitely dense.

Patterns in Tables 

When asked if three nonsimilar rectangles, whose dimensions (1 × 3, 3 ×
6, 4 × 9) were listed in a table, belonged to the same group, all but two
(90%) answered no, and either used an internal ratio strategy or a graph-
ing strategy. Those who tried to use a between ratio strategy found that
there was no consistent pattern. Four students considered nonzero inter-
cept groups. These students recognized the possibility that, whereas the
rectangles did not form a similar group, they might form a group with a
line that did not pass through the origin.

Comparing the Slopes of Lines 

Students were asked to explain that, while two lines (y = x and y = x + 4)
have the same slope, when you divide the LS by the SS for two different
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rectangles on the nonsimilar line, the answers are not equal to each other
or to the slope. This task assessed students’ comprehension of the relation
between slope and intercept. Most students (60%) recognized that mov-
ing the line creates a group of rectangles that is no longer similar. The
students commonly expressed this idea by saying that the rectangles were
no longer equivalent fractions, by comparing their internal ratios.
Although the intercept group does not follow the same litmus test for
classification (checking the internal ratio), students had shown in class
discussions that they were comfortable with the combination of slope and
intercept. Five students (25%) gave no reasoning beyond recalling that the
y = x + 4 line is moved up four units. A small number of students (15%)
could not generate any explanation. 

Removing the Cartesian Grid 

To determine just how far students could stretch their graphical compe-
tence, students were asked to determine the equation for a line without a
grid. Three students (15%) superimposed a sheet of graph paper onto the
line (due to interviewer error), thus changing the task, and these were
eliminated from this analysis. Most students (65%) created a set of axes by
drawing them on the sheet of paper along side the line. Different sub-
sets of this group thought about how the placement of origin and inter-
vals would affect the equation of the line. Thus, these students rendered
the line by imposing their own version of the Cartesian grid and then
proceeded to create linear equations, either with or without intercepts.
The second group (29%) drew in a step to find the slope of the line, mea-
suring each length and constituting the ratio. They noted the slope and
remarked that the intercept was indeterminate. The remaining students
either weren’t sure how to go about the task or simply estimated a value
for the slope. 

Summary

As illustrated with classroom examples from the first year (and will be
further shown with dialogue in the second year), opportunities to juxta-
pose visual and algebraic patterns, and to re-describe actions taken in one
representational system (e.g., equations) in another (e.g., graphs) were
important stepping stones for the development of understanding. At the
end of the unit, the majority of students appeared to be able to fluidly
coordinate relations among different systems of representation for
describing geometric similarity for familiar, whole number dimensions.
Nearly all students appeared to understand the senses of infinity inherent
in the Cartesian line (infinitely many and infinitely dense), and many

9. VISUALIZING ALGEBRAIC REASONING 225



could develop equations of a line even without a Cartesian grid. This was
especially impressive in light of the history of students’ difficulties with
the equation of the line (e.g., Schoenfeld et al., 1993). However, as is typi-
cal of design studies, we encountered many unanticipated obstacles along
the way, and we were less satisfied with students’ ability to coordinate
different systems of representation fluidly when the dimensions and
ratios of the dimensions of the figures involved were not whole numbers.
Moreover, although many students apparently understood more about
the slope–intercept form of the equation of a line than might be typical,
nonetheless, a significant minority appeared to have but a tentative grasp.
This set the stage for our redesign of instruction the following year. 

SECOND ITERATION OF DESIGN

In the second year, we re-designed instruction to ameliorate some of the
obstacles encountered in the first iteration. We began by introducing a
series of activities in the beginning of the year based on linear measure.
The sequence had been repeatedly tested with younger children (e.g.,
Lehrer, Jacobson, Kemeny, & Strom, 1999; Lehrer, Jaslow, & Curtis,
2003) and, in addition, had been the subject of repeated iterations of
professional development (e.g., Koehler, 2002). The linear measure
sequence emphasized student invention of units of length measure,
and the organization of these units (and composites of these units), in
tools constructed by students. We took care to ensure that not all measures
were in whole numbers, which motivated development of operator
conceptions of fractions. For example, multiplication of fractions was
conceived of as repeated splitting of a unit of measure (e.g., 1/2 of 1/2
of 1/2). Equivalence was addressed as equal measure, and some
activities stressed translation of one student’s unit into those of another
student’s unit.

We also eliminated the initial emphasis on modeling, reverting to a
previous instructional design (Lehrer et al., 2002) featuring similarity
ratio as one way of classifying planar figures. Hence, students explored
different ways of classifying figures first, and projectors and magnifying
lenses were used as models of one of them.

Perhaps the most important re-design was not of our making. The
teacher’s efforts during the first design cycle included many attempts to
orchestrate classroom conversations, and when these efforts failed, she
tended to reflect on the sources of failure and try new pedagogical moves.
Over time, she became adept at orchestrating classroom conversations
around the fulcrum of the design: developing meta-representational
competence. This progress over the course of the successive iterations of
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the design cycle is documented in Seymour and Lehrer (2006), but we
provide an illustration because we believe the teacher’s mediation of
learning accounts for some of the improvements in student learning
(described in the next section) that we found in the second year.

TEACHER MEDIATION OF META-REPRESENTATION

During the course of the first year, the teacher, Ms. Gold, developed a reper-
toire of conversational moves aimed at supporting translations between
systems of representation. During the second year of the study, she fre-
quently deployed these tactics. In this instance, she is questioning two
students about relations between an equation and its counterpart on the
graph. In the turn immediately preceding this one, Lucas states that multi-
plication is found on the graph as a means of getting from one coordinate
to another (the rectangles are 1 × 4 and 2 × 8, expressed as LS = 4 × SS):

T: Ok, show me on the graph where the times [multiplication] is.
Ryan: Umm, between here [points at the coordinate (1, 4) on the graph]

and here [points at the coordinate (2, 8) on the graph].
T: Ok, but show me how the graph shows that. How does the graph

show multiplication, from one point to the next?
Lucas: Does it?
T: You just told me it did.
Ryan: Lucas . . . [The conversation stumbles for a moment, so the teacher

encourages the two students that this is exactly where she wants the
conversation to go.]

Lucas: I don’t know how the graph goes . . .
Ryan: Well . . .
Lucas: Well, I think you can fit, like this here [he uses his fingers to dupli-

cate the space between the origin and the first coordinate to the first
coordinate and a second] . . .

T: You can do what?
Lucas: You can fit 4 by 1, the corners, you have another 4 by 1 right here

[he repeats his gesture] . . .
T: Ahhh . . .
Lucas: So you’re going to get times two, you’re putting two in.
Ryan: Oh yeah, times two.

We believe that Lucas (see Fig. 9.3) noticed that two of the 1 × 4 rectangles
fit on the graph, one between the origin and the coordinate (1, 4), the
second between the coordinates (1, 4) and (2, 8). This pacing out of the dis-
tance needed to fit two of the same rectangle used the concept of measure
to explain why the rectangle represented by the coordinate (2, 8) was twice
that of the rectangle represented by the coordinate (1, 4).
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The teacher began to draw on their graph the rectangles that Lucas had
created with his fingers:

T: You said, right here, ok. Hold on, so, you said there’s another rectangle
right here. [the teacher lightly draws a 1 × 4 rectangle between the coor-
dinates (1, 4) and (2, 8)] Ok, and if we drew it out, yeah, ok, where’s
your first rectangle?

Ryan: Right here. [the teacher lightly draws a rectangle between the origin
and the coordinate (1, 4)]

T: Tell me what’s happening.
Ryan: It’s stairs?
Lucas: Stairs [traces the staircase pattern with his finger]
T: Ok, and, what are, what are your stairs?

Both students immediately noticed that the teacher’s retracing of the
gesture made by Lucas looked like the stairs or steps that had emerged in
previous group activity (see Fig. 9.4). When the dialogue resumed
moments later, Lucas didn’t answer the teacher’s question about “what
are your stairs,” but instead discovered that there were more stairs to be
found, developing a new notion of infinitely dense:

Lucas: You can, kind of, break it into smaller stairs, right here, and then it
goes right here. And then, within this stair, you have one, like, right
here, and they’re all on the line.
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T: They are?
Lucas: And then, if you keep getting smaller and smaller, the stairs are so

tiny, it looks like a line.

Lucas subdivided the steps into smaller and smaller ones, first drawing in
examples with his pen, and then simply pointing them out with his fin-
ger. Not only did he recognize that each step could be subdivided into
smaller ones, but he also saw that, as more and more steps were packed
into the same space, the steps would make a better and better approxi-
mation to the line itself. He was simultaneously using senses of physical
rectangle cutouts, graph, step, and the idea of infinity. Ms. Gold followed
up with a probe that we believe was intended to draw attention again to
the components of slope (and thus the sense of ratio-based multiplication
that she was hoping to help the students develop):

T: But what do they have to have regardless of how small they are?
What do they have to do?

Ryan: Ohh, oh, uhh, the, uhh, this part right here [he measures out the step
over, or what you would actually step on if these were real stairs, on
the graph with two fingers], the actual step, has to be able to equal
one fourth of the [gestures toward the step up part] . . .
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Ryan noticed that the important part of the diagram that has been drawn
is the relationship not between two particular rectangles or coordinates,
but between the two parts of the step, the up and the over (the over part
being measured by the up part).The students go on to conclude that this
is another way to describe the steepness of the line: a measure. However,
this conversation is not enough. Ms. Gold asks them to summarize the
conversation in their notebooks (math journals). They had some difficulty
summarizing the interaction in their notebooks for the class because there
are two senses of multiplication in the conversation, as scaling and as a
ratio within sides. They had another, shorter conversation about this with
Ms. Gold a few minutes later:

T: So, then we said, we wanted to get from this [(1, 4)] to another point
on the line. Ryan said, well, as long you keep this, um, that one is
1/4 of the other one. Right?

Ryan: Yeah.
T: Alright? So, and then we looked at, and that comes right back to our,

oh, 4 to 1. Right? 
Lucas: Mm-hmm.
T: Up 4 over 1.
Lucas: Mm-hmm.
T: And so I asked you, so where is the multiplication? ‘Cause that was

the next part you told me, you have to, we could multiply.
Ryan: Well, Lucas said . . .
T: Ok, and I said, where’s the multiplication? And you said, right

here [the teacher traces the height and then the length of the step].
Up four over one, each time. Ok, so, this side, how much bigger is
this side than this side?

Ryan: Two times.
Lucas: Four times.
T: Four times. Four times.
Ryan: Ohhh, that’s, ohhh . . .
T: Four times.
Ryan: Ohhhhh!
Lucas: You don’t always have to do it by four.
T: No you don’t.
Lucas: So that’s why it goes . . .
T: Which goes back to . . .
Lucas: It’s the relationship between this and this [points to the two parts of

the step], not this and this [points to two of the rectangles].
T: Correct.

At the end of this conversation, Lucas seems to map between the equa-
tion and the graph. We suspect that Ryan’s “ohhhh!” also signifies this
relation.
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Second-Year Assessments

We halved the time allotted for instruction, and at the end of the instruc-
tional unit, we again interviewed students. We focus here on differences
that signaled significant improvements in student learning. First, the
non-whole rectangle dimensions were not difficult for most students;
only four students (28%) had to resort to bootstrapping representations to
locate these instances of rectangles during the sorting task. The over-
whelming majority of students moved fluidly between representations,
relying primarily on calculating ratios within instances by writing sym-
bolic expressions, and using the other systems of ratio as checks. Second,
most students (78%) spontaneously generated nonzero intercepts for the
nonsimilar group and wrote the corresponding equation. Only three
students continued to employ an internal ratio strategy for this group as
well, with the consequence that two of the three proposed a separate
group for each nonsimilar (LS = SS + 7) rectangle. Third, looking across
the tasks posed to students, no student interpreted the different systems
as unrelated. The predominant interpretation of the different systems of
representation was as redundant, even if during the course of learning
they were not originally so perceived. Fourth, the percentage of students
invoking the idea of a line as a locus of points to justify different senses of
infinity increased (from 25% to 73%). Fifth, when comparing the LS/SS of
two parallel lines (one similar, one nonsimilar), all but one student in the
second year pointed to the intercept as causing the difference between the
various ratios, whereas half of the first year class did not.

CONCLUSIONS

The conduct of this sequential design study suggests that spatial structure
serves as a potentially important springboard to algebraic reasoning. The
spatial structure of similarity provided a perceptual apparatus for algebraic
descriptions and served as bedrock for the development of representational
competence. Students came to see spatial relations as susceptible to alge-
braic description; algebra was a tool for describing equivalence classes of
figures compactly. Conversely, algebraic description prompted rethinking
the nature of space. Students originally perceived but several instances of
similar figures. Algebraic operations cued the development of new qual-
ities of this class: Figures were imagined as an infinite class by reasoning
about the nature and implications of a line in the Cartesian system. 

Developing representational competence is a habit of mind that sus-
tains mathematical reasoning in any field of endeavor. We were especially
impressed with students’ capacities for disciplining (Stevens & Hall,
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1998) their perceptions of the Cartesian system. When presented with a
line without the support of a grid or axes, or for that matter, any support-
ing context, many proceeded to provide the necessary elaboration. This
suggested an emerging sense of the line as an object in its own right. 

The conduct of this study also served as an important reminder of the
leitmotiv of designing a learning environment defined jointly by the
tasks posed to students, the mediational means available to them, and
the forms of argument privileged (here, generalization). Yet, all of these
elements of design are contingent on the activity of teaching, and there
were significant transitions in the tactics employed by the teacher to sup-
port students’ developing meta-representational competence. Although
a curriculum can juxtapose representational systems and even suggest
that students translate between them, the teacher’s activity created a dia-
logic space that made this feasible and even fruitful. Spatial structure
again played its role, because the teacher and the student could index
objects visually and mutually consider their properties. As shown in the
segments of classroom dialogue, symbols were hooked to visual percep-
tions and to gestures that traced imagined spatial structures, generating
common ground for teacher and students. The teacher improvised dur-
ing the course of the conversation to draw relations between slope and
similar figures, and students invented the notion of subdividing steps
while preserving ratio to arrive at a sense of infinite density of similar
figures. The teacher also showed thoroughly practiced pedagogical
moves as she helped students render a history of discovery in a way that
revisited coordinations among representations via ratio, and acutely
aware of the fragility of oral histories, she had students develop a textual
retelling.

Finally, we conclude with a brief comment about the nature of explana-
tion in design studies. Design studies are employed to test the feasibility of
new approaches to teaching and learning. Clearly, such a commitment gen-
erates contingencies among teaching and learning that cannot always be
reliably explained. But, by conducting comparative case analysis, a method
employed in other sciences (e.g., field biology), we can begin to trace pat-
terns of stability. For the approach documented here, we now have accu-
mulated several cases at different ages and grades (e.g., Kaput, 1999; Lehrer
et al., 2002). Each case supports the utility of co-originating algebra and
geometry and sustaining the interaction across multiple years and grades,
beginning in the primary grades and ideally sustaining the effort across
elementary school. Most suggest the important role that measurement can
play in developing knowledge of rational numbers. All suggest the impor-
tance of coupling sustained professional development with prolonged
looks at the development of mathematical reasoning.
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Early Algebra Is Not the Same
as Algebra Early

David W. Carraher
TERC

Analúcia D. Schliemann
Judah L. Schwartz

Tufts University

Many mathematics educators recognize that algebra has a place in the
early grades. But they can also identify with Russell’s (1967) remarks: 

The beginnings of Algebra I found far more difficult [than Euclid’s geome-
try], perhaps as a result of bad teaching. I was made to learn by heart: “The
square of the sum of two numbers is equal to the sum of their squares
increased by twice their product.” I had not the vaguest idea what this
meant, and when I could not remember the words, my tutor threw the book
at my head, which did not stimulate my intellect in any way. (p. 34)

To move algebra-as-most-of-us-were-taught-it to elementary school is a
recipe for disaster. If algebra is meaningless at adolescence, then why
should it be meaningful several years earlier? Why are increasing num-
bers of today’s mathematics educators embracing early algebra? What
guarantees that early algebra will not turn into lumps in the gravy, hostile
bacteria in inflamed tissue, excess luggage for our already overburdened
syllabi? What is early algebra, if it is not the algebra most of us were
taught?
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Early algebra differs from algebra as commonly encountered in high
school and beyond. It builds heavily on background contexts of problems.
It only gradually introduces formal notation. And, it is tightly interwoven
with the following topics from the early mathematics curriculum:

1. Early algebra builds on background contexts of problems. The idea that
rich problem contexts can support the introduction of algebra may
appear to undermine the goal of getting students to use formal
notation without having to “translate” the meaning to mundane
contexts. Why immerse students in nuanced discussions about
problem contexts if we want them to think ever more abstractly?
The justification for building on rich problem contexts rests on
how most young students (and many adults) learn. They do not
draw conclusions solely through logic and syntactical rules.
Instead, they use a mix of intuition, beliefs, and presumed facts
coupled with principled reasoning and argument. We discuss the
problem of contexts at length elsewhere (Carraher & Schliemann,
2002a; Schliemann & Carraher, 2002; Schwartz, 1996). We would
also like to draw attention to the insightful analyses of colleagues
(Smith & Thompson, chap. 4, this volume; Verschaffel, Greer, & De
Corte, 2002). In treating situations as one of the three defining
characteristics of mathematical and scientific concepts, Vergnaud
has made seminal contributions to the role of contexts in additive
and multiplicative reasoning (Vergnaud, 1982, 1994, 1996).1

Starting from rich problem contexts and situations, one hopes that
at some point students will be able to derive conclusions directly
from a written system of equations or an x–y graph drawn in a
plane. But what assures us that they will ever arrive at this point?
This is where the role of the teacher can be decisive. 

2. In early algebra formal notation is introduced only gradually. Young
students will not reinvent algebra on their own, and without a
certain degree of guidance they are unlikely to express a need for
a written notation for variables. Algebraic expressions need to be
introduced, but introduced judiciously, so as to avoid “premature
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1The somewhat vague expressions, additive structures, and multiplicative
structures are widely used among mathematics educators to encourage thinking
about arithmetical operations as subsuming far more than the computational rou-
tines. They would emphasize, for example, that a young student may learn to
multiply and divide long before showing a deep understanding of ratio, propor-
tion, rational number, and related concepts that comprise the multiplicative con-
ceptual field (Vergnaud, 1994).



formalization” (Piaget, 1964). Teachers need to introduce unfamiliar
terms, representations, and techniques, despite the irony that in
the beginning students will not understand such things as they
were intended.2 The initial awkwardness vis-à-vis new representa-
tions should gradually dissipate, especially if teachers listen to
students’ interpretations and provide students with opportunities
to expand and adjust their understandings.3

3. Early algebra tightly interweaves existing topics of early mathematics. It
makes little sense to append early algebra to existing syllabi.
Algebra resides quietly within the early mathematics curriculum—
in word problems, in topics (addition, subtraction, multiplication,
division, ratio and proportion, rational numbers, measurement),
and in representational systems (number lines and graphs, tables,
written arithmetical notation, and explanatory structures). The
teachers help it emerge; that is, they help bring the algebraic char-
acter of elementary mathematics into public view.

This chapter discusses these three distinguishing characteristics of early
algebra,4 drawing on examples from our longitudinal investigations of
four classrooms in an ethnically diverse school in the Greater Boston area.
From the second half of Grade 2 to the end of Grade 4, we designed and
implemented weekly early algebra activities in the classrooms. Each
semester students participated in six to eight activities, each activity last-
ing for 90 minutes. The activities related to addition, subtraction, multi-
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2Some might argue that symbols should only be introduced when students
know what they mean. Were this reasoning to be applied to the case of first lan-
guage learning, adults would never speak to newborns on the grounds that
infants do not already know what the words mean!

3We use representation in a generic sense here to include any expression of math-
ematical ideas, but especially those that are observable to others and not merely
private and mental. Students’ own representational forms include natural language
(“their own words”), diagrams, and written mathematical stories (although even
in these cases the student relies on linguistic and graphic conventions already
acquired through cultural transmission). Conventional representational forms in
mathematics are those sanctioned by modern mathematicians: graphs, tables, var-
ious types of written notation, and so on. Over time students will increasingly
work conventional representations into their expressive repertoires—they will
“make them their own.” A representational system (or symbol system) refers to not
only the forms themselves but also to associated underlying structure and
processes.

4Early algebra does not touch on certain advanced topics of algebra. But the
qualifier, early, alerts the reader to this, so there is no need to mention this as a
fourth characteristic of early algebra.



plication, division, fractions, ratio, proportion, and negative numbers.
The project documented how the students worked with variables, func-
tions, positive and negative numbers, algebraic notation, function tables,
graphs, and equations in the classroom and in interviews (Brizuela &
Schliemann, 2004; Carraher, Brizuela, & Earnest, 2001; Carraher & Earnest,
2003; Carraher, Schliemann, & Brizuela, 2001; Schliemann & Carraher,
2002; Schliemann et al., 2003). To highlight the nature of the progress
students can make in early algebra, we will compare the same students’
reasoning and problem solving at the beginning of Grade 3 and in the mid-
dle of Grade 4. We will show how mathematics educators can exploit top-
ics and discussions so as to bring out the algebraic character of elementary
mathematics.

FROM PARTICULAR TO GENERAL: THE
CANDY BOXES PROBLEM

To exemplify how young students make initial sense of variables and
variation in mathematics, we begin with our first lesson in one of the
classes from Grade 3. The students are 8 years old. In one of the classes,
David (the first author of this chapter and instructor) holds a box of can-
dies in each hand. He tells the students that:

• The box in his left hand is John’s, and all of John’s candies are in
that box.

• The box in his right hand is Mary’s, and Mary’s candies include
those in the box as well as three additional candies resting atop the
box.

• Each box has exactly the same number of candies inside.

He then invites the students to say what they know about the number of
candies John and Maria have. At a certain point, he passes around one of
the boxes so that students can examine it; rubber bands secure it shut and
students are asked not to open it.

What Students Focused On

Students invariably shake the box (Fig. 10.1), seeking to appraise its con-
tents. After having held and shaken the box, most make a specific predic-
tion, even though the instructor has not requested that they do so. One
student holds a box in each hand and concludes that the boxes hold
differing amounts of candy. Several others appraise the weight of the two
boxes. Another conjectures that there are no candies at all in the boxes.
David explains that he placed tissue in the boxes to muffle the sound and
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make guessing difficult; the students find this preventive measure amusing.
Eric ventures, with a gleam in his eye, that there is a doughnut in one of
the boxes—a comment his classmates find delightfully funny, perhaps
because it violates given facts David is trying to establish. David insists
that he put the exactly same number of candies in each box; he appeals to
the students to accept his word. The students appear to accept his claim
and to take pleasure in having raised reasonable doubts.

After 15 minutes of discussion, David asked the students to express in
writing what they knew about the amounts John and Mary had. If
students balked or stated that they did not know how many candies the
two had, David encouraged the students to show what they did know
and to show how they were thinking about the story. Fifty-six out of 63
children produced drawings. Two distinct foci emerged. 

A Single Instance. The first focus consisted in ascribing a particular
value to the amounts. Forty of the 63 children (63.4%) focused on a single
case. That is, they used drawings, labels, or prose to assign particular
numbers to the amounts John and Mary had. 

Figure 10.2 illustrates such a focus on a single case. In Erica’s drawing,
the candies are shown in a top row of a table;5 the respective owners, John
and Mary, are identified through drawings and labels in the next row.
Erica’s representation considers only one case or instance: the case of six
candies in each bag, giving John and Mary 6 and 9 candies, respectively.
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5It is curious that Erica organized her data in a table; normally a table is used
to capture the results of many cases.

FIGURE 10.1. Student shakes one of the candy boxes listening closely
to estimate the number of candies.



Erica also expresses the single case through the number sentences, “Six +
three = nine” and “������ + ��� = nine.”

Under questioning, Erica recognizes that there are other possible
answers:

[1] Darrell [interviewing Erica in class immediately after she pro-
duced her drawing]: Do you think there are any other guesses you
can make?

[2] Erica: Yeah.
[3] Darrell: Yeah? What are some other guesses?
[4] Erica: You can put seven, and you can have eight. You can have

more.

At the beginning of Grade 3, many students conceptualize the situation as
Erica does: Given indeterminate amounts, they assign particular values,
even though they realize they are hazarding a guess. 

An Indeterminate Amount “Keeps Options Open.” Twenty-three children
(36.5%) refrained from assigning values to the amounts of candies in the
box. Vilda’s annotated drawing (Fig. 10.3) illustrates this approach: “I thick
Mary’s have more den John because Mary’s have 3 more candy den John.
If you taek 3 She vill have the Same of John (sic).”

Although Vilda does not speculate on the amounts John and Mary
have, she states that the children would have the same amounts if three
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FIGURE 10.2. Erica's representation of John and Mary's candies.



were taken away from Mary. Several children simply stated in writing
that Mary had three more candies than John or that John had three less
than Mary, much as Vilda did. We considered these responses to be similar
insofar as they leave options open.

Occasionally, a student will attempt to explicitly represent the indeter-
minate amounts: In another classroom, Felipe (Fig. 10.4) chose to high-
light with question marks the fact that the amounts in the boxes are
unknown. When the teacher asked him to provide more detail, he ven-
tured a guess: “My guess for the candies is that their (sic) are 8.” Felipe’s
thinking nonetheless emphasizes the indeterminate nature of the amounts.
This is not quite the same as conceptualizing the amounts as variable
quantities, but a representation of an indeterminate amount is a place-
holder for the eventual introduction of a variable.

It might appear to be of no significance that a student expresses the
indeterminate nature of amounts. After all, the amounts were presented
by the instructor as indeterminate: There was “some amount” in each
box.6 However, students show restraint in deciding to leave the possibili-
ties open. And, as we shall see, the students who insist on leaving the val-
ues indeterminate provide an important opportunity for the teacher to
introduce new notational forms that will prove useful not only in this set-
ting but also in many other future discussions.
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66The relationship between the amounts was determined, but not the amounts
themselves.

FIGURE 10.3. Vilda leaves indeterminate the number of candies in the boxes.



Intervening to Shift the Focus and Broaden the Discussion

So far the class appears to be discussing a particular story about two
children and their candies. Yet, it is possible to conceive of the candy
boxes as a collection of many possible stories. The teacher hopes to grad-
ually move the focus of discussion toward algebra by capitalizing on this
shift in thinking.

Tables Draw Attention to Multiple Possibilities. Back in the original class,
David proceeds to summarize certain features of students’ representations
in a data table with columns for students’ names and the amounts they sug-
gested for John and Mary. Later, he adds an additional column for keeping
track of the differences between John and Mary’s amounts (see Fig. 10.5). 

Students who already made predictions in their representations merely
need to restate the amounts; some changed their responses as a result of
having a new hunch. Students who had not specified particular amounts
in their drawings are now asked to suggest possible values. 

It might seem that a prediction table would merely reinforce the
students’ natural tendencies to focus on a single case. Surely this is not the
aim of a lesson designed to elicit algebraic thinking among students, where
the emphasis should presumably be moving toward generalization.
However, listing the individual cases (students’ predictions) serves to
highlight multiple possibilities. Furthermore, issues of logical consistency
come to the fore under such circumstances. Both of these characteristics
are desirable in bringing out the algebraic character of the story.

242 CARRAHER, SCHLIEMANN, SCHWARTZ

FIGURE 10.4. Felipe's question marks explicitly represent the unknown
amounts in the candy boxes. The vertical lines drawn in the middle of each box

are the rubber bands that hold the boxes shut.



By listening to other students’ conjectures, all the students have the
opportunity to think more deeply about the problem. For example, Dylan
writes “5” in John’s column and “5” in Mary’s column as well. This leads
David to ask whether John and Mary could have the same total amounts.
Dylan has been thinking only of the amounts inside the boxes, without
taking into account the three extra candies Mary had on top of the box.
When Dylan realizes that column three should list the “total amount
Mary has,” he amends his answer to 8.

Students occasionally give answers that violate the given premises. For
example, Chris suggests that John has 7 and Mary has 13 candies (see Fig.
10.5). Several students notice the inconsistency and eagerly explain why
this cannot be the case. But, because Chris himself is not yet convinced,
David leaves Chris’s predictions in the table for the time being. When the
table is almost completed, David shifts attention to the differences in
amounts of John and Mary. Several students insist that the differences
have to be three. David tries to assume the role of a devil’s advocate
(Can’t John have 7? [yes] Can’t Mary have 13? [yes]. So, what’s the prob-
lem?). Students argue that even though they do not know what Mary and
John have, some answers (ordered pairs) are not right. Soon all students
appear to agree that, although John and Mary could in principle have any
amount, once an amount is assigned to one of them, the other amount can
no longer be anything; that is, it is no longer free to vary because the vari-
able has been constrained to a single solution. 
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FIGURE 10.5. A table of possible outcomes. Students' names are on the left.



So it is not the case that anything goes when values are indeterminate.
We don’t know how many candies John has. We don’t know how many
candies Mary has. Yet, it cannot be true, for example, that John has 6 can-
dies and Mary has 7 candies. By drawing attention to this, issues of a more
general nature begin to emerge.

LETTERS CAN NAME INDETERMINATE AMOUNTS,
SETTING THE STAGE FOR VARIABLES

Students who draw attention to the indeterminacy of the amounts offer
an excellent opportunity for instructional intervention. In another class-
room taught by David, Kevin writes that John has three candies fewer
than Mary without assigning values to either amount. Likewise, he
becomes silent when David asks him to state possible values for the
amounts of candy. When it is Matthew’s turn to predict a possible out-
come, he also balks. David recalls that Matthew, like Kevin, had preferred
not to make a prediction in his drawing. So he turns to Matthew, hoping
to introduce the algebraic convention that a letter can represent an inde-
terminate or a variable amount:

[5] Matthew: Actually well I . . . I well . . . I think without the three maybe it’s
. . . [having a change of heart] Yea, I pretty much don’t wanna make a
prediction.

[6] David [seizing the opportunity to introduce a new idea]: Okay, but let
me offer you an alternative and see if you’re willing to do this. . . . What
if I tell you, Matthew, that John has N . . . N pieces of candy. And N can
mean any amount. It could mean nothing. It could mean 90. It could
mean 7. Does that sound okay?

[7] Matthew [cautiously, without a lot of conviction]: Yea.
[8] David [writing N on the blackboard]: All right, so why don’t you write

down N. [Addressing the remaining students:] He’s willing to accept
that suggestion. 

[9] David [wondering to himself, “What will the students call Mary’s
amount?”]: Well, now here’s the problem, and this is a difficult problem.
Matthew, how many should we say that Mary has if John has N candies,
and N can stand for anything?

Several students suggest that Mary’s amount also be called N. This is not
unreasonable: after all, David had just told them that “N could stand for
anything.” However, this is going to lead to trouble.7 David prolongs the
discussion a bit more:
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7Clearly, N = N. But if the first N is 5, whereas the second N is 8, we produce
the bothersome expression, 5 = 8.



[10] Cristian [raising his hand with great energy, suggesting he has just dis-
covered something]: Oooh. Oooh!

[11] David [suspecting that Cristian is going to say “N plus three,” but hop-
ing to first give the other students more time to think about the prob-
lem]: Hold on Cristian.

[12] David: What do you think we should do? How would we call . . . how
would we call . . . if N stands for any amount that he happens to
have . . . okay . . . that John happens to have, then how much would
Mary have? You think she’d have . . .?

[13] Joseph: N.
[14] David: N?
[15] Joseph: Yes.
[16] Student: Yes.
[17] David: Well, if we write N here [on the blackboard, next to the N

assigned to John] doesn’t that suggest that they [John and Mary] have
the same amount?

[18] Several students: No.
[19] Briana [defending the use of N to describe Mary’s amount]: It could

mean anything.
[20] Another student: She could have any amount like John.
[21] David: Yea, it could be anything. I know just what you mean. But some

people would look at it and say it’s the same anything if you’re calling
them both N . . . Is Mary supposed to have more than John or less or the
same?

[22] Students: More.
[23] David: How many more?
[24] Student: Three more.
[25] David: Three more, so could . . . how could we write down “three more

than N” if N is what John has? How could we do that?
[26] Joey: Three . . . cause N could stand for nothing.
[27] David: It [N] could stand for nothing, but we’re telling you that we’re

gonna use it to stand for any possibility. 
[28] Another student: Nothing. 
[29] David [clarifying to that student]: Okay, it could stand for nothing.
[30] Joseph: N plus three.
[31] David: N plus three?
[32] Joseph: N plus three.
[33] David [amazed]: Wow! Explain that to us.
[34] Joseph [dazed, as if he had been speaking to himself]: Huh?
[35] David: Go ahead.
[36] Joseph: I thought, ‘cuz she could have three more than John. Write N

plus three ‘cuz she could have any amount plus three.
[37] David: So any amount plus three. So why don’t you write that down, N

plus three.
[38] Anne [a member of the research team]: Cristian had his hand up for a

long time too. I was wondering how he was thinking about it.
[39] David: Cristian, [do] you want to explain?
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[40 Cristian: I was . . . I was thinking the same thing.
[41] David: Go ahead, explain. You think the same thing as Joseph, N plus

three? [Cristian nods.] Why don’t you explain to us your reasoning and
let’s see if it’s just like Joseph’s.

[42] Cristian [exemplifying the general relation through a particular case]:
‘cuz if it’s any number, like if it’s 90.

[43] David [encouraging Cristian to continue explaining]: Yea . . . [44]
Cristian: You could just, like add three and it’d be 93.

[44] David: Yes. Yea, this is really, really neat. You guys are . . . are . . . What . . .
what should we call that . . . should we call that the “Joseph and
Cristian Rule?”

[45] Students: [laughter]

After mulling over the possible confusion engendered by the use of N to
designate both John’s and Mary’s amounts, and prodded by the teacher
to find a better way [9], Joseph and Cristian reached the conclusion that
Mary’s amount should be called “N plus three” [32–44]. This is a signifi-
cant step in the direction of using algebraic notation. Joseph and Cristian
are using N not simply as a label.8 In appending the expression “+3” to the
“N,” they are effectively operating on N.

Summary of Findings From the Candy Boxes Problem 

By asking the students to make predictions about numbers of candies, we
may have encouraged some of them to construe their task as having to
guess accurately. However, this same activity served as an opportunity to
discuss impossible answers, such as when a student suggested that child
had 8 candies and the other 10 candies. As the prediction table was
completed, students could try to describe what features were invariant
among the (valid) answers. In a sense, the data table encouraged students
to generalize.

The Candy Boxes task is ambiguous, that is, subject to alternative inter-
pretations. It calls to mind a particular empirical state of affairs as well as
a set of logical possibilities. The former empirical viewpoint gains promi-
nence when one wonders how many candies are actually in the box. The
logical view emerges as children attempt to find multiple solutions and
express this in some general way. 

Each viewpoint has its own version of truth or correctness. Empirically,
there is only one answer to the issue about the number of candies John and
Mary have. By this standard, only students who ascertain the precise
numbers of candies in the boxes can be right. However, the logical standard
to which algebra aspires treats as valid all answers consistent with the
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information given, regardless of whether they correspond to the actual case
at hand. Jennifer expressed this point of view clearly at the end of the lesson
when asked to say who had given correct answers: “Everybody had the
right answer . . . Because everybody9 . . . has three more. Always.”

Some readers may regard such ambiguity as merely a source of confu-
sion that should have been minimized. Yet it turns out to have advan-
tages. The story’s ambiguity allows teacher and students to hold a
meaningful conversation even though they may have markedly different
initial interpretations. 

By engaging in such conversations, students can begin to appreciate the
tension between realistic considerations and theoretical possibilities
(Carraher & Schliemann, 2002a; Schliemann & Carraher, 2002). This tension
arises whenever one uses mathematics to model worldly situations
(Carraher & Schliemann, 2002b). For example, one can ask whether a host
of a party will ever run out of refreshments if, starting with a full liter, she
distributes half to the first guest, half of what remains to the second guest,
and so on (Stern & Mevarech, 1996). In the physical world, the drink even-
tually runs out when a guest receives the last drop (or molecule). In the
world of mathematics, the host can serve refreshments without ever run-
ning out because the remaining amount, (1/2)n liters, never reaches zero
liters no matter how great n becomes. Rather than regard this as a short-
coming of the problem, one can treat it as a useful illustration of how mod-
els serve as simplified approximations that break under certain conditions.

The results from the Candy Boxes task suggest that young students
may be able to shift their focus from individual instances to sets and their
interrelations. In this new conceptual framework, the mathematical object
is no longer the single case or value but rather the relation, that is, the
functional relationship between two variables.

But we should be careful not to overinterpret promising first steps. The
Candy Boxes lesson represents the beginning of a “long conversation
about N” that will extend over several months and years and in a wide
variety of contexts. Let us revisit the students 1 1/2 years later to see how
their thinking changed in the ensuing period. 

COMPARING FUNCTIONS: THE WALLET PROBLEM 

The following episodes come from a unit we implemented at the beginning
of the second semester of fourth grade in the same four classrooms. This
unit was an extension of the children’s work on functions. Once again, we
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9By the time Jennifer said this, all the predicted outcomes in the table were
consistent with the information given.



asked them to provide us with a look at how they understood a situation
that might be construed in a variety of ways. Here the students, now 10
years old, and their instructor considered the following situation: 

Mike has $8 in his hand and the rest of his money is in his wallet;
Robin has exactly 3 times as much money as Mike has in his wallet.
What can you say about the amounts of money Mike and Robin have?

In each classroom, we projected the problem with an overhead and asked
students to read the problem out loud. Sometimes, while the projector
was off, we asked students to recount the story in their own words. 

At the outset, two opinions typically arose. Some students took the
view that Robin has three times as much money as Mike. Others insisted
that Robin had only three times the amount in Mike’s wallet. After
discussing the various interpretations (and re-reading the story out loud
several times), the students reach a general consensus around the second
interpretation. We then asked the students to provide us with drawings
and explanations showing their understanding of the problem, much as
we did for the Candy Boxes task. By this time, the students were accus-
tomed to such an open-ended request and they quickly went to work
making representations. 

From Candy Boxes to Wallets: The Evolution of
Children’s Representations 

In the intervening 18 months, the students’ thinking has undergone remark-
able transformations. Consider, for example, the case of Lisandra. When
asked to represent the Candy Boxes at the beginning of grade 3, she essen-
tially drew pictures showing specific amounts of candies (see Fig. 10.6); she
also made a statement about the relation between the amounts.10 

But when asked to represent the Wallets problem, her drawings take on a
very different role. She draws three wallets for Robin to convey the notion
that Robin has three times as much as Mike has in his wallet. Even more strik-
ing, she has written the letter N on each wallet. Finally, she has expressed
Mike’s total as “N + 8 = �” and Robin’s amount as “N × 3 = 3N.” 
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10Lisandra’s Candy Boxes drawing (Fig. 10.6) is actually difficult to classify. Is
she leaving the amounts indeterminate? Or is she trying to depict specific
amounts? She stated that Mary had three more than John, but she has drawn 17 in
John’s box and 13 in Mary’s (not counting the 3 candies on top of her box).
Regardless, there is little doubt that her depiction of the amounts in the wallet
problem (Fig.10.7) is considerably more advanced.



Lisandra’s progress is not exceptional. In fact, most students (74.6%, or
47 of 63) made substantial progress between grades 3 and 4. Like Lisandra,
39 of the 63 students (61.9%) provided general, algebraic representations of
the Wallet problem. Here is a breakdown of the algebraic answers:
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FIGURE 10.6. Lisandra's representation of the Candy Boxes Problem at the
beginning of Grade 3.

FIGURE 10.7. In the middle of Grade 4, Lisandra represents the amounts of
money Mike and Robin have. Note the symbolic use of the wallets with N dollars.



1. Conventional notation: Sixteen of the children (25.4%) represented
Mike’s amount as N + 8 and Robin’s as N * 3 or as an equivalent
expression such as N + N + N or 3N (in some cases they used w or
r, instead of N). We included Lisandra in this group; her representa-
tion also exhibited characteristics associated with iconic variables.

2. Implicit operations: Fifteen children (23.8%) used algebraic notation
but omitted the + sign in their account of Mike’s amount; in other
words, they simply wrote “N 8” (or “N $8”). However, in the case
of Robin, only two children left the operation implicit writing “N
N N.” The others chose to write N × 3 (nine children), 3N (two
children); and N + N + N (two children).

3. Iconic variables: Eight of the children (22.7%) used wallet icons
instead of a letter. Some of these used conventional signs for addi-
tion and multiplication; others used the implicit operations
described previously under implicit operations. 

Approximately one student in eight (12.7% or 8 of 63), produced
drawings or tables with multiple possibilities for the amounts (see
Fig. 10.8). This type of representation highlights variation and covariation.
Sometimes considerably more is conveyed. For example, Erica’s compu-
tations on the left and margins highlight what varies (the amount in the
wallet) and what remains invariant (in Mike’s case, the $8; in Robin’s case
the “× 3”).
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FIGURE 10.8. Erica decided to draw a table showing multiple possibilities for
the amounts Mike and Robin had. N.B. The lines were provided by her, not

given as part of the problem.



Fewer than one in four students (22.2%) represented the amounts
through a single possibility or instance. This compares to nearly two
thirds of the students (63.5%) in the lesson given at the beginning of
Grade 3.

Figure 10.9 shows how students’ thinking changed over the 18-month
period. There was a dramatic shift in focus. At the beginning of Grade 3,
students thought of the Candy Boxes word problem as a story about two
children who had either specific or indeterminate amounts of candies. By
the middle of Grade 4, most of the children conceptualized the problem
as a story involving multiple possibilities. Many of those (39 children, or
62.2%) used algebraic notation to capture the functional relationships
among the variables. We know from many other studies, including our
own, that fourth-grade students in the United States do not show this sort
of shift in thinking without having learned about algebra; they do not
invent such things on their own.

This shift in conceptualization allowed the students to further deepen
their understanding and technical mastery of mathematics.

Intervening to Enrich the Discussion

Algebraic Table Feaders Identify Functions, Streamlining Thought. A week
later, David reviewed the wallet problem by having the students help fill in
a three-column table projected onto an overhead screen at the front of the
class. The original column headings were: “In Mike’s Wallet,” “Mike (in
wallet and hand),” and “Robin.” Because the students had discussed the
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FIGURE 10.9. The growth of students' thinking over 1 1/2 years.



problem and provided their personal representations in the prior class,
David expected this to be a routine task intended merely to refresh their
memories before he would turn toward the graphing of the functions.
However, he noticed that the students repeatedly asked to be reminded
about the details of the word problem (What was Michael holding in his
hand? What did Robin have?). Once an amount was suggested as the value
in the wallet, $0 for instance, the students appeared to need to reconstruct
in their minds the situation involving the story’s two protagonists. To expe-
dite the process, David added algebraic headers above the original headers:
“W,” “W + 8,” and “3W,” corresponding respectively to the independent
variable, Mike’s function, and Robin’s function (Fig. 10.10).

These short inscriptions had a noticeable effect on the collective activity
of filling in the table. Once the algebraic column headers were inserted into
the table, students were able to quickly supply the values for Mike’s and
Robin’s amounts, given a value for the independent variable, W. In explain-
ing their reasoning, it became clear that they no longer needed to think
through the problem by imagining Mike’s holding $8 in his hand, with the
rest of the money remaining in his wallet; similarly, they didn’t have to
reconstruct Robin’s amount by parsing the story once again. To obtain
Mike’s total, they simply added 8 to the value of W in column 1. To obtain
Robin’s total, they simply multiplied the value of W by 3. Thus, the algebraic
expressions served as more than column labels. Students used them as
cognitive mediators for producing output values for the functions without

252 CARRAHER, SCHLIEMANN, SCHWARTZ

FIGURE 10.10. The table discussed by the whole class (via overhead projector).
Note the use of algebraic notation for column headings.



having to concern themselves with the situation-specific meaning underlying
the computations. This procedure is considerably more efficient. It is
also very different: Using it, students can temporarily disregard the story
problem, instead focusing on, and operating on, the written symbols. 

This shift, away from semantically driven and toward syntactically dri-
ven problem solving, does not signal the end of semantics. Those who use
mathematics to model worldly situations (i.e., engineers, students,
applied statisticians, scientists, and just plain folks, as opposed to pure
mathematicians and statisticians) cannot consign semantics and back-
ground contexts to the trash bin, because they continue to have important
roles in mathematics. Nonetheless, the word shift is appropriate here
because young students are gaining familiarity with a domain of mathe-
matical thinking where there can be considerable (and meaningful) infer-
ence making that does not ask for immediate translation back to
mundane reality (Resnick, 1986).

Graphs Highlight Covariation. The students completed the table of
values on individual worksheets. David guided them in plotting Mike’s
total for the cases when the wallet holds $0, $1, $2, $3, and $4; they also plot
the total values for Robin when Mike’s wallet contains $0, $1, and $2. Figure
10.11 shows a (poor quality) picture of the projected image at the moment
the following dialogue starts. The x-axis was used to represent the amount
in Mike’s wallet. The y-axis was used to represent the total amount.
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FIGURE 10.11. Mike's and Robin's amounts plotted as a function of W, the
amount in Mike's wallet.



A student has just plotted the point (2, 6), corresponding to the case
where Mike’s wallet contains $2 and Robin’s total is $6: 

[47] David (drawing attention to the colinear points that are beginning to
map out two broken lines, one for Mike’s and the other for Robin’s
amounts of money as a function of W): What’s happening to these
lines? Does anybody notice anything happening? They don’t look par-
allel to me. Yeah, William? 

[48] William [referring to the increments as one proceeds rightward]: That
Mike is going one by one and uh, Robin is going three by three.

[49] David: Yeah. Robin is going three by three. Can you show us where the
“one by one” and “three by three are,” William? Cause people might
not understand what you mean by that. Where is the one by one that
you see?

[50] William [pointing to the line representing Mike’s amounts]: Like uh,
Mike’s not, see, he’s going one more up.

[51] David: He goes one up. And then next time he goes one more up, like
he goes from six, I’m sorry, from eight to nine to ten to eleven and then
to twelve. And what’s happening with, uhm, Robin?

[52] William: She [Robin] starts at zero. She goes three and then up to six.
[53] David: Ok. She’s only going up by threes.

William appears to be describing something like the slopes of the two
lines according to the size of the increments by which they grow [48–52].
When it is time to plot the point (4, 12), for Robin’s function, David asks
the class:

[54] David [ingenuously]: Wait a minute, but I thought we already used up
that point [The point (4, 1) was contained on Mike’s graph]. Can I put
another one on there? Can I give the same point to Robin that we give
to, to Michael?

[55] Student: Yeah.
[56] Erica: Yeah, ‘cuz on number four they were even.
[57] David: Oh, they’re even. So how do you know that they’re even by

looking at the graph? How do you see that they’re even? They all look
different to me. But how do you know that they have the same amount
of money?

[58] Erica: Cause on, on number four they’re like, in the same place.
[59] David: The same place? Yes, they are in the same place. Ok. 

The realization that the two lines cross when “they are even,” expressed
by Erica [56] and by other students, is an important step toward equations.
It is also a clear example of how the students can interpret the graph in
terms of the word problem, that is, to attribute semantics of quantity
(Schwartz, 1996) based on the syntax (Resnick, 1982) of the graph.
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The children then move on to complete their tables of possible values
and the corresponding graphs. This was easily achieved and, at the end
of the lesson, in the four classrooms we worked with, 62 of 63 students
(98.4%) completed the table successfully. Thereafter, the students com-
pleted the graphs on their own worksheets, referring to the values they
had entered in their function tables: Fifty-seven (90.5%) students correctly
plotted Mike’s and Robin’s values.

Graphs Can Clarify Tables and Vice Versa. As they finished their work,
Anne, one of the researchers present in the class, asked Jessie to explain
his graph: 

[60] Anne: Ok. What do you notice about that graph?
[61] Jessie [Focusing on the intersection of the two graphs]: That it crosses

over here.
[62] Anne: Can you explain why?
[63] Jessie: Because over here, in the table, it’s four and it’s twelve, twelve,

so they’re equal. And then over here it’s four and then over here, that’s
why they cross. 

[64] Anne: That’s why they cross because what?
[65] Jessie: Cause they are equal in the table.

This is a clear example of what some authors (Brizuela & Earnest, chap.
11, this volume) refer to as navigating between diverse representational
forms or coordinating diverse representations: 

[66] Anne: Ok. What happens down here in the graph? Who has more
money on this part of the graph?

[67] Jessie: Uhm, Mike.
[68] Anne: How do you know? How does the graph show that?
[69] Jessie: Because, uhm, Robin’s down here and then Mike’s all the way

up there.
[70] Anne: And then what happens after they meet?
[71] Jessie: Robin goes higher.
[72] Anne: So what does that mean?
[73] Jessie: That Robin gets more money.

Prompted by Anne’s questions, Jessie also makes use of the convention
that, in a graph, “higher means more” and that in the particular context
they are working with it means “more money” [69–73]. Other children
provided similar explanations as they were interviewed in class and
during the whole class discussion that followed.

Next is another case where a student used the table as a mean for
verifying her analysis derived from the graph:
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[74] Anne: How much do they have when they each have the same amount?
[75] Lisandra: Twelve.
[76] Anne: Twelve. Then what happens after that?
[77] Lisandra: Uh, they get different.
[78] Anne: What?
[79] Lisandra: They get different, I mean—
[80] Anne: They get different. Who’s gonna have more money after?
[81] Lisandra: Uhm, I think . . .

Here Lisandra flips back to the page showing her table, carefully inspects
it, then turns back to the graph and further inspects the lines:

[82] Lisandra: Uhm, Robin [will have more money after they each have the
same amount].

[83] Anne: Robin. How does . . . How do you know?
[84] Lisandra: Cause Robin’s all they way up here [showing the highest

point drawn on Robin’s line].

SOLVING EQUATIONS: THE WALLET
PROBLEM REVISITED

Because the Wallet Problem involves the comparison of intersecting func-
tions, it is suitable for delving into equations. Nonetheless, it is important
to realize that the problem was not originally put forth as an equation.
Doing so would have subdued the functional relations we wished to
emphasize. This is easily understood by considering two distinct inter-
pretations of equation w + 8 = 3 × w. 

A Numerical Interpretation of the Equation 

One might construe the equation, w + 8 = 3 × w, as an equality of the left
and right terms, each of which stands for a single number (or measure). If
it turns out that the number on the left is the same as the number on the
right, then the equation is true. If the number on the left is different from
the number on the right, then the equation is false. We can refer to an
unsolvable equation as indeterminate. 

A Functional Interpretation of the Equation 

There is a strikingly different way of thinking about an equation, namely,
as the setting equal of two functions. This is the interpretation of equations
we build toward throughout the early algebra instruction. In this
framework, w + 8 is a function that is free to vary (take on diverse values)
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within a specified domain,11 say, the non-negative integers; 3 × w is a
different function, presumably in the same domain. 

Setting the two functions equal can be expressed by the following
equation written in standard symbolic notation: w + 8 = 3 × w. What does
this mean? What consequences do setting the functions equal have?

The equation w + 8 = 3 × w is true only for the case that w = 4. This is the
case when the functions “are even” [56], when “they are equal in the table”
[65], when they (the graphs) “cross” [63] or are “in the same place” [58],
when they “have the same amount” [74], and so on. Otherwise, the equa-
tion is not true, the graphs separate, “they get different” [77], and so on. In
these latter cases, an inequality such as 3 × w > w + 8 holds [see 80–84]. 

It is consistent with the present view that the letter a in the equation, 5
+ a = 7, represents a variable, not a single value. The equation is true only
when a = 2. But a is still a variable.

Likewise, the equation b = b + 1 is a perfectly sensible equation, even
though there is no value of the variable, b, for which the equation is true.

This all may appear to be unnecessary mental gymnastics, but holds a
number of important implications for mathematics education. For one
thing, it implies that there is no need to treat unknowns and variables as
fundamentally different. We prefer to think of an unknown as a variable
that for some reason or other happens to be constrained to a single value.
This is precisely what happens to w when w + 8 is set equal to 3 × w. The
equation holds only for certain values of w—actually, only one value. It
does not transform w from a variable into a single number or instance.

In the example that follows, we invited the children to consider the case
where Mike and Robin have the same total amounts of money. The children
already knew that this corresponded to the case where Mike’s wallet had
$4 in it. Accordingly, they already knew the solution to the equation before
they were asked to solve it. So, at best, working with the equation would
appear to offer them no more information. However, the students still had
much to learn about how to draw inferences in a new representational sys-
tem, and it is in this spirit that we introduce the next section.

Setting 8 + W Equal to 3W

After discussing the tables and the graphs, David writes the equation “8 + w
= 3W” on the blackboard and asks one student to represent Mike by holding
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11For most young children, the domain will be the non-negative integers, which
is the set of natural numbers including zero. Many adults will by default consider
the rational numbers (those that can be expressed as a/b where a, b are integers
and b is not zero), or at least the non-negative rationals, to be the default domain.
Those with advanced training in mathematics tend to treat real numbers (irra-
tionals and rationals) as the default domain.



a 3 × 5 card on which $8 was written and another on which “W” was writ-
ten to represent the variable amount in Mike’s wallet. Another child, play-
ing Robin, is given three cards to hold; each one has “W” written on it. In the
ensuing discussion, David sometimes mistakenly addressed the two actors
by their actual names. This did not appear to be a source of confusion for the
students. So in the transcription that follows we have replaced the children’s
real names with Mike’s and Robin’s names to facilitate reading:

[85] David: If these are equal, if the money here in his hands is equal to, alto-
gether, is equal to all the money that she has, do you know how much
money is in the wallet? [Hoping to find a volunteer] Do we have any
Sherlock Holmes here?
[86] Students: No.
[87] David: Jacky?
[88] Jacky: Four.
[89] David: And how do you know?
[90] Jacky [thinking of Robin’s case]: Because uh, four times three is 12.
[91] David: Four times three is 12? And also . . . So three times four is 12 and?
[92] Jacky [realizing that he it needs to work for Mike also]: Eight plus four is 12.
[93] David: Eight plus four is 12.
[94] David: So that’s the only way that, that they can have the same amount? 
[95] Student: Mh-hm.

They continue:

[96] David [aiming to simplify the equation by eliminating like amounts for
each actor]: . . . Can I have them spend some money?

[97] Students: Yes.
[98] David: Ok. I want Mike here to spend everything that’s in his wallet.

What should I do with the amount that he has?
[99] Student: Take away w.
[100] David [taking the “W” card from “Mike’s” hand]: Take away the w.

You spent it. Thank you. 
[101] David: I picked your pocket, Ok? Just for fun. Are they equal now? Do

they have the same amount of money?
[102] Students: No.
[103] David: Well, I wanna keep them equal. How can I keep them equal? 
[104] Students: Take away Robin’s.

It is not immediately clear to the students how much should be taken from
Robin, so that her amount will be equal to Mike’s diminished amount: 

[105] Students: Take away all. 
[106] David: Take away all three from Robin? [David takes away her three

“wallets”] You think they’re equal now? [Unclear what the students
responded.]

[107] Students [laughing]: No . . . No . . .
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[108] David: He’s got $8. She’s left with nothing. 
[109] Students: Take, take—
[110] Student: Just take two away.
[111] David: Just take two away? I took one [David means one W, but this is

ambiguous] away from him when they were equal, so what should I
do to [Robin]? 

[112] David: I’ll go back, remember what I did. I took away his wallet, but I
wanna do the same thing to her so that they stay equal. 

[113] David [after returning all the cards to “Mike” and “Robin,” who have
8 & W and W & W & W, respectively]: They’re equal now, right? I told
you that they’re equal. So I took away this [showing the W card in
Mike’s hand]. What should I do to Robin’s money?

[114] Student: You take away two.
[115] David: How much did I take away?
[116] Student: Two.
[117] David: But I took away one W from him, why should I take double

from her?
[118] Student: Because she—
[119] Student [Still trying to make sense, forgetting that, although Robin has

more cards, she and Mike are said to have the same amount of money]:
She has more to loose.

As the discussion proceeds they finally agree on what to do to keep
Robin’s amount equal to Mike’s:

[120] David [capitalizing on the fact that the students already know the
solution to the equation]: Hold on. How much is in [Mike’s] w? 

[121] David: They’re equal, remember? They’re equal. So how much do we
know is in the wallet?

[122] Nathan: Four.
[123] David: That’s right, Nathan. Does everybody agree there’s $4 here?
[124] Students: Yes.
[125] David: Ok, cause that’s the only way they’re equal. So how many dol-

lars am I taking away from him?
[126] Student: Two.
[127] Students: Four! 
[128] David: $4, Ok? I just took $4 from him. So how many dollars do I have

to take from her?
[129] Student [It is possible there is a momentary confusion of dollars and

cards; but this doesn’t explain the answer, “two”]: Two. One. Four 
[130] David: I have to take the same amount!
[131] Students: One! One!
[132] David: One dollar?
[133] Students [finally getting their referent straight]: One wallet! One w!
[134] David: Ok, one wallet. Did I take the same amount away from each of

them?
[135] Students: Yes.
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[136] David: Ok.
[137] Anne: How do you know that?
[138] David: Did I? I took how many dollars away from Mike? How many

dollars did I take away?
[139] Students: Four.
[140] David: And how many dollars did I take away from her?
[141] Students: Four.
[142] Student: She has the same amount cause I can see it in her hands.
[143] David: . . . so [Mike] has $8 and [Robin] has . . .
[144] Student: $8.
[145] David [There would be nothing to “solve” if w is removed from the

conversation, so he insists on referring to what is actually written on
Robin’s remaining two cards.]: 2w. 

[146] David: Can you tell me what w has to be equal to?
[147] Student: Four, cause four plus four is eight.

A New Equation: 100 + W = 3W

David repeats the same process now with a different function. His aim is
to put the students in a situation where they do not already know the
answer. He writes the equation 100 + w = 3w on the board. He explains
that the situation is now completely different. Then he hands William a
“100 card” and a “w card.” He hands Nancy three “w cards.” Now the
students are dealing with an equation for which they don’t know the solu-
tion. After some discussion, the teacher recommends that they take away
one “w card” from each student: 

[148] David: Now, they’ve still got the same amounts cause we took away
the same amounts from each of them. 

[149] Students: Oh! Oh!
[150] David: Oh. Oh. William, go ahead.
[151] William [realizing he can now infer the amount in each “w card”]: Uh,

Nancy has uhm, 50 each in w.
[152] David: Really? So how much is Nancy holding altogether?
[153] William: A hundred.
[154] David: And how much is he [William] holding?
[155] William: A hundred.

Jessie’s Representations

When David asks, “Did anybody else realize that it was fifty?,” Jessie
shows (Fig. 10.12) and explains how he solved the problem in writing: 

[156] David: Jessie, how did you do it? 
[157] Jessie: Three ws stand for 100. 
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[158] David: I’m sorry, three? 
[159] Jessie (showing his drawing): Three ws and I crossed out a w.
[160] David (explaining to the whole class): He crossed out a w. That was

like taking away the w. This is a really, really nice way of doing it. He
wrote w, w, w, and that was to stand for what Robin has, right? And
then you wrote 100 and w, to stand for what Michael has. You took
away a w from each of them, and you were left with two ws and 100.
And if two ws is $100, each w has to be equal to . . . $50.

Jessie’s written work shows that he understands how to solve an equation
that has sprung from the setting equal of two functions. But this is also the
case for students who have managed to solve the equations in the form of
index cards and statements, a point we shall soon revisit.

ALGEBRA IN EARLY MATHEMATICS

Reprise: Early Algebra Is Not Algebra Early

We noted at the outset that early algebra is not the same as algebra
early. Early algebra builds on the background contexts of problems, only
gradually introduces formal notation, and tightly interweaves existing
topics of early mathematics.

Both the Candy Boxes and the Wallet lessons immersed students in par-
ticular background contexts for which they attempted to describe the relation-
ships between physical quantities and ultimately to make mathematical
generalizations. As the conversations progressed, we gradually introduced
formal representations (tables, graphs, and algebraic symbolic notation)—
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FIGURE 10.12. Jessie's representation of the 3w = 100 + w and
subsequently 3w − w = 100 + w − w.



where possible, as extensions to students’ own representations. Algebra
served as a thread that weaves through and helps establish tight bonds
across diverse topics (arithmetical operations, variables, sets, additive dif-
ferences, composition of quantities) and representations (tables, diagrams,
number lines and graphs, verbal statements, that written symbolic notation). 

Now let us shift our attention to the kinds of reasoning that early
algebra calls for. As we shall see, it engages students in a special kind of
generalization.

Deduction Cannot Be the Whole Story

The very idea of a science of mathematics seems to raise an insoluble con-
tradiction. If this science is deductive only in appearance, from where does
its perfect rigor come—a rigor that no one would deny? If, on the other
hand, all the propositions mathematics puts forth can be derived from each
other through formal logic rules, will mathematics not be reduced to an
immense tautology? (Poincaré, 1916/1968, p. 31, translated by the authors)

Mathematics is not entirely deductive. Sometimes it involves thinking
about unspoken premises. Sometimes it involves conjectures.

UNSPOKEN PREMISES

Consider the statement that arose in the context of the Candy Boxes prob-
lem: “It cannot be the case that John has a total of 6 candies whereas Mary
has a total of 13 candies.” At first glance, this statement would appear to be
necessarily true, given the information that Mary has three more candies
than John. But this ignores the fact that students need to think about unspo-
ken premises. The students had to disregard, for example, the possibility
that the instructor had misled them or made a mistake in loading the candy
into the boxes. They further had to assume that the number of candies put
into the box remained invariant (e.g., none fell out or melted).

As students were passing around the candy boxes for inspection in one
of the classes, Joey, a student, accidentally dropped one of Mary’s loose
candies onto the floor where it shattered. David only noticed the broken
candy several minutes later; the shattered pieces could be easily seen
through the candy’s transparent protective wrapping. Joey admitted
apologetically that he had accidentally dropped the candy. He seemed
concerned that David, the teacher, might be upset.

After assuring Joey that this caused no harm, David asked Joey
whether this made a difference for the discussion they were having about
the amounts of candies. Keep in mind that the boxes still had not been
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opened. Joey reflected for a moment, and then said that Mary had more
candies than before. This prompted immediate denials by several
students. Others sided with Joey. After giving the matter more thought,
Joey concluded that the amount had not changed because if he were to
put the shards back together again, they would yield the original amount. 

It may appear that conservation of matter cleared up Joey’s confusion.
But the class discussion had been focusing on the number of pieces with-
out regard to differences in size. By this criterion, Mary arguably had
more candies after the candy shattered. Or was the real issue the weights
of the candies? If so, what does it mean for two weights to be equal if one
only measures weight within a certain margin of error? 

Whenever mathematics is used to make sense out of data,12 decisions
need to be made about the premises that will be honored or disregarded.
Even when these matters are settled, decisions need to be made about the
mathematical tools useful for making sense of the data. Deductive logic can-
not settle all of these issues of modeling because matters of usefulness, cost,
and fit depend on human judgment. Furthermore, context-specific consid-
erations may constrain a problem’s domain and co-domain. Mathematics
education cannot avoid these issues. On the contrary, it needs to raise their
profile so that students can assess their germaneness to problems at hand. 

CONJECTURAL GENERALIZATION

Mathematicians . . . always strive to generalize the propositions
they have obtained, and . . . the equation we have been using, 

a + 1 = 1 + a

serves to establish the following equation,

a + b = b + a 

WHICH IS DEMonstrably more general. Mathematics thus proceeds
just like the other sciences, namely, from the particular to the
general. (Poincaré, 1916/1968, p. 42, translated by the authors,
equation captions added)

Poincaré certainly knew that no amount of deduction would justify the
leap from Equation A to Equation B. In fact, this is precisely his point:
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Mathematicians look for opportunities to generalize even when not
entitled by the laws of logic. 

Now let’s imagine that Poincaré had begun with a case involving no
variables:

7 + 1 = 1 + 7 

But why stop here? By focusing on each side of the equation, we notice
that 7 + 1 can be expressed more generally as a + 1, which can in turn be
expressed more generally as a + b. Thus, a numerical expression can be
regarded as a particular instance of a function. More boldly, any arith-
metical statement can be regarded as a particular instance of a more
general, algebraic statement and expressed as such through the notation
of functions. Any situation involving arithmetic affords an opportunity
for thinking about algebraic relations.

The generalization of interest here consists in treating an instance (e.g., 7
+ 1) as a case of something more general (e.g., a + b). We refer to this as con-
jectural generalization to highlight its nondeductive nature and its relevance
to the formulation of mathematical conjectures. The scope widens consid-
erably as variables replace particular values. Attention shifts from number
operations to functional relationships. The new, yet familiar, notation belies
the profound shift that has taken place. This is precisely the sort of shift we
attempted to promote among our students throughout the Early Algebra,
Early Arithmetic Project (e.g., Carraher, Brizuela, & Earnest, 2001; Carraher,
Schliemann, & Brizuela, 2001; Schliemann, Carraher, & Brizuela, 2001, 2007).

Because we worked with indeterminate amounts, the tasks can be
interpreted at various levels of generality. This is curious. Mathematics is
widely acclaimed for its precision, rigor, and clarity. But ambiguity can be
an important resource in teaching and learning. Working algebra success-
fully into the early mathematics curriculum often hinges precisely on the
deft exploitation of ambiguity in problems.

Functions Enable the Shift to Algebra

We have noted how functions such as a + 1 and a + b bring to light the gen-
eral, algebraic character of elementary mathematics. We are not the first to
note the critical role of functions. A. Seldon and J. Seldon (1992) drew atten-
tion to the integrative role functions played in the history of modern math-
ematics in the introduction to an important work about the suitability of
functions as an organizing concept in mathematics education (Dubinsky &
Harel, 1992). And Schwartz and Yerushalmy (1992, 1995) developed a broad
middle and secondary mathematics curriculum centered around functions.

Although there is general agreement that algebra should become part
of the elementary school curriculum (National Council of Teachers of
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Mathematics, 2000; Schoenfeld, 1995), there are varying views regarding
the most promising approach for integrating algebra into the early math-
ematics curriculum. Some have proposed generalized arithmetic (Mason,
1996); others focus on the representation of quantities and the solution of
equations (Bodanskii, 1991). Still others have defended pluralism on the
grounds that no single approach can do justice to the range and complex-
ity of algebra (Kaput, Blanton, & Moreno, chap. 2, this volume).

We would claim that functions are special and deserve a careful look. All
issues of generalized arithmetic can easily be subsumed under functions,
but the converse is not true. (The Candy Boxes and Wallet problem are two
cases in point. So are most issues from geometry.) Functions are at home in
pure mathematical endeavors such as number theory, but they are equally
at home in applied mathematics, science, engineering, and cases where
modeling and quantitative reasoning are critical. Functions even provide
the tools for data analysis and statistics. Pluralism has a certain appeal, and
we would be the last to argue for a “one-size-fits-all” approach to mathe-
matics education. Nonetheless, the topic of functions merits a top spot as a
general organizing theme for early mathematics.

It is nothing short of remarkable that the topic of functions is absent
from early mathematics curricula. Although the concept of function
arrived late in the history of mathematics, we are finding that students
can work with and understand functions at surprisingly early ages. We
suspect that the concept of the function can unite a wide range of other-
wise isolated topics—number operations, fractions, ratio and propor-
tion, formulas, and so forth—just as it served a unifying role in the
history of modern mathematics. It seems to us that curriculum develop-
ers, teachers, and teacher educators have much to gain by becoming
acquainted with functions for mathematics education in the early
grades. It will likely take many years for this to happen. And it will
require a program of research that puts to the test new ideas for early
mathematics education. 

Functions Need to Be Distinguished From Their
Representations

Functions are normally introduced in such a limited fashion that a few
words are in order about what they are and are not. As a warm-up exer-
cise, consider the concept of number. In daily life, it makes perfect sense
to say that the following are numbers: 8, 7, 0, –43, 3/4, 3.14159, . . . and so
on. However, in mathematics education, equating numbers with their
written forms can lead to serious problems such as the mistaken view that
3/4 and 0.75 are different numbers. But the issue goes deeper. In Figure
10.13, there are several representations of the same number; not one of
them is the number.
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A similar predicament arises in the case of functions. Figure 10.14
shows four distinct means of representing the same function. Admittedly,
these representations are not fully interchangeable. Each representation
is likely to highlight certain characteristics of the function. The table
tends to be a poor representation for conveying the continuity of a func-
tion. The graph conveys continuity, but it can be ill-suited for displaying
precise values of the function.

Going one step further, Figure 10.15 shows various representations of the
same equation. This may surprise those readers who think an equation is a
written symbolic expression.13 But, if we confuse the written form with the
equation itself, that is, a setting equal of two functions, we will fail to recog-
nize when students are working with equations in other formats, for exam-
ple when our students were making drawings (see Fig. 10.7) of the Wallet
problem or trying to describe the equation in their own words. This is not a
matter of condescending to accept students’ “personal yet inferior answers.”
Research mathematicians acknowledge that functions are validly expressed
in language, written notation, graphs, and tables and they rely on these sym-
bolic systems for representing functions in their professional work.

The Growth of Algebraic Understanding

Our approach highlights the shift from thinking about relations among
particular numbers and measures toward thinking about relations among
sets of numbers and measures, from computing numerical answers to
describing and representing relations among variables. Whereas our main
interest continues to lie in student reasoning, we have found ourselves
thrust into the additional role of curriculum developers and teacher
educators by virtue of the fact that many young students only show a
proclivity to algebra when offered conditions that encourage them to
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13This perspective leads to the unfortunate situation in which many students
come to regard as equations only those equations that are analytically and sym-
bolically soluble. Although the symbolic representation of the equation x = cos x
gives no hint as to whether there are any solutions—and if there are, how many
there are—the graphical representation of the function makes clear that there is
exactly one solution and even gives a rough estimate of its magnitude.

FIGURE 10.13
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f(x):= x + 8, dollars

Mike has $8 in his hand.
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W + 8 = 3 × W

Mike has $8 in his hand. The
rest of his money is in his
wallet.
Robin has three times as much
money as Mike has in his wallet.
Mike and Robin have the same
total amounts of money.

Mike Robin

FIGURE 10.14

FIGURE 10.15

make mathematical generalizations and use particular representations
(e.g., graphs and algebraic notation) normally introduced much later. 

We witnessed a dramatic shift in students’ thinking over 18 months. At
the beginning of Grade 3, students interpreted a story with indeterminate
quantities as a single tale about particular people and amounts. By the
middle of Grade 4, most students construed this sort of situation as entail-
ing many possible stories involving variable quantities in an invariant



functional relationship. Many of the students made use of algebraic nota-
tion to convey the variations and invariance across the stories.14

The decisive changes in their thinking surprised us. Several years ago,
when invited to assess the evidence regarding whether young students
could “do algebra,” we downplayed the discontinuity between arithmetic
(as generally taught in K–8) and algebra (Carraher, & Brizuela, 2001,
2007). Our initial findings showed that young students could make math-
ematical generalizations and express them in algebraic notation
(Carraher, & Brizuela, 2000; Carraher, Schliemann, & Brizuela, 2001;
Carraher, & Brizuela, 2001). Our view at that time was that there did not
exist the enormous conceptual leap from arithmetic to algebra that other
researchers had proposed; otherwise, young students would not have
been able to make such progress in so short a period.

We were opposed to the notion of a cognitive gap (Collis, 1975; Filloy &
Rojano, 1989; Herscovics & Linchevski, 1994) because we were skeptical
about the underlying claim that the transition from arithmetical to algebraic
thinking was inherently developmental. We had repeatedly seen authors
appeal to the concept of “developmental readiness” to argue that it was
unreasonable to expect students to learn topic x at a given moment. We had
witnessed this in Brazil a quarter of a century earlier, when many people,
appealing to developmental readiness (or the lack of it), found nothing
particularly surprising in the fact that, for every 100 children who entered
the first grade, only 50 moved ahead to Grade 2 one year later.15 What we
would call the “developmental readiness syndrome” was well captured by
Duckworth (1979): “Either we’re too early and they can’t learn it or we’re
too late and they know it already.” This syndrome afflicts many adults,
including quite a few educational theorists, developmental psychologists,
and teachers. Piaget (Inhelder & Piaget, 1958) once thought that in order for
students to master proportional reasoning they needed to have achieved the
stage of formal operations, generally thought to arrive around adolescence
and, even then, for a minority of students. He later revised his view to apply
only to inverse proportion (Piaget, 1968; Schliemann & Carraher, 1992).

Our present findings have convinced us that there is indeed a large
leap from thinking in terms of particular numbers and instances to
thinking about functional relations. But, the fact that most students
throughout the United States do not make this transition easily, nor early,
may well say more about our failure to offer suitable conditions for them
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14Our repeated use of the letter N in instruction turns out to have some benefits.
Like a researcher who follows the distribution, across the continents, of genetic
markers on the y-chromosome in order to infer about the paths of human migra-
tion (Wells & Read, 2002), we can trace the fourth-grade students’ preferential use
of the letter N to particular discussions about the Candy Boxes task in Grade 3.

15Approximately half of the students who stayed behind repeated first grade;
the rest of these dropped out of school altogether.



to learn algebra as an integral part of elementary mathematics than it does
about the limitations of their mental structures.

What Are Suitable Conditions?

We are still beginning to understand the conditions that promote early alge-
bra learning. It has already become apparent, however, that certain repre-
sentational forms play a major role. The first of these are the representations
students themselves bring to bear on problems. We gave various examples
in the present chapter of children’s drawings, tables, and verbal comments.
We tried to show how they are important as points of departure for the
introduction of conventional mathematical representational forms.

Tables play an important role in urging students to register multiple
instances of a function; hence the expression, “function table.” Even when
students learn about functions while working with highly engaging
instruments such as a pulley, little may be learned unless students take
care to transcribe the data to a table (Meira, 1998). But filling in a table is
of little use in itself. Students need to scan the table locally and globally
in search of generalizations that can be used to predict outputs from
inputs and extend the table to cases for which data do not yet exist. In this
regard, it can be very helpful to have students register the data as uncom-
pleted calculations; such expressions facilitate the detection of variation
and invariance throughout the table. The ultimate test of whether a table
is being employed as a function table is whether or not a student can
express in general fashion an underlying rule for an arbitrary entry. This
amounts to the recognition that the underlying rule is a recipe (i.e., a func-
tion) for computing an output for any allowable input in the domain of
the recipe (see e.g., Schwartz & Yerushalmy, 1992, 1995).

Once students are comfortable with symbolic notation for functions,
symbolic table headers can be employed, allowing students to reason
about relationships with a diminished need to verify the meaning of the
data in terms of the semantics of the situation. Eventually, the syntactical
moves will acquire a logic of their own, and the student can temporarily
disregard the meaning of the symbols, deriving conclusions from the
structure of the written forms and the current rules of inference.

Over the course of time, problems can be introduced in the form of writ-
ten symbolic notation, graphs and tables, for which the students are asked
to generate appropriate meaningful situations. Furthermore, students can be
asked to envision how transformations within one representational system
manifest themselves in another (e.g., if the graph of a function is displaced
upwards by three units, how does this change the associate real-life story
underlying the graph?).

As significant as our students’ progress may be, algebra is a vast domain
that can allow for continued learning and intellectual growth over many
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years. There will be new functions and structures with which to become
familiar. The shift from thinking about instances to functional relations may
well resurrect itself at other moments along students’ intellectual trajecto-
ries. Rasmussen (2004) found, for example, that in learning about differen-
tial equations, university students first focus on local differences in values
(deltas) along x and y, and slopes at a single point. Only later do they
conceive of slope as a derivative, that is, as a function that comprises all the
particular instances of slopes all along the graph. As educators increasingly
implement programs of early algebra at the elementary level, there will be
many opportunities for helping how early mathematical learning evolves
over many years and helps set the stage for later learning. 
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Multiple Notational Systems and
Algebraic Understandings: The
Case of the “Best Deal” Problem

Bárbara M. Brizuela
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Children’s introduction to oral and written language happens in natural
and spontaneous ways. When speaking to young children—even
infants—we rarely speak to them non-stop in baby talk, or babble back
at them. We do not use their own language, but instead speak to them
using conventional vocabulary and grammar, expecting them to gradu-
ally pick up on the complexities of conventional oral language. The same
is true of written language. Infant and children’s books are written using
conventional language, vocabulary, sentence structure, spelling, and
grammar, never trying to mirror children’s language, but instead provid-
ing a scaffold on which children can develop and learn. Even esteemed
authors such as bell hooks (1999) and Toni Morrison (1999) have written
books for children—introducing them to the complexities and beauties of
written language in a natural way. Although children may use uncon-
ventional sentence structure and invented spelling, the books we read to
them do not. 
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In a way, we might say that we introduce children to language—both
in its oral and written forms—in all of its complexities. We do not shy
away from introducing language as such. In fact, we would probably
reject proposals of children’s books written in baby talk, or using invented
spelling throughout. Whereas theories of language development vary on
exactly how this process takes place, there is a consensus among leading
linguists that language is a generative system through which children
learn to represent spoken, written, and mental forms based on a common
set of rules.

However, when we move from written and oral language to the field
of mathematics, these lessons learned are sometimes forgotten. We explic-
itly avoid complex mathematical terminology when speaking to students
(some high school students keep talking about input and output, and
never encounter x and y, domain and range), finding more simple, transi-
tional language that we deem will be easier for them. Closer to the topic
concerning us in this chapter, we also avoid presenting students with
notations that we deem would be too difficult for them to comprehend or
adopt (e.g., Cartesian coordinate graphs, function tables, and algebraic
notation). However, drawing a parallel from the case just presented in the
area of language, can we say that we are being true to the discipline and
to the nature of the mathematical content if we are not presenting the
conventional and appropriate terminology, or the notations that are an
integral part of the mathematical content? Would algebra be algebra with-
out graphs, tables, and notation? Can we truly say that we are teaching
children mathematics or algebra if we do not also teach them the notations
that are part of this content?

We are convinced that notations need to be a part of the content being
taught. In our work with young elementary school children in early alge-
bra, graphs, tables, and notation are an integral part of the curriculum,
and at times take on protagonist roles in our teaching. In fact, we are also
convinced that introducing children to these notations enhances their
conceptual understandings in important ways. We would even dare to
say that their understandings of the content are incomplete if students do
not have access, interact, and understand the notations as well. Moreover,
as discussed in this chapter, students’ moving across different notations
enhances and complexifies their understandings even further.

Moving across modes of representation heightens mathematical under-
standing and provides children with opportunities to infer, confront, and
refine ideas. The dynamic relationship among multiple representational
systems pushes mathematical thinking to enhance one’s overall under-
standing. By withholding accepted mathematical notations from children
until a traditionally accepted age, we in effect deprive them of an enriched
understanding of the number system, operations and computations, and
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functional nuances provided by the comparison of multiple notations.
Any isolated representational form tells only a part of the mathematical
story.

With any given system, certain mathematical facets are brought to the
fore while others fall to the background. This is also true with language. For
example, the word pigs involves a noun with an added morpheme, -s, to
make it plural, and requires a connection between written symbols and
their culturally accepted meanings; the word also conjures a mental image
that is a unique internal representation, while also being a group of farm
animals to whom we attach the word. Whereas one of these representation
accurately portrays pigs, these three systems together present a more
robust meaning created by the comparison and consideration of multiple
systems of representations. This is also true in mathematics. A lone repre-
sentation brings clarity to some part of the mathematics, but this clarity
hides an indistinct treatment of other mathematical attributes. The inher-
ent ambiguity of any one representation necessitates the embodiment and
support of additional representations and their underlying mathematical
constructs or concepts to fully appreciate the nuances of a mathematical
situation, and thereby resolve some ambiguity in any one system. Just as
children learn to connect written words with a mental image with a real-
life situation, they can learn to connect mathematical symbols to a tabular,
graphical, or verbal representation to create a deeper understanding and
connection with the mathematics. 

Children’s work with and understanding of notations plays a pivotal
role in their emerging algebraic knowledge. Various representational
systems serve to provide an entryway into the bigger and generalizable
ideas of the mathematics. Children can use mathematical notations not
only to register what they understand, but also to structure their thinking.
That is, notations can help further children’s thinking (Brizuela, 2004).
A variety of representational systems (e.g., tabular, graphical, verbal,
and iconic) augment mathematical understanding, allowing children’s
algebraic thinking to continue to emerge through the consideration and
comparison of multiple structures. This facility of connecting ideas among
systems allows children to make inferences about mathematical attributes
and their various manifestations that they might otherwise not have made.

Much of our early algebra research has focused on the issue of intro-
ducing various mathematical symbols in meaningful ways. Our approach
relies on introducing new notations as variations on students’ sponta-
neous notations (Brizuela & Lara-Roth, 2002; Carraher, Schliemann, &
Brizuela, 2001). Although symbolic reasoning is traditionally associated
with the syntactical manipulation of written expressions, other systems of
representation play a role, highlighting otherwise hidden mathematical
attributes. When meaningfully structured, these additional notations bring
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new understandings and corroborate previously learned mathematical
information.

Researchers and policy guidelines have focused on the importance of
multiple representational systems, a focus that has carried over to early
algebra research (National Council of Teachers of Mathematics, 2000).
However, a dynamic relationship among representational systems goes
beyond the recommendations made by guidelines. Different representa-
tions not only “illuminate different aspects of a complex concept or rela-
tionship,” as explained in the National Council of Teachers of Mathematics
(NCTM) policy guidelines (p. 68), but also shed light on new understand-
ings through the consideration and comparison across representations.
Conventional notations help extend thinking (Cobb, 2000; Lerner &
Sadovsky, 1994; Vygotsky, 1978), but if they are introduced without
understanding, students may display premature formalization (Piaget,
1964). For these reasons, students need to be introduced to mathematical
notations in ways that make sense to them.

RESEARCH ON MULTIPLE REPRESENTATIONS

In the past few years, increased attention has been given in the field of
mathematics education to the power of establishing multiple connections
and relationships among different notations. Perhaps it is no coincidence
that the increased attention on multiple notational systems has roughly par-
alleled the increased focus on bringing algebra into the elementary school
curriculum. As research and policy continue efforts to improve children’s
mathematical understanding, we have come to accept that algebraic think-
ing involves the consideration and understanding of multiple nota-
tional systems; conversely, the consideration and use of multiple notational
systems sets the groundwork for algebraic understanding.

Research shows that moving across notations for a single concept or
problem implies understanding the nuanced ways each iteration embod-
ies that concept or problem (e.g., Behr, Lesh, Post, & Silver, 1983; Brenner
et al., 1997; Dreyfus & Eisenberg, 1996; Goldin & Shteingold, 2001).
Regarding this point, Behr and his colleagues (1983) point out that “it
is the ability to make translations among and within . . . several modes of
representation that makes ideas meaningful to learners” (p. 102). Further,
each notation highlights different aspects of a mathematical concept by
stressing some aspects of information while hiding others (Dreyfus &
Eisenberg, 1996). Moving among notations allows access to these differ-
ent aspects of a mathematical concept, becoming more powerful through
the links established among representations. 

Regarding this generalizing across various notations, Goldin and
Shteingold (2001) point out that in order for students to be able to move

276 BRIZUELA AND EARNEST



across different representations, they must be able to develop “adequate
internal representations for interacting with various systems” (p. 9). For
concepts to be fully developed, children will need to represent them in
various different ways. Goldin (1998) points out that ambiguity in one
system is resolved by means of unambiguous features of another system.

Brenner and her colleagues (1997) have explored students’ abilities to
translate among representations in the area of algebra (see also Yerushalmy,
1997). They carry out training experiments with students and explore the
impact on their algebraic understanding of being able to move across rep-
resentations. To the kinds of representations identified by Williams (1993;
i.e., algebraic, graphical, and tabular), Brenner adds verbal representations
as another primary way in which students should be expected to under-
stand functions. In their training, they emphasize a guided-discovery
approach in which students are encouraged to explore different represen-
tations and to develop their own understanding of each one. Students
from a mathematical community that encouraged multiple notational sys-
tems were more likely to use appropriate tables, diagrams, or equations to
represent functions. The authors conclude that supporting students with
instruction on different kinds of external representation enhances prob-
lem-solving skills. 

Brenner and her colleagues also explore the ideas about flexibility with
representations. They make a distinction between flexibility within a repre-
sentation and flexibility across formal symbolisms (but still within a single
representation system). The ability to translate among different kinds of
written representations is believed to contribute to greater conceptual
knowledge and enhanced problem solving.

The role of multiple representations extends beyond mathematical edu-
cation and language acquisition. We can further appreciate the power pro-
vided by moving across representations by examining its role in music.
Bamberger’s (1990) work in the area of musical notations provides an
argument for the use of multiple representations. Similar to mathematics,
music can be represented using a type of written syntax, through verbal
description, in terms of speed and rhythm, and even based on an emo-
tional response to overall musical composition. Bamberger emphasizes
these various modes of representation because of the confrontation of “dif-
ferences and similarities that [emerge] as [the students] [move] across
materials, sensory modalities, and kinds of descriptions” (p. 39). Her
reflections about the use of multiple representations are valuable lessons
for the field of mathematics, even though developed in the area of music
specifically. 

In mathematics, as in music and language acquisition, multiple
representations provide a generative value, as Bamberger describes it with
respect to music. A body of musical representations contains immanent
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potential in a child’s ability to make sense of musical expressions
(Bamberger, 1990). Similarly, multiple notational systems in mathematics
provide a generative value resulting in critical transformations in
children’s sense making of symbolic expressions and an enhanced under-
standing of the overall mathematics. Bamberger described both the relation-
ships one person might establish between different symbolic expressions, as
well as the active confrontation of representations made by different
people. In both music and mathematics, this latter confrontation process
can help us become increasingly aware not just of what we have noticed,
but of what we have not noticed that others have found meaningful
(Bamberger & Ziporyn, 1992). 

This idea of a generative value echoes the mathematical research of Dreyfus
and Eisenberg (1996). The movement and links between different notations
provide what they call flexibility of thought: “acquaintance with various rep-
resentations related to a set of concepts, the establishment of strong and
detailed links between these representations, and the ability to translate and
switch between them is equivalent to a deep understanding of these concepts
and enables their flexible use in problem-solving situations” (p. 282).

POLICY GUIDELINES

Recently, organizations such as the NCTM (2000) have also encouraged
teachers to foster the development of relationships among different math-
ematical representations. The NCTM has acknowledged the importance
of translating or establishing relationships among multiple modes of
representation. Representations have been recognized as one of the process
standards, meant to highlight ways of acquiring and using content knowl-
edge in the area of mathematics. NCTM states that the “different repre-
sentations often illuminate different aspects of a complex concept or
relationship. . . . Thus, to become deeply knowledgeable about [a specific
mathematical concept]—and many other concepts in school mathematics—
students will need a variety of representations that support their under-
standing” (p. 68).

The present chapter illustrates these premises, using the specific exam-
ple of the representation of piece-wise defined linear functions. A piece-
wise defined function is one that is defined differently for different
x-values (values of the domain of the function).

DEFINING A TERMINOLOGY

This chapter focuses on what Martí and Pozo (2000) have called external
systems of representation, to differentiate from mental representations.
Thus, in this chapter, whenever we refer to representations, we mean
external representations, made with pencil and paper and having a physical
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existence. Goldin (1998) also refers to external representations (Goldin, 1998;
Goldin & Shteingold, 2001) as distinguished from internal representations.
These external representations are “the shared, somewhat standardized
representational systems developed through human social processes”
(Goldin, 1998, p. 146). Our definition of mathematical representations borrows
from Goldin, Hughes, Kaput, Lehrer, and Martí. They relate to what Lehrer
and Schauble (2000) call representational models: material inscriptions that
sometimes form part of representation systems, but can also be nonconven-
tional and nonsystematic. Using Kaput’s (1991) words, representation sys-
tems are the “materially realizable cultural or linguistic artifacts shared by
a cultural or language community” (p. 55). Hughes (1986) also refers to
these kinds of representations as symbolic representations: those representa-
tions that correspond to widely adopted conventions.

With these caveats in mind, however, a further distinction between
notations and representations is important. In keeping with an under-
standing of representations as internal, or mental (see Freeman, 1993), Lee
and Karmiloff-Smith (1996) distinguished between notations and repre-
sentations in the following way: “We reserve the term ‘representation’ to
refer to what is internal to the mind and the term ‘notation’ to what is
external to the mind. . . . While representation reflects how knowledge is
constructed in the mind, notation establishes a ‘stand for’ relationship
between a referent and a sign” (p. 127).

Lee and Karmiloff-Smith (1996) argue that external representations
include writing, numerical notations, drawings, maps, and any form of
graphic marks created intentionally. These kinds of external representa-
tions are characterized by having an existence independent of their
creator, having a material existence that guarantees their permanence,
and constituting organized systems. According to Martí and Pozo (2000),
to be considered a system, there must at least be a relationship between a
graphic mark and what it represents. Following this definition, almost
any notation can be considered as part of a system. Nemirovsky’s (1994)
definition of what counts as a symbol system is helpful to clarify what is
meant by system: “With ‘symbol system’ I refer to the analysis of mathe-
matical representations in terms of rules. For example, Cartesian graphs
can be considered as a symbol system; that is, a rule-governed set of
elements, such as points being determined by coordinate values in
specific ways on scales demarking units regularly” (p. 390).

Given the variations in the definitions of representation, we have
chosen to use the term notation throughout this chapter. Thus, notations
fall under what some researchers have called external representations.
Furthermore, the inevitable relationships or rules established by creators
of notations between their graphic marks and what they intend to
represent, lead these notations, be they idiosyncratic or conventional, to
form part of larger notation systems.
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RESEARCH AND METHODOLOGY

In a 3-year longitudinal study, we followed 70 students in four classrooms
from the second through fourth grades. Our goal over the course of the
study was to examine how, as they participated in early algebra activities,
the students would work with variables, functions, positive and negative
numbers, algebraic notation, function tables, graphs, and equations.
Students were from a multiethnic community (75% Latino) in Greater
Boston, where over 83% of the students were eligible for free or reduced
lunch. From the beginning of their second semester in second grade to the
end of their fourth grade, we implemented and documented six to eight
early algebra activities each semester in their classrooms, each activity
lasting about 90 minutes. 

The data we analyze here is taken from interviews administered at the
end of third grade. Students’ previous work up to the time of these inter-
views focused on: more and less; additive comparisons; addition and sub-
traction as functions; generalized numbers and variables; multiplication
and division; graphs and number lines; tables for organizing information
and looking at functions; and conventional notations, including algebraic
inscriptions. We chose to focus on group interviews as a way to document
and assess their progress, difficulties, and the impact of our work in the
classroom. The interviewed students represented a range of mathematical
ability as assessed by their classroom teacher and the research team. With
each group, we were striving for diversity in ways of thinking as well as
performance levels in mathematics.

The interviewer was a member of our research team; thus, there was
both a research and a teaching component to these interviews. The inter-
viewer provided guidance and suggestions to the students, making
pedagogical decisions about when to introduce or prompt for a different
notation based on students’ ideas and real-time assessment.

These end-of-year interviews involved eight groups (two from each of
four classrooms) of three children—24 interview participants. The eight
groups broke down as outlined in Table 11.1, with the interviewer from
our research team listed in parentheses.

The interviews, which lasted between 60 and 90 minutes each,
revolved around a single problem. Students explored the four types of
notations identified by Williams (1993) and Brenner et al. (1997): verbal,
algebraic/written, tabular, and graphical. Although students had worked
with functions before this interview, this was the first problem that
required them to consider more than a single function at one time. The
problem they worked on is shown in Table 11.2.

We can algebraically define four functions that appear in this problem:
the two overt linear functions of each deal and two piece-wise defined
functions for the best and worst deals (see Table 11.3).
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The goal of this chapter is to explore ways in which children’s under-
standing about a certain problem and the functions associated with it can
be enhanced by moving across different notations for the problem. At the
same time, their understanding of each individual notation is also
enhanced when compared and contrasted with other notations. As we
explore the various responses from these eight interviews, we conceptu-
ally divide the interview into four stages that were common across
all interviews. Each of these stages brought with it a unique notational
manifestation of the mathematics of the problem, as defined by Brenner
(Brenner et al., 1997) and Williams (1993), allowing students to make
meaningful translations among and within these different notations (Behr
et al., 1983). The four stages and their featured notations, in sequential
order, are: verbal representations and instantiations with manipulatives,
initial written/algebraic notations using words or pictures, tabular nota-
tions, and graphical notations. Each stage and its notation illuminated a
different aspect of the mathematics involved in the “Best Deal” problem
for the students, resulting in a more meaningful overall mathematical
understanding. The analysis cites examples from the eight interviews that
illustrate how students confront ambiguities of one system using another
system (e.g., Goldin, 1998), the generative value of multiple notational
systems for the mathematical problem (e.g., Bamberger, 1990; Bamberger
& Ziporyn, 1992), as well as the flexibility of thought fostered by the
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Table 11.1
Eight Groups Interviewed, With Interviewer Listed in Parentheses

Group 1 (David) Group 2 (Bárbara) Group 3 (Jerry) Group 4 (Bárbara)
Albert Briana Carolina Jaime
Eric Cristian Emily Jeimy
Erica Nancy R. Jimmy Katherin

Group 5 (Bárbara) Group 6 (Susanna) Group 7 (Bárbara) Group 8 (Bárbara)
Jeofrey Jesie Joey Jeffrey
Nicole Paul Joseph Jennifer
William Vilda Nancy A. Nathan

Table 11.2
Let’s Make a Deal!

Raymond has some money. His grandmother offers him two deals:
Deal 1: She will double his money.
Deal 2: She will triple his money and then take away 7.
Raymond wants to choose the best deal. What should he do?
How would you figure out and show him what is the best to do?
Is one deal always better? Show this on a piece of paper.



movement across different notations for one same problem or concept
(e.g., Dreyfus & Eisenberg, 1996).

THE FOUR STAGES

In the eight interviews, the four stages marked both a shift in approach to
the problem, and a shift in the notational manifestation. These stages are
not mutually exclusive; once introduced, the nuances of the notation used
or focused on confronted and resolved the nuances in another notation,
throughout the rest of the interview. We identify the stages as follows:
Interviewed students would (a) react to the problem, giving their guesses
as to which of the two deals Raymond should choose. During this stage,
the interviewer would introduce colored chips to instantiate what would
happen to Raymond’s starting amount for each of the two deals. After (b)
representing on paper their understanding of the problem, which in many
cases involved writing a message to Raymond with their recommenda-
tion or drawing a picture of the situation, the interviewer would ask them
(c) to make a table showing what was happening in the problem. Then,
they moved on (d) to discuss the graphical representation of the problem. 

Throughout the interview, the interviewer made pedagogical decisions
based on assessments of the students about when and how to move on to
the next stage. In some cases, individual groups spent more (or less) time
on a given stage. Our following analysis will show some of the results
of moving across notations, and how the interaction among students
provided a confrontation of ideas that allowed them to learn about what
others had found meaningful in the problem and their own notations
(Bamberger, 1990; Bamberger & Ziporyn, 1992). As their work and
responses progressed, the explicit and implicit qualities of the notations
continually refined and enhanced their understandings of the problem. 

Stage 1: Verbal Reactions and Instantiations

After reading the problem two times, each group stated verbal reactions
and used the chips to make instantiations based on Raymond’s starting
amount. This first stage of the interview encouraged students to predict
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Table 11.3

Four Functions Related to the Best Deal Problem

Deal 1 Deal 2 Best Deal Worst Deal

2x 3x – 7 2x x < 7 3x – 7 x > 7
3x – 7 x > 7 2x x > 7



and instantiate for the better deal. Students answered the question,
“Which deal yields the most money?” Their work in this stage thereby
highlights the piece-wise function that expresses the best deal. Accordingly,
one deal is labeled as the better deal, whereas the other is discarded.
Unlike the other three stages in children’s reaction to the problem, the
verbal reactions bring in real-life nuances through dialogue, which
remain hidden or do not exist in written, tabular, and graphical notations.
These verbal representations highlight the best deal function. In addition,
children also brought up the contextually undesirable thought of having
money taken away from Raymond whatever the end result, in the second
deal.

In all of the groups, some or all students stated that Deal 1 would
always be the better deal. In fact, three groups—Groups 1, 3, and 5—were
in full agreement that Deal 1 would be the better deal. Through instanti-
ations, either mentally or with manipulatives, students began to consider
that sometimes Deal 2 would be the better deal, although in some cases
students still wanted to choose one deal over the other. At the end of this
stage, students concluded something about the piece-wise function, or the
best deal function, in which Deal 1 is better until 7, and Deal 2 is better
after 7. They were also able to conclude that at 7, the deals are equal.

In Group 6, Jesie stated that Deal 1 is better because the grandmother
doesn’t take away $7. Although he did not seem convinced that Deal 1
would always be the better deal, his concern brought out a nuance of the
verbal representation—that Raymond wouldn’t want money taken away
from him. Paul felt uncomfortable with Jesie’s statement about Deal 1
being better after mentally instantiating for $15 as the starting amount.
The group remained focused on the identity of the best deal, and con-
fronted their idea of a single function versus pieces of two functions:

Jesie: He could pick Deal 1.
Susanna Do you think Deal 1 will be better? Why do you 

(interviewer): think it will be better?
Jesie: She [the grandmother] doesn’t take away $7.
Susanna: Do you think it will always be better?
Jesie: No.
Paul: ‘Cause he could have $15, and triple it, and she only took

away 7.
Susanna: So what would that mean?
Paul: That means he’d have more money.
Susanna: With which deal would he have more money?
Paul: Deal number 2.

Group 5 went on to instantiate for other values starting with 4, each
time identifying which would be the better deal. The verbal statements in
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this stage of the interview shed light on only the parts of the Deal 1 and
Deal 2 functions for which the deals yield the most possible money for
Raymond.

A few minutes into Group 8’s interview, Jennifer, Nathan, and Jeffrey
instantiated different starting amounts for Raymond using the manipula-
tives, and the idea was put forth that sometimes Deal 1 would be
Raymond’s better choice, and sometimes it would be Deal 2. After the
group used the chips to determine that Deal 1 is better when Raymond
starts with $4 and then $5, the interviewer, Bárbara, asked them if there
was a case for which Deal 2 would be better. Nathan used the chips to
instantiate when Raymond started with $8:

Nathan: I started with 8.
Bárbara: So if you double it, how much do you end up with, Jeffrey?

(interviewer)
Jeffrey: 16.
Bárbara: 16. Let’s try it on this side. Put 8 [yellow chips for Deal 2],

Jennifer.

Jennifer tripled the 8 yellow chips, and took away 7. She counted the total
chips.

Jennifer: 17.
Bárbara: 17 [for Deal 2], and here [for Deal 1] you have?
Nathan: 16.
Bárbara: So which deal is better?
Jennifer: This one [Deal 2].
Bárbara: So when is [Deal 2] better?
Nathan: When you use 8.
Bárbara: Okay, so Deal number 1 is still better with 6. And how

about 7? Can you do 7, the two of you?

They then used the chips to determine each deal when Raymond started
with 7. As they state their findings, notice Nathan’s puzzlement [But did
you triple them?] that Deal 2 has the same result as Deal 1:

Nathan: 14 [for Deal 1].
Bárbara: And how many did you [Jeffrey] end up with?
Jeffrey: 14 [for Deal 2].
Nathan: But did you triple them??
Jeffrey: Yes.

Bárbara asked them to pretend they were starting over again, and re-read
the original problem. Although they have determined the deals to be
equal when starting at 7, they continued to face the unpleasant idea of
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having money taken away from them in Deal 2. As they again verbally
represented the problem, the students gave conflicting answers regarding
which was the better deal: 

Bárbara: Raymond wants to choose the best deal. What would you say?
Nathan: Deal 1.
Jennifer: Deal 1.
Jeffrey: Deal 2, because it worked out with 8.
Bárbara: What happens with 7?
Jeffrey: With 7 it’s equal.
Bárbara: So again, I’m going to ask you the question. What would

you do? 
Jennifer: Deal number 2.
Nathan: Deal number 2.
Bárbara: Always?
Jennifer: No. Like, first, like, if his grandma asks you those ques-

tions, if you want Deal number 1 or Deal number 2, you
should try it out first.

Nathan: Depending on how much money he has.
Bárbara: So what would you say to your grandma, if you were

Raymond?
Nathan: If I have like $7, I’ll take number 1 because you’ll double it

to 14. Not Deal 2, because you’ll just take all the $7 away.

With the interviewer questioning their selection (Bárbara: Always?), they
moved toward thinking about Raymond’s choice as depending on his start-
ing amount. However, they still faced the problem of having money taken
away from them. When verbally representing the information, Nathan
stated that Deal 1 was still better than Deal 2 with the starting Output of 7,
even though they result in the same value. Nathan kept his mind on the
context, and preferred that no money be taken away from him:

Bárbara: If you have 7 then it doesn’t make a difference, does it?
Nathan: She’ll just take it all away then.
Jennifer: If you have $7, you could pick either one.
Bárbara: And what if you have less than $7?
Nathan: Then you go with Deal number 1.
Bárbara: And when would you pick Deal number 2?
Jeffrey: 8.
Jennifer: So if you have seven, it’s right in the middle. It’s equal. And

if you have higher than 8 you go with number 2, and lower
than 7 Deal number 1. (While making these statements,
Jennifer is making gestures with her hands, showing a
midpoint [7 on a number line?], sweeping to the right of
this midpoint [more than 7 on a number line?], and then to
the left of the midpoint [less than 7 on a number line?].) 
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In all of the groups, students brought up the idea that Deal 1 was better
than Deal 2 because in Deal 2 the grandmother takes away $7. As Group
8 worked through the instantiations, confirming for themselves that the
two deals yielded the same result when Raymond started with 7, Nathan
still believed that Deal 1 was better because the grandmother would “just
take all the $7 away.” This theme carried over in other interviews, as well.
For example, in Group 2, Briana read the problem, then immediately said
that Deal 1 was the better deal because “he won’t have $7 taken away.”
Cristian stated that Deal 2 was better after instantiating with a starting
value of 10:

Briana: Deal 1.
Bárbara

(interviewer): Why?
Briana: Because he won’t have $7 taken away.
Bárbara: What do you think, Cristian?
Cristian: Deal 2. Because if he had $10, it would turn into 30 and

then 27 [sic] then if he had $10 with Deal 1, it would only
turn into 20.

This idea that at 7 Deal 1 is better than Deal 2 came up only in this first
stage. Through verbal representation, students discussed this contextual
nuance of the problem, and were not always in agreement about the deals
being equivalent, although they agreed that they both yielded the same
outcome.

Stage 2: Initial Written/Algebraic Notations (Jennifer’s
Vector and a Number Line)

After the groups had instantiated the problem and discussed when
Raymond should pick Deal 1 or Deal 2, the interviewers asked students
to represent on paper using any method they chose to show how they
figured it out. At times, this was rephrased to the students as what advice
they could provide for Raymond about the two deals. Some students
chose to write a message to Raymond, whereas others used pictures,
numbers, or number lines. 

The methods students chose varied from group to group, although
four groups (Groups 1, 3, 5, and 7) skipped this recording stage in the
interest of time or at the decision of the interviewers. In Group 5, Paul
chose to write a message to Raymond: “Anything above 7 you pick Deal
number 2. Anything below 7 you pick Deal number 1. On 7 you can pick
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either,” while Jesie wrote out a dialog between Raymond and his grand-
mother. The contextual nuance that surfaced in the first stage about
the deals’ equality at 7 faded away in the second stage’s notations. No
student claimed that Deal 1 was better than Deal 2 at 7 during this stage. 

In our analysis of the second stage, we focus mostly on ideas that sur-
faced in Group 8, in which Jennifer decided to use first a vector and then
a number line to show which deal Raymond should choose. The number
line notation brings with it a different way to view the problem. Like
verbal representations, it highlights and hides various qualities of the
four functions at play. Specifically, it focuses on the piece-wise best deal
function based on Raymond’s inputs. Unlike other types of notations, the
number line hides information about the range of the best deal function,
providing nominal information for each starting value.

Reflecting her group’s discussion from the first stage, Jennifer first
drew a vector that provided information about Deal 1, Deal 2, and the
number 7. She also went on to draw a number line that showed that either
Deal 1 or Deal 2 could be the better deal. The number line (see Figure 11.1)
has a series of tick marks from 0 to 10, with plus signs written after the 10
at the three subsequent tick marks. Above the area for the numbers for 1
to 6, Jennifer wrote “#1” to reflect Deal 1, whereas above 8 to 10 and then
over the “+” marks, Jennifer wrote “#2” to reflect Deal 2. She also marked
the 7 with an equal sign: 
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Bárbara
(interviewer): What are you going to do with the number line? Let’s

talk about it.
Jennifer: The center of the number line is 7. And if it’s higher

than 7, it’s number 2.

In her notation, Jennifer has chosen to respond to the real-life question
carried over from the first stage, “Which deal should Raymond choose
based on his starting amount?” Her notation organized the information
based on the input value for the functions. Above the 7 on the number
line, Jennifer wrote an equal sign to show that when Raymond started
with $7, each deal yielded the same amount of money. By her decision
to show only Raymond’s potential starting amount and not the output
values, Jennifer provided a visual generalization of the problem. Her
number line referenced Raymond’s starting amount of money without
indicating the output based on that starting amount. We may know at
which points Deal 1 or Deal 2 yield more or the same amount of money,
but we have no indication as to how much more or less. The number line
shows the pertinent pieces of Deals 1 and 2 without comparing the two
functions.

At the same time that Jennifer’s number line explicitly illustrates one
way to answer the problem’s question, it also implicitly answers the
opposing, complementary question about the “worst” deal (Brizuela &
Lara-Roth, 2002). With the “#1” and “#2” that she wrote over the two
portions of her number line, Jennifer addressed which deal would be
better. There was also an implicit meaning to this about which deal would
not be the better deal—or, which was the worst deal. If Deal 1 was the
better deal from 0 to 6, then Deal 2 must be the worst deal. If Deal 2 was
the better deal from 8 to 10 and beyond, then Deal 1 must be the worst
deal. With this in mind, her notation explicitly addresses the input value
for the best deal function, but could also implicitly address the input
value for the worst deal function. However, we are assuming that this is
something that she has decided to keep implicit. This information seems
implicit to us in her notation, but most likely she was simply not focusing
on it, as opposed to not wanting to make it explicit. 

We could speculate about what kinds of notations could illustrate or
highlight all the other deals involved in the problem—the worst deal,
Deal 1, and Deal 2. Jennifer’s choice to highlight the best deal is reflective
of the discussion that occurred in the first stage of the interview. The
written number line supports the preceding discussion. At this stage, the
worst deal, Deal 1, and Deal 2 have not been represented as their own
functions. As we move to the next two stages, we will get a sense of how
tables and graphs not only represent the best deal function in a different
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manner, but also serve as methods to showcase the other three functions
at play that have thus far remained hidden or implicit.

Stage 3: Tables 

As the interviews progressed, the interviewer asked students to represent
the information in a table. The students, who had worked with tables
throughout their grade 2 and 3 intervention, constructed their own tables.
They decided which pieces of information to include in their columns and
rows and what information to exclude. 

As a new kind of notation, tables bring a generative construct for
looking at the problem. We call it generative because it builds on previ-
ously established information, showcasing the functions in a new light
and extending them to include previously hidden information. As we will
see, children answered in their tables the same question from Stages 1 and
2: “Which deal should Raymond choose based on his starting amount?”
Some students, such as Paul of Group 5, represented only this informa-
tion, whereas Group 2’s Briana and Cristian created additional columns
in their tables, highlighting different aspects of the functions. Some of the
information students provided in their tables overlaps with that provided
in Stages 1 and 2, whereas other information is handled explicitly for the
first time. Students used the table in some cases to provide information
about Deals 1 and 2. Thus far, the verbal representations and written nota-
tions provided in Stages 1 and 2 have served as communicators only of
the best deal function. Various students used the table in Stage 3 to show
three different functions—the best deal, Deal 1, and Deal 2.

Paul’s table (see Fig. 11.2) in Group 5 highlights the best deal function.
It has two columns, the first for the amount of money Raymond starts
out with, and the second for which deal Raymond should choose for each
corresponding starting amount of money.

Paul’s table provides information about which deal Raymond should
choose (found in Column 2) based on the possible starting amount. As in
Jennifer’s number line, this table gives a nominative range of Deal 1, Deal
2, or “either deal.” We contrast Paul’s table with Briana’s. Similar to
Paul’s, Briana’s table (see Table 11.4) shows only the best deal function.
However, her table goes one step further, providing the output value in
addition to naming the better deal.

Briana constructed her table with two columns; one for Raymond’s
starting amount, and the other to name the better deal for each starting
amount. She added a third column labeled Dollars, giving the output
value for the better deal. Utilizing the table to extend what is known
about the problem, Briana states the dollar amounts that the better deal
would yield for Raymond.
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Briana further extends this with two written statements beside her
Table: (a) “You can count by 2s when you have less money than 7”; and
(b) “You can count by 3s when you have more than 7.” She has extracted
an attribute from each of the two functions that comprise the best deal
function and described them, providing additional information about the
piece-wise nature of the function she shows in her table. The Deal 1 func-
tion could be written as 2x, x being the amount Raymond starts with.
A quality of this function is that it “counts by 2s.” The Deal 2 function
could be written as 3x – 7, with x again standing for Raymond’s starting
amount. Once again, a quality of this function is that it “counts by 3s,”
although the latter description ignores the subtrahend of 7 in the Deal 2
function.

Briana’s table enhances the description of the functions’ identities by
including both the input and the outputs for the piece-wise function. Her
table provides a value for the domain and range, illuminating the inter-
play among the parts of the Deal 1 and Deal 2 functions that comprise the
best deal function. The table provides two types of information—which
deal is better and the amount of dollars yielded by the better deal—each
addressing a different aspect of the original problem. Similar to Stages 1
and 2, Briana addresses in Stage 3 the question of which is the best deal
based on the starting amount by nominally stating in the second column,
which is the better deal. She is able to go a step further with the use of the
tabular notation, adding the column for the better deal’s output. This
gives the piece-wise function a range to go with its domain. Her added
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Table 11.4
Briana’s Table

Table Dollars

1 Deal 1 2
2 Deal 1 4
3 Deal 1 6
4 Deal 1 8
5 Deal 1 10
6 Deal 1 12
7 same 14
8 Deal 2 17
9 Deal 2 20

10 Deal 2 23
11 Deal 2 26
12 Deal 2 29
13 Deal 2 32



statements beside the table about the additive trend she is seeing in each
of the two functions emphasize the dual component of the piece-wise
function. The kind of information she added could not have been
provided in a number line, highlighting how different notations illumi-
nate different aspects of a problem or concept. 

Briana’s table has some qualities that overlap with the previous writ-
ten notations and verbal representations. Similar to these previously used
representations, Briana’s table hides the properties of the worst deal func-
tion. Unlike her explicit treatment in Column 3 of the best deal function,
her notation does not illustrate the full input–output quality of its piece-
wise counterpart. Someone looking at her table might infer the existence
of a complimentary function; if one deal is in fact the better in the second
column, then another must exist that is worse. Moreover, the tabular
information hides the continuous nature of Deal 1 and Deal 2 functions.
Her table seems to state that Deal 1 exists only when the input is from
1 to 7, and that Deal 2 exists only when the input is from 7 to 13. As we
later move forward to Stage 4, we will see this idea come out in Briana’s
interpretation of the functions on the graph.

The table generated by Cristian (see Table 11.5), also in Group 2 with
Briana, provides more information in it, containing one more column
than Briana’s table. Unlike Paul and Briana, he gives Deal 1 and Deal 2
their own output columns, thus illuminating the continuous nature of the
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Deal 1 and 2 functions. He adds a final column that states nominally the
best deal. 

In all stages thus far, including Stage 3, the students chose to nominally
present the best deal function, highlighting the salience and importance of
this function to the students. Building on the previously established infor-
mation, Cristian’s table contains the most extensive amount of information
about the Deal 1 and 2 functions’ inputs and outputs. The nuances of this
notation allow Cristian to notice something about the differences between
the two functions, an attribute of the mathematics that verbal representa-
tions and written notations thus far had not brought forth. By making
explicit that there is a Deal 1 function and a Deal 2 function, Cristian, with
the help of the interviewer, notices a trend in the comparison of the two
functions: Until 7, the difference between outputs of Deal 1 and Deal 2
decreases by $1 as the starting amount increases by $1; after 7, the difference
increases by $1 as the starting amount increases by $1. He writes the differ-
ence between the two deals’ outputs (see Table 11.5):

Bárbara
(interviewer): How about the difference this way [going across the row]?

Remember we said that when you start with 5, we said that
the difference between the two deals is 2?

Cristian: This one, these two [row 8] is 1, this one [row 7] is the same,
these two [row 9] is 2, this is [going down the rows] 3, 4, 5, 6,
and then if we do 14, the difference will be 7.

Bárbara: Let’s try it. If we put 14 here [for the starting amount],
what’s double 14.

Cristian: 28.
Bárbara: And what’s triple 14?
Cristian: 30 . . . I mean, 42.
Bárbara: Minus 7?
Cristian: Equals 35.
Bárbara: So what’s the difference there?
Cristian: 7.

Cristian then goes on with Bárbara’s suggestion to write on the table the
difference between the two deals, between the columns for Deal 1 and
Deal 2:

Bárbara: Why do you think that’s going on? . . . Why is the difference always
changing in that way? . . . > 0, 1, 2, 3, 4, why do you think that’s going on?
Do you have any ideas?

The group does not respond to this question. Although this notation has
highlighted the difference between the two functions, this meaning and
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connection to the context still eludes the children. This issue reappears in
Stage 4 during the discussion of the graph. Bárbara continues with the
interview. 

Cristian’s final column once again goes back to addressing the piece-
wise function; he answers nominally which deal is the better deal. Again,
we see the continued presence of the best deal function. In Group 5,
because time was running short, Bárbara, the interviewer, constructed the
table (see Fig. 11.3) on chart paper herself with Jeofrey, William, and
Nicole providing inputs and outputs at her prompts. She did not include
a separate column to name the best deal, as students in other groups did.
Although we can infer the best deal from the information the table
provides about Deals 1 and 2, the information does not state which deal
Raymond should choose. We see this tension with the information pro-
vided in the table come out in Jeofrey’s dialogue.

After the group instantiates for 100, Nicole says that Raymond should
choose Deal 2, but the group quickly decides that this wouldn’t always be
very good advice for Raymond. Jeofrey then verbalizes the idea of a
piece-wise function, that there is a part of Deal 1 and a part of Deal 2 that
we need to answer this question. Jeofrey interprets the information in the
table, noticing that the outputs for Deal 1 are better up until 14, and then
the outputs for Deal 2 are better: 
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Table 11.5
Re-Creation of Cristian’s Table: Cristian Writes in the Difference Between the

Two Deals as the Dialog Unfolds

Deal 1 Difference Deal 2

0 0 7 −7 Deal 1
I 1 2 6 −4 Deal 1
II 2 4 5 −1 Deal 1
III 3 6 4 2 Deal 1
IV 4 8 3 5 Deal 1
V 5 10 2 8 Deal 1
VI 6 12 1 11 Deal 1
VII 7 14 0 14 Both
VIII 8 16 1 17 Deal 2
IX 9 18 2 20 Deal 2
X 10 20 3 23 Deal 1
XI 11 22 4 26 Deal 1
XII 12 24 5 29 Deal 1
XIII 13 26 6 32 Deal 1



Jeofrey: I think he’ll get half of it [the table]. Half of Deal 1 and half
of Deal 2.

Bárbara
(interviewer): What do you mean?

Jeofrey: Like, get half. Like, if you cut 14 off [from the Deal 1 col-
umn], right? And put that from Deal 2, that part [below
14], put it next to Deal 1, maybe it will go like that.

We interpret Jeofrey’s suggestion to “cut” the tables as being reflective of
his desire to show succinctly the deal that Raymond should choose.
Throughout the stages, this information recurs, underscoring the impor-
tance of the piece-wise function as being essential to answering the
original problem. Compared to the kinds of notations and verbal represen-
tation used in previous stages, tables generate a more robust sense of the
mathematics by providing more information about the functions at play;
nevertheless, the piece-wise best deal function is used across the represen-
tations to ground the mathematics in the context of the problem and the
question posed for Raymond regarding what function he should choose.

Stage 4: Graphs 

The graphical notation of the best deal problem offers a new lens to view
the four underlying functions and their nuances. When the functions are
graphed, students must reinterpret the problem to make sense of this
notation. For example, students have to reinterpret where the best deal
function is, similar to Jeofrey in Stage 3, when his table provided the infor-
mation but did not explicitly name the better deal. Unlike notations thus
far, the Deals 1 and 2 functions are at the forefront of the graphical repre-
sentation, because red and blue markers were used to draw the lines for
the two deals. These two deals became more explicit in Stage 4 than they
had been in earlier stages and notations. 
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Students bring their previous understandings of the problem into the dis-
cussion during Stage 4. When Group 2 moves on to plot the graph, the inter-
viewer asks Cristian to read the values for Deal 1 from his table, because his
table gives both the input and output values necessary to plot the line.
Remember that Briana’s table includes inputs for each deal, but the output
for the best deal only. As we see through the ensuing dialog, Briana’s think-
ing about the functions at play continues to evolve through the introduction
of the graph and the confrontation brought on by Cristian’s notation. As the
group constructs the graph, the students’ individual tables each factor into
their interpretation of the graph’s nuances and inform their thoughts on
what remains ambiguous for them in the graph: 

Bárbara asks, after the Deal 1 line is plotted and drawn:

Bárbara: So what line is this [line]?
Briana: The money line.
Cristian: Deal 1 line.
Briana: No! . . . Some of it is Deal 2.

Coming from Stage 3, Briana seems to be thinking about this line as repre-
senting the piece-wise, best deal function. She calls it simply “the money
line.” We infer that she’s thinking only about the best deal function: 

Bárbara: What did you read off, Cristian?
Cristian: Deal 1. 
Briana: . . . I thought [Deal 1] stopped at 7.
Bárbara: . . . But look at Cristian’s table. [Deal 1] goes on and on and on.

Briana continues to use language that could have been used to describe
her table, or Jennifer’s vector, in particular the words “starting” and
“stopping” (“I thought it stopped at 7”). The graphical notation brings
forth the Deal 1 and Deal 2 functions more explicitly than notations used
thus far. The graph does not name the best deal function as the other nota-
tions do. The piece-wise function, which came out naturally in the table,
is represented as two line segments with different slopes. Deal 1 is shown
with a red line and Deal 2 with a blue line. A trained eye may be able to
visualize that Raymond should choose the function whose line falls
higher than, or to the left of, the other. 

Cristian, the only one in this group to represent the Deal 1, Deal 2, and
piece-wise functions in his table using both inputs and outputs, draws a
horizontal line at (7; 14) to mark where the two deals are equal. The inter-
viewer asks the group what the areas above and below this horizontal line
mean, attempting to get at the best deal function. Briana reuses her language
of starting and stopping, as if she is thinking only about the best deal function:

11. MULTIPLE NOTATIONAL SYSTEMS 295



Briana: This [below the 14] is where Deal 1 is, and the Deal 1 stops [at the
14 line]. And then Deal 2 starts right here [above the 14].

Bárbara: What do you mean, “it stops?”
Briana: Like, Deal 1 stops and then, like, Deal 2 starts.
Bárbara: Starts what? There’s no more Deal 1? No more Deal 2?
Briana: [Shakes head] . . . Deal 1 stops right here [at the 14 line] and Deal

2 stops [sic] right there, I mean starts.
Bárbara: Starts what? What do you think she means, Cristian?
Cristian: Like, there [at 14] it starts to be better, Deal 2 starts to get better

and better than Deal 1.

The graph forces Briana and Cristian to interpret the best deal function in
a different way than they did in the previous stage, in which the notation
allowed them to name the best deal. Throughout the discussion, Briana is
trying to transfer the information she has already learned through previous
notations into the current one, and with some difficulty due to the graph’s
implicit treatment of the best deal function, relative to previous represen-
tations. As the dialogue continues, Briana works the nuances of this new
notation into her overall understanding of the mathematics, ultimately
incorporating not only the best deal function, but also the Deal 1 and Deal
2 functions, highlighting what Bamberger (1990) might call the generative
value of the new graphical notation:

Bárbara continues to ask about the parts of the graph before and after
the two lines meet:

Bárbara: Why do you think that right here [below 14] Deal 2 is below Deal
1, and here [above 14] it’s above Deal 1?

Briana: Because both of them can work . . . in each one of them.
Bárbara: Where does Deal 2 work better?
Briana: [pointing to the graph above the 14 line] Up here. But maybe,

maybe it can work down here [below the 14 line] some-
times. . . . Um, maybe because this [the Deal 1 line] is on top [of
the Deal 2 line] it’s better. And then this [the Deal 2 line] is on the
bottom down here [below 14], but on this [above 14] Deal 2 is on
top.

David Carraher, the project’s principal investigator who videotaped the
interviews, asks Briana to clarify what she means by saying a line is on
top. Prompted by this question, Briana reuses the terms starting and stop-
ping to explain the significance of one line being higher than another. We
see in her last statement in the next excerpt that her language acknowl-
edges the continuous nature of Deals 1 and 2:

David: Being on top, what does that mean?
Briana: Like, Deal 2 is starting. But over here [at the 14 line] Deal 1 was stop-

ping right here and then the [Deal 2] line was getting to be first.
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David: What does it mean that it’s first?
Briana: That Deal 2 is now better in this one [above 14] and that Deal 1

is better in this one [below 14].

Through Briana’s dialog, we can see that this particular notation has shed
light on a different aspect of the problem. She knows when on the graph
Deal 2 works better, which in this problem means a higher output value,
and she continues to state when Deal 1 would be better. 

When the discussion centered around the table representation in the
third stage, Cristian wrote the differences between Deals 1 and 2 on his
table, but did not answer Bárbara’s question about explaining what the
difference meant. In this fourth stage, Bárbara asks the group why the
lines for Deals 1 and 2 get closer together until reaching point (7; 14), and
then start getting further apart. Prompted by this question, Cristian
recalls the earlier question about differences, and is able to address it. The
ambiguity in the graph is confronted by Cristian’s earlier thoughts about
the changing difference:

Bárbara: Why do you think the lines are getting first closer together,
right? They’re far apart, right? And then they get closer, closer,
closer, closer.

Cristian: Oh!
Bárbara: And then they start going further, further, further, further.

What?
Cristian: It’s like this [on the table], when we said . . . This part [at 7 where

the differences are], 0, 1, 2, 3, 4, 5, 6, 7.
Bárbara: So what’s going on?
Cristian: That the difference is getting bigger.

The graphical notation provides a generative value for Cristian’s
developing understanding of difference with respect to Deals 1 and 2. On
Bárbara’s question about the visual feature of the two lines moving closer
together and then further apart, Cristian gasps (“Oh!”) and then retrieves
his table, immediately pointing to the differences he had written between
the Deals 1 and 2 outputs. Although he wasn’t able to explain the differ-
ence in Stage 3 with the table, he looks at the graph in Stage 4 and, with
the help of his table, states that “the difference is getting bigger.” The
graph helped illuminate for Cristian what this means and how it relates
to a visual component of the graph.

The graph served as a generative tool for Jennifer and Jeffrey in Group
8, also building off of work with the table. In the dialogue about the
graph, Bárbara asks the group why the two lines meet at one point on the
graph. Thinking back to her table, Jennifer realizes that she also showed
on her table that Deal 1 and Deal 2 were equal at a point: 
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Bárbara: Where do you think [Deals 1 and 2] cross?
Nathan: At 14 and . . .
Jennifer: [gasps!]
Nathan: 14 and 7.
Bárbara: At 7, 14.
Jennifer: That’s what I said on this paper over here!

Jennifer is referring to her table, which she picks up and compares to the
graph:

Bárbara: Why do you think . . . Let’s see, why do you think they cross at
that point and not at any other point? Why do you think the two
lines cross at 7, and not at 8, or at 9, or at 10?

Jennifer walks over to the graph, and using a marker, writes an equal sign
next to the point (7; 14):

Bárbara: Why?
Jennifer: They’re equal. . . . When you do the Deal 1 and 2 they’re equal to

each other.
Bárbara: They’re equal to each other at that point? Is that why you think

they cross each other there?
Jennifer: Yeah. At the same point because they’re both right here [at 7, 14].

Jennifer confirms this nuance of the graph by comparing it with the table,
calling her table the answer sheet for the graph. Bárbara then asks Jeffrey
if he got the same answer or if he had arrived at the same or similar con-
clusion. Jeffrey refers to his own table, which he constructed similarly to
Cristian, listing the inputs and outputs for Deals 1 and 2:

Bárbara: Did you get the same answer on your table?
Jeffrey: Yeah! 7 [as a starting value].
Bárbara: 14, 14 [that he wrote as outputs].

Not only is the graph becoming clear through previously built under-
standings, but phenomena from the graph are also clarifying previously
constructed information.

There is another instance in Group 8 that highlights the graph’s gener-
ative value. When Bárbara asks the group about the positioning of the
Deal 1 line and the Deal 2 line, Jeffrey once again goes back to his table.
Jeffrey shows his surprise (“Whoa!”) on realizing how the two notations
complement each other:

Bárbara: Look at what’s going on before 7 and after 7. What happens?
Jeffrey: Oh!
Bárbara: Do you see what’s going on, Jeffrey? What are you trying to figure out?
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Jeffrey picks up his table, and compares it with the graph:

Jeffrey: Whoa!
Bárbara: What’s going on?
Jeffrey: After this half [that falls above (7;14)] . . . This is . . . The Deal

number 2 is greater. And there [below (7; 14)], Deal number 2 . . .
Bárbara: Deal number 1, you mean.
Jeffrey: I mean the Deal number 1.

Whereas these ideas about the piece-wise function have come up in previ-
ous notations, the students refine their understanding about the four func-
tions overall through their interpretation of the newest notation. The graph
presents the mathematical information in a different manner, forcing the
students to confront their understandings about the functions at play.

CONCLUSIONS

This chapter provides a detailed description of the kinds of thinking and
understanding highlighted by different notations, as children progress
through different steps in solving a linear function best deal problem. It is
not our intent to highlight particular children, but to underscore the dif-
ferent kinds of conceptualizations that can be explored by navigating
across different representations for the same problem. This chapter illus-
trates both the research and the policy suggestions and recommendations
for the use of multiple representations, showing the generative value
(Bamberger, 1990) of each particular notation.
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Signed Numbers and Algebraic Thinking

Irit Peled
University of Haifa

David W. Carraher
TERC

We suggest that signed numbers1 and their operations belong in early
grades. If carefully introduced, signed numbers can make fundamental
algebraic concepts such as equality and function accessible to young
students. In turn, signed numbers can be learned more meaningfully
when taught within an algebrafied curriculum. 

We first identify some of the problems related to the learning of signed
numbers. Then we show how algebraic contexts can facilitate the learning
of this problematic topic. Finally, we look at how signed numbers provide
a supportive context for learning algebra. 

The present discussion of signed numbers and algebra builds on mounting
evidence suggesting that young children can learn algebra (Blanton &
Kaput, 2000; Brizuela & Earnest, chap. 11, this volume; Carpenter & Franke,
2001; Carraher, Schliemann, & Brizuela, 2001; Carraher, Schliemann, &
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1Signed numbers are positive and negative numbers. They refer to integers, not
merely the natural numbers. They refer to rational numbers, not merely the non-
negative rational numbers. They refer to real numbers, not merely non-negative
real numbers. Students may learn to accept negative numbers in the co-domain
(output of computations) before accepting them in the domain (input of compu-
tations). When they are comfortable with both, we say they have learned not only
that signed numbers exist, but they can serve as the input for functions.



Schwartz, chap. 10, this volume; Davydov, 1991; Dougherty, chap. 15, this
volume; Schliemann et al., in press).

USING DIDACTICAL MODELS TO CONSTRUCT
A MATHEMATICAL MODEL

In working with children to construct meaningful algebraic structures,
keep in mind that we are not merely creating mathematical models to
“play around with functions.” One of our main goals is to make the emerg-
ing algebraic structures available to and actively used by children in ana-
lyzing and modeling situations. The algebraic concepts will serve as
mathematical models, namely, tools with which different phenomena can
be conceived and organized (Gravemeijer, 1997; Greer, 1997; Shternberg &
Yerushalmy, 2003).

Teachers use didactical models—that is, manipulative materials used in a
specifically defined language within a planned teaching trajectory. The
teaching trajectory might employ a sterile model such as Cuisenaire Rods,
a situation model such as the Realistic Mathematics models (Gravemeijer,
1997), or anything in between as a means of helping children construct
their toolbox of mathematical models. These mathematical models are
then applied in solving problems, and their conception is changed and
expanded by the application process. Figure 12.1 represents the construc-
tion and application of the mathematical model. The double-headed arrow
drawn between the application and the mathematical model stands to
convey that even when one applies an already acquired (a somewhat mis-
leading term) mathematical concept, the concept’s image keeps changing
and expanding following each application.

We discuss the learning of signed numbers within the general frame-
work provided by Figure 12.1, focusing on situations involved with the
construction and the application of the mathematical concepts of signed
number operations. We give several examples of situations that, accord-
ing to our analysis, can affect the senses and constructs of these concepts
and their predisposition to become activated modeling tools.

There are different kinds of didactical models for teaching signed number
operations (Janvier, 1985). One favorite among teachers in Israel is the Witch
model, which involves adding or taking away warm cubes or cold cubes to
and from the witch’s potion bowl. Similar models can be found in U.S. text-
books. For example, Ball (1993) mentions a “Magic-Peanuts model,” which
she suspects might create the impression that mathematics involves some
kind of hocus-pocus. Indeed, it is doubtful whether such a model would
facilitate future use of signed numbers in modeling realistic situations.
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Some teachers appear to believe that children will find it easier to
remember a set of strange rules in such context better than a set of num-
ber rules. In a course for preservice secondary school teachers, students
interviewed teachers about models they use for teaching operations with
signed numbers. One of the interviewed teachers explained: “I use a
model with piles and ditches. The minus sign stands for a ditch, the plus
sign stands for a pile. Subtraction means: cancel. Addition means: put
more. So, if I have –(–3) it means that I get a cancellation of a ditch that is
3 m deep, it means that I have a 3 m pile. . . .” 

If performance is evaluated strictly in terms of computational fluency,
then perhaps all these models have a similar effect and just teaching the
rules would not be much different. Indeed, Arcavi (1980) showed that
there is no difference in computational performance between four differ-
ent instructional models for signed number multiplication.

However, signed numbers entail more than computational skills. They
are supposed to become an addition to the set of mathematical lenses with
which we model problem situations. Thus, students need to construct
these mathematical models; teachers need to introduce these abstract
models through didactical models. By and large, didactical models for
signed numbers have not been very successful. Pitfalls associated with
money models are discussed in one of the following sections. A promising
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direction emerges from Realistic Mathematics Education (RME; Gravemeijer,
1997). Based on the RME approach, Linchevski and Williams (1999) have
constructed and tested several models, analyzing where the models work
and where they fail. We would like to suggest that a combination of an
RME approach with algebraic tasks (in the spirit of the examples in the fol-
lowing section) may offer an even more promising direction. 

After being introduced to signed numbers and operations with signed
numbers, children are expected to apply their new tools in solving a vari-
ety of arithmetic problems. Unfortunately, as we show, most of these
problems do not facilitate conceptual growth. The following section illus-
trates that algebraic problems are more suited than arithmetic problems to
promote meaningful learning of signed numbers.

The Challenges Posed by Signed Number Problems

Before we criticize the common signed number textbook problems, we
should admit that it is not easy to compose good-signed number problems.
With some exceptions (Rowell & Norwood, 1999), children and teachers do
not have much trouble finding everyday situations that correspond to
expressions such as 3 + 4 = __ or 4 × 5 = __. However, they are often at a loss
for finding contexts involving negative numbers and measures—for exam-
ple, when trying to write a story for 2 – 7 = __ or 7 – (–5) = __. Temperature
and money (credits and debts) are favorite examples, and yet even these
contexts pose special challenges. For example, in composing a word prob-
lem to exemplify the expression, 3 – 5 = –2, a student may suggest, “Johnny
had three apples and he had to give five apples to his friend, so now he has
minus two apples.” The student is able to employ the negative numbers,
but only in a contrived, artificial way. Table 12.1 summarizes the answers
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Table 12.1
Word Problems That Pre-Service Teachers Created for the Expression "2-7" 

Incomplete
answer

Consistent Consistent (no question
with "2-7" with "7-2" asked) No answer Total

Money/debt 2 6 1 – 9
Temperature 1 – – – 1
Height 1 1 – – 2
No context – – – 3 3
(no answer)
Total 4 7 1 3 15

Problem

Context



15 preservice teachers gave when asked to compose a story problem for
the expression, “2 – 7 = __.”

The table shows that:

• Most preservice teachers (9 of 15; 9 of the 12 who gave answers)
used a money/debt context. An example of a reasonably appropriate
problem (one that can indeed be solved by 2 – 7) that a teacher
wrote is the following: I have $2. I owe you $7. How much money
do I [really] have? (A somewhat clearer, although awkward, ver-
sion of the final question would be: How much do I really have,
considering my assets and debts?)

• Only three preservice teachers used an alternative context. Of
those, two teachers composed appropriate problems using contexts
dealing with measurement of heights and temperature. For exam-
ple, one teacher wrote: In the middle of the winter my thermome-
ter read 2°. Overnight it dropped 7°. What temperature was it the
next morning?

• Debts were used in a pseudonegative role. Consider the following
example: If Jennifer owes Matthew $7 but she only has $2 to give
him, how much money does she still owe Matthew? While being
composed as a problem that can be solved using 2 – 7, this problem
is more likely solved by using 7 – 2. This was confirmed when pre-
service teachers, given some of their own word problems, solved
them by using 7 – 2 rather than 2 – 7. 

• Some of the preservice teachers’ word problems made use of the
measures given, but included additional assumptions that went
beyond the data given. Consider the following word problem cre-
ated by a preservice teacher to reflect the expression, 2 – 7. 
Steve has $2, but owes his friend $7, if Steve pays back his friend,
how much money will he have? 
We wonder: How can Steve pay back his friend $7 if he only has $2? 

How People Avoid Signed Numbers

Part of the difficulty in creating signed number tasks stems from the fact
that many problems that come to mind can be solved without negative
numbers, relying instead on work-arounds. 

Mukhopadhyay, Resnick, and Schauble (1990) compared children’s
performance on problems posed in the context of a story with their per-
formance in number problems (calculations) that according to the
authors’ conception, correspond to the contextual problems. The authors
found that children’s performance “is far more complete and compe-
tent” in a narrative story about a person whose monetary standing goes
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up and down over time than in what they term “isomorphic problems
presented as formal equations with mathematical notations.” It may thus
appear that the everyday context helps in dealing with signed numbers.
However, for the children these were not isomorphic cases. Although the
story situations could be matched by experts to signed number expres-
sions, in dealing with them children did not use negative numbers to add
up debts; rather, they performed simple addition and subtraction of non-
negative quantities. 

In interviews with strong and weak-performing sixth graders a year
after they learned addition and subtraction of negative numbers, the first
author found that students exhibited overall low computational perfor-
mance (Peled, 1991). In another unreported part of the study, the children
were given word problems that could be solved using signed number
computations. Most children solved the problems correctly while circum-
venting signed number operations.2

One of the word problems in the study involved a context often used
in textbooks to teach the concept of the difference between signed num-
bers: elevation with respect to sea level. The children were asked to find
the difference in height between two cities—one located below sea level,
at –200 meters and the other above sea level, at +300 meters. Rather than
subtracting the numbers to find the distance by: 300 – (–200) = 500, the
children simply added the (absolute values of the) distances from sea
level: 300 + 200 = 500. 

Students who correctly solve sea level problems show: (a) They under-
stand the directed nature of the measures in the story context but (b) they
have not mastered, or are not yet fully comfortable with, signed numbers.
To appreciate the significance of the first point, it is important to recognize
that the young child views numbers as counts: The natural numbers are
used by them exclusively for representing the cardinality of sets (how
many?). Extending the concept of number to include measures (how
much?) is a major achievement. Students who solve the sea level prob-
lems not only treat numbers as measures. They also display a careful dis-
tinction between above and below measures, similar to the distinction
between assets and debts, in the case of money problems. Expressed
another way, they exhibit some understanding of two measure worlds
separated by the zero point, similar to the divided number line model
suggested by Peled, Mukhopadhyay, and Resnick (1989). But, eventually
they will need to extend this conception further allowing for a number to
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numbers. However, if our goal is to increase understanding of expressions such as
3 – (–5) and the conditions for their application, we need to look someplace else.



possess two characteristics: measure and direction. They also need to
regard the number system as a single coherent system (rather than two
separate worlds) with unified operations that hold regardless of the sign
of the numbers.

LEARNING ABOUT NEGATIVE NUMBERS
IN AN ALGEBRAIC CONTEXT

Whereas arithmetic problems present a relatively simple specific case, alge-
braic problems can introduce a challenge that calls for using mathematical
tools to model general algebraic structures. Two examples involving trips
serve to illustrate. 

Algebraic Tasks for Learning Signed Numbers 

Trips Along a Straight Line

Trip A: An Arithmetical Trip. Anne drove 40 kilometers north from her
home to an out of town meeting. She then drove back going 60 kilometers
south to another meeting. After both meetings were over, she called home
asking her husband, Ben, to join her. 

a. How far will Ben have to go and in what direction? 
b. Write an expression for finding the length of Ben’s trip. 

A graphical diagram of the trip would look like the drawing in Figure 12.2. 
From looking at Trip A (Fig. 12.2), one can see that Anne went south

more than she went north, and Ben will have to travel that excess amount,
namely, 20 kilometers south. The symbolic expression that best reflects
the actual operation is: 
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Equation 1: An expression for Trip A

60 – 40 = 20

The symbolic expression teachers might have had in mind in composing
such a problem is shown in Equation 2:

Equation 2: What teachers may have thought of for Trip A

40 – 60 = –20

As discussed earlier, one can avoid Equation 2, opting instead for
Equation 1 while mentally keeping track of the direction. The following
version, however, makes it harder to get away with this “partially explicit,
partially implicit” approach. 

Trip B: An Algebraic Trip. Anne drove a certain number of kilometers
north from her home to an out of town meeting. She then headed 60
kilometers due south to another meeting. After both meetings were over,
she called home and asked her husband, Ben, to join her. How far will Ben
have to go and in what direction? 

a. Write an expression for the length of Ben’s trip. 
b. Could Anne have driven less than 60 kilometers north on her first

trip? If not, explain why. If she could have, give an example and
explain its meaning. 

Trip B is more general than Trip A: The initial part of Anne’s journey corre-
sponds to a mathematical variable. Using a number line representation with
Anne’s home marked as 0 and the direction to the right as distance in km
due north, a typical figure might look like the drawing in Figure 12.3. 

One legitimate expression for the husband’s trip would be “X – 60
kilometers north.” Notice that if x, the distance Anne first traveled
northward is greater than or equal to 60, the answer is non-negative
(“Go north! or if x = 60, stay put!”). If x is less than 60, the answer will
be negative (“Go south!”). In principle, this should not be difficult.
However, many solvers neglect to check the constraints on this expres-
sion. Question B was designed to serve as a hint, explicitly raising the
possibility that X – 60. 

The minus sign retains the same “old” definition (moving left on the
number line, as depicted in Fig. 12.4), even when the end point is a nega-
tive number. If, for example, X = 40, then Ben will have to travel 20 km
south, as shown by Equation 3.
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Equation 3: 

X – 60 = 40 – 60 = –20

This simple description, X – 60, holds for a wide variety of cases.
Furthermore, one can check its boundary conditions, investigate different
cases using informal knowledge, and then discover generalizations and
connections to formal knowledge. In this sense, the algebraic nature of the
expression facilitates an understanding of operations with signed numbers.

Changes in Temperature

Temperature Story 1: Arithmetical. On the February 24th last year the
morning temperature was –5° and on the same date this year the morn-
ing temperature was 3°. What was the change in temperature from last
year to this year on February 24th?

The problem can be solved with the circumvention strategy used in the
elevation above sea-level problem described earlier. In the sea-level prob-
lem, children added the absolute differences in height from the two cities
to zero (one city was below sea level and the other above sea level). Here,
one can add the absolute differences around zero temperature: 5 and 3, or
consider going up to zero and then up from zero to 3°. The total change
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FIGURE 12.3. Version 2 of the “On the Road” problem.

FIGURE 12.4. The “On the Road” problem for X < 60.



amounts to 8°. Accordingly, one would conclude: On February 24th this
year, the temperature was by 8° higher compared to the same date last
year. 

The symbolic expression that best reflects the solution is: 5 + 3 = 8.
However, the expression the teacher was probably hoping students
would use was: (+3) – (–5) = 3 + 5 = 8. Let us now see why a more general
framing of the problem is likely to encourage students to use signed num-
bers in their expression.

Temperature Story 2: Algebraic. A computer with a special measuring
device records the morning temperature in your office each day at a
specific hour. As a meteorologist, you want it to calculate the difference in
temperature between the same day last year and this year’s record. The
computer holds the data, but you have to tell it how to make the calcula-
tion. What would be your instructions? Here are the temperature data of
the last 2 weeks and the corresponding data from last year.

The strategy one uses in solving this problem depends on one’s
experience with algebraic problems. An expert solver can use a top-down
solution. He would choose some variables, such as T1 to denote the tem-
perature on a given date last year, and T2 to denote the temperature on the
same date this year. Then express the change in temperature from last year
to this year (on a specific date) by the generalized expression: T2 – T1. 

Depending on his experience, a problem solver might check if the
expression is valid for negative as well as positive numbers. For example,
if the temperature on a chosen date last year was –5 and the temperature
on the corresponding day this year is 3 (as in Version 1), the change
in temperature can be calculated informally as in version 1 and then com-
pared to what one gets by substituting the variables in the general expres-
sion: T2 – T1 = (+3) – (–5) = +8, meaning there was an increase of 8°. 

A novice has to search for patterns, work bottom up, organize the situ-
ation, and make generalizations. Specifically, a novice would look at a
sequence of temperature changes, and come to recognize the advantages
of using signed numbers to differentiate between temperature decreases
and temperature increases. The task requires the use of variables, gener-
alization of an expression, awareness of different possible cases, and use
of available mathematical tools, in this case, the use of operations with
signed numbers. These are exactly the skills we want a novice to develop. 

Our analysis is theoretical and should, of course, be tested by refining
and implementing the tasks. Yet, there is some evidence that an effective
learning trajectory can be designed. Researchers from the Early Algebra
Early Arithmetic Project (Carraher et al., 2001; Carraher et al., chap. 10,
this volume) have shown that third-grade children in the Early Algebra
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Project can express relations between heights and compare differences in
cases where heights were variables and not specific values.

A Word of Caution About Money Contexts

As noted earlier, in-service and preservice teachers often use money
and debts to construct signed number problems. The assumptions are
that this context is meaningful to children and that children will use
signed numbers in modeling the situations.

As mentioned earlier in discussing the study by Mukhopadhyay et al.
(1990), children solve money problems by using their knowledge about
the situation circumventing the need to use signed numbers. Still, this
study showed that children have some understanding of debt situations
and might lead us to conclude that it would be helpful to find problems
that use this context and require the use of signed numbers (e.g., by using
an algebraically structured context as discussed earlier). 

However, even a very familiar context can be tricky. The following,
previously unpublished, episode (TERC Tufts Early Algebra Early
Arithmetic Project, 2000) exemplifies the difficulty of mapping situations
involving money to a mathematical representation. 

Two children, Filipe and Max, are enacting mathematical expressions as
movements along a number line at the front of the classroom. The number
line is represented as a clothesline with the integers, –10 to +20, written on
labels hanging by clothes pins and spaced approximately one foot apart.
Filipe and Max’s positions are to indicate how much money they have;
their displacements are to signify the spending or obtaining of money. 

Here is a brief synopsis of the episode. At a certain point, Filipe and
Max are told they have each spent $3, which they show by moving three
units leftward: Max moves from 8 (i.e., $8) to 5 ($5), and Filipe from 3 ($3)
to 0 ($0). The teacher then informs them they are each to buy another item
(a hamburger) costing $2. Max moves correctly to 3, as depicted in Figure 12.5.
Filipe appears to be puzzled by the fact that he has no money left to pay
for the item. The teacher offers to lend him $2.

Before reading the transcript of the episode, the reader is asked to
consider the following question: Where should Filipe stand on the
number line after receiving the $2 loan from his teacher to purchase the
hamburger?:

• At +2? (He holds the $2 loan in his hand.)
• At 0? (The money is not his own.) 
• At –2? (He owes the teacher $2.)
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FIGURE 12.5. Position of Filipe and Max: (a) at beginning, (b) after spending $300, (c) after spending $2.00 more.
In (c), Filipe has received a loan of $2.00 from his teacher.
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All three possibilities arise in the following excerpt:

Barbara [the teacher] : . . . and they spend another $2. Where would they
end up? . . . Max, where would you end up?

Max: [moving to three]
Barbara: And where would . . . where would Filipe end up?
Filipe: Washing dishes if I didn’t pay. [Class erupts in

laughter]
Barbara
[Repeating his words]: Washing dishes if you didn’t pay.
Barbara: But where . . . where would you be on the number

line?
Filipe: I’m at it. [Filipe is still positioned at zero.]
Barbara: You’re at it. So you would stay at zero?
Filipe: Yea.
Barbara: How come?
Filipe: Because I have no more money.
Barbara: You have no more money. Well, Anne [Barbara

notices that Anne, a member of the research team,
has something to say.] . . . yea?

Anne: What if he borrowed $2 from somebody?
[Max pretends to offer $2 to Felipe.]
Filipe [accepting the offer]: Thanks Max. 

Barbara [concerned that this offer by Max will require that he reposition himself]:
Oh, but what if, if Max lends you $2, where will
Max end up at?

Student: The zero. [Another student: One.]
Barbara: At one. So I am going to lend you $2. Okay? Max,

you stay at three.
Barbara: I will lend you $2.
Filipe: [accepts the imaginary $2 and moves to +2]
Barbara [addressing the whole class]:

Do you think he should go up to two? Does he
actually have $2?

Students: No . . . Yes.
Barbara [to Filipe]: How much money do you have of your own . . . your

own money?
Filipe: [moves back to zero, apparently interpreting

Barbara’s question suggesting that he should not
have moved.]

Barbara: Okay. And he owes me $2.
Barbara: Okay. Are you all going to keep track of that

money?
Students: Yes.
Barbara [realizing that the information about the loan is not apparent from
Filipe’s position]: You have to all be my witnesses. He owes me $2.

Where would he go?
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Filipe [looking for a
practical solution]: I’d get a job.
Barbara: You’d get a job, but where would . . . if I had to show

with numbers . . .
Ariana: Stay at the zero!
Barbara: Ariana, that’s actually very good because that’s how

much money . . . that’s how much money he has.
Barbara: He doesn’t have any money, but he owes me $2 and

we should have to show that, in some way, on the
number line.

Filipe: [moves to –2]

At first Felipe feels no need to move to the left of the origin because the least
he can have is zero dollars [6–11]. Barbara, the teacher, had expected him to
move to –2 under the assumption that the number line was being used to
register his balance of credits and debits. Anne suggests [13] that someone
lend Felipe $2, presumably to keep him solvent and make it easier for
Felipe to conform to Barbara’s expectations. When Max graciously offers $2
to Felipe [14–15], Barbara realizes that this would affect Max’s amount [16]
and require that he move; so she makes the loan [18–19] herself. 

The matter is still not settled. How should Felipe respond to the fact
that he has received the loan? Should he move to another position on the
number line? Or stay at zero? Felipe and several classmates believe
[20–22] he should move from zero to +2; after all, he now holds $2 in his
hand. Ariana thinks [31] that Felipe needs to stay at zero. Barbara
acknowledges the reasoning underlying Ariana’s answer [32] “because
that’s . . . the amount of money [Felipe] has” in terms of his balance.3

(Felipe holds a different, more optimistic, view of “how much money he
has.”). Yet, Barbara’s successive comments about Felipe’s debt [33]
together with her previous effort to enlist the class as her witnesses [28]
show that she still believes he should move to –2, and eventually he gives
in and takes the hint [34] moving to –2. 

As we can see, the situation is quite complex and a teacher who thinks
in terms of debits and credits may fail to recognize when a student takes
into account only the tangible assets that are present on his person. As a
matter of fact, not only young students choose to focus on the latter. The
following example shows that the situation can be confusing and ill-
defined for adults as well.

We asked 15 preservice teachers to think about the following situation:

Let’s imagine that you are an obsessively organized person and you keep
track of the exact amount of money that you have in your checking account
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and wallet altogether. Every night you record the amount of money you
have by writing the relevant number in your calendar.
One day you have no money left and you visit your parents and borrow $20
from them. What number will be recorded that night in your calendar? Explain.

The variety of answers in Table 12.2 speaks for itself. Even adults, includ-
ing teachers, sometimes get confused in this context. We conclude by say-
ing that the money context is not straightforward and does not
automatically make signed numbers more accessible.

LEARNING ALGEBRA IN THE CONTEXT OF
SIGNED NUMBERS

We have tried to show that an algebrafied curriculum offers good oppor-
tunities for meaningfully introducing signed numbers. This section
argues that signed numbers can benefit the learning of algebra. Our claim
rests on the idea that fundamental algebraic concepts can be enriched and
more abstract concept images can be developed.
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Table 12.2
Pre-Service Teachers’ Answers for the Money Recording Problem 

Answer Explanation N

–20 Because even though I have no money I cannot 8
write “zero” since I owe them twenty dollars.
Therefore by writing –20 I am accounting for what
I have to pay back.
It doesn’t belong to me and I will need to give
it back.

20 I will record $20 on the calendar because I have 6
$20 in cash, even though I owe this to my parents
who never ignore a debt.
Twenty will be recorded that night on the calendar.
You record the total of what’s in your account and
your wallet, so since you have $20 in your wallet
that is what you record.

20 or –20 –20, because it was borrowed, I still owe that money, 1
I’m in debt. Maybe I’m 20 because that’s what
I have.

0 During class discussion one of the students
suggested 0 as another possible option.



Functions and Graphs

Functions are an important topic in mathematics—arguably, the very cor-
nerstone of an algebraic curriculum. Basic functions such as f(x): = x, f(x):
= x + 3, and f(x): = 4x play important roles in elementary mathematics even
though they are likely to be implicit in discussions about matching
expressions, adding, multiplying, and the like. The examples in this
section demonstrate the importance for algebra of extending the number
system to include signed numbers. The principal idea is that certain
questions concerning algebra can be more suitably explored when nega-
tive numbers are taken into account. 

Consider the following problem: What can you say about the following
expressions? Are they valid? Under what conditions? (See Table 12.3.)

Table 12.4 and Figure 12.6 show some of the conditions under which the
three inequalities hold. It might seem that the inequalities are generally
true. Unfortunately, this picture is misleading. The graphs in Figure 12.7
demonstrate that the constant function f(x): = 3 is greater than x + 3 for x < 0. 

Likewise, the function 2x is greater than x only for x > 0. The issue goes
beyond extending the domain and co-domain of functions. In the case of
f(x): = 2x, it means that “multiplying by two does not always result in a
greater number.” So it provides evidence that can potentially challenge
the belief (Greer, 1992) that “multiplying always makes bigger and division
makes smaller.” The extended number system thus supports a more
complete knowledge of basic functions such as x, x + 3, and 2x. 
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Table 12.3
Three Inequalities (Comparisons of Functions)

Expression 1 2xx
Expression 2 X + 3X
Expression 3 X + 33

Table 12.4
Truth Table for the Three Inequalities in Table 12.3

When x Expression1 Expression 2 Expression 3

0 True True True
4.5 True True True



Comparing Functions

The following problem was given to preservice secondary school mathe-
matics teachers, to graduate students in mathematics education, and to a
few mathematics education experts.

Comparing Elevations With Respect to Sea Level. 

Three friends are vacationing in a resort that has beautiful mountains
and impressively deep canyons. One day they were conducting a con-
ference call in order to decide about a meeting place for lunch. Before
making a decision, they informed each other where they were by indi-
cating the height of their location in sea level terms (don’t ask us how
they know it . . .):

Anne tells her friends her current elevation.
John says that his elevation is 50 meters more than Anne’s.
Sophia says that the height where she stands is 2 times that of Anne’s.

a. Who is standing at the highest place? Explain.
b. Is it possible that John and Sophia are at the same height?
c. Is it possible that Anne stands at a higher place than Sophia?
d. Did you use a graph to answer the above question? Yes/No
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FIGURE 12.7. Showing the order relations among functions from Fig. 12.6
when defined over real numbers. Note that 2x > x for x < 0.

FIGURE 12.6. Showing order relations among various functions defined over
positive real numbers. Note that 2x > x.



If you did not, try to use a graph now, explain if it supports or changes
your previous answers. 

This problem can be solved by drawing the functions describing the
height relations. If we represent Anne’s height by X meters, then John’s
height is J(x) = X + 50, and Sophia’s height is S(x) = 2X. In order to
make height comparisons we need to represent Anne’s height by using
the identity function A(x) = X. Because elevation at sea level can also
be negative, the functions should be drawn for any x E R, getting the
drawing presented in Figure 12.8. 

Some of the characteristics found in the solutions suggested by the
different problem solvers (preservice teachers, graduate students, and
mathematics education experts) were:

• Most of the problem solvers did not use a graph in the process
of investigating the different possible cases in this situation. This
population included secondary school teachers who were teaching
linear graphs at that time.

• When asked to draw a graph many of the solvers had trouble real-
izing that in order to compare 2X with X one should draw the iden-
tity graph f(x) = X and not use the X axis as a representation of X. . . .

• When asked to draw a graph many of the solvers ignored the inter-
val x < 0 and made limited comparisons.

These findings support the present argument about the need to work with
situations that offer opportunity to investigate many cases and enhance
fluency in making comparisons. Another conclusion relates to the use of
graphs. Many of the problem solvers showed that graphs had not become
a natural tool for them in their investigation. Apparently, they use graphs
only when asked to do so, only for certain familiar types of problems, and
with specific instructions on the choice of axis. 
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FIGURE 12.8. The sea level elevation problems.



Going back to our original argument, the extension of the number system
opens up possibilities for constructing problems with rich investigations
that can promote the analysis of functions through the use of graphs. 

Composing Transformations

When numbers have a sign, the sign can assume the sense of direction,
and the numbers can be represented as vectors rather than points on the
number line. In the expression a + b = c, “a” can be perceived as a starting
point, transformed by the function “+ b” (a unary operation with the
operator + b) to point “c,” as depicted in Figure 12.9a.

The expression can also be perceived as a sequence of displacements
transforming 0 to the point “a” (thus +a is both an operator and a point)
and then transforming “a” to the point “c,” as shown in Figure 12.9b.

Several authors have argued that children need to think of the opera-
tions as operations on transformations (Janvier, 1985; Thompson &
Dreyfus, 1988; Vergnaud, 1982). Symbolically: X + a + b = X + (a + b) = X +
c or (+a) + (+b) = +c, as represented in Figure 12.9c. 

Vergnaud (1982) suggests that some cases can be perceived as a com-
position of two transformations that yields a third transformation. For
example, he describes a situation where: Peter won 6 marbles in the
morning. He lost 9 marbles in the afternoon. Altogether he lost 3 marbles.
This situation is modeled by: (+6) + (–9) = (–3) (Vergnaud draws the + sign
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FIGURE 12.9. Defining a + b as one or two displacements.



differently to denote that it stands for addition of signed numbers). In
situations like these, the problem solver will develop a sense of signed
numbers as changes, similar to the meaning suggested by others (Davis &
Maher, 1997). Although there is no information on the initial amount or
the final amount, one can figure out the total change, which would be
valid for any starting point.

In the following sections, the implications of these meanings are
discussed in terms of their possible contribution to algebraic concepts.

Broadening the Meaning of Equals

Extensive practice with addition and subtraction leads children to
develop certain primitive conceptions of equality. Children in primary
grades tend to view the two sides of the equal sign nonsymmetrically: The
left side is taken as a request to carry out an operation, the result of which
is displayed on the right side. Accordingly, they view expressions such
as 8 = 3 + 5 as illegitimate (Carpenter & Levi, 2000; Filloy & Rojano,
1989; Kieran, 1981). 

Equality expressions in early grades involve mainly addition and
subtraction with amounts represented by natural numbers and quantity
relations that obey the part–part–whole structure. As suggested by
Freudenthal (1983), this structure can quite naturally (although not easily)
be extended to include fractions. 

The extension to negative numbers is a different story. Both the mean-
ing of a number and the meaning of operations defined on the numbers
have to undergo a drastic change. The image of a number as representing
a physical quantity or a measurement has to change or at least get a new
dimension that differentiates the quantity –2 from +2. The new constructs
have to account for the order relation according to which –4 is smaller
than –2, although there is more of that quantity in –4. 

As to the extension of addition and subtraction (and later multiplica-
tion and division), a great part of previous knowledge has to be accom-
modated. The part–part–whole structure relations stating that addition
makes bigger, subtraction makes smaller (regarding the first number as a
starting point), and the whole is bigger than each part no longer hold. For
instance, in (+7) + (–2) = (+5), +7 is transformed to +5, which is smaller, and
in (+2) – (–3) = +5, +2 is transformed to +5, which is bigger. In other words,
addition can make smaller and subtraction can make bigger. 

The gap between naive and advanced conceptions of the part–part–
whole structure, and the gap between naive and advanced conceptions
of equality might be bridged by allowing the operation extension to
be defined within algebraic situations, as demonstrated in the following
example.
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Let us consider again the On the Road problem, modifying it to have
Anne traveling X km and then Y km northward (X or Y can be < 0, in
which case the respective segment of the trip will be southward). The gen-
eral expression for Ben’s trip (to meet his wife), marked as S, would be: S
= X + Y. When Y = –60, as in the original story, we get S = X + (–60), and
in the specific case X = 40 we get: 40 + (–60) = –20.

Ben’s trip, S, is mathematically equivalent to Anne’s complete trip con-
sisting of X + Y because the net effect, in each case, is to displace a person
from home to the meeting point (see Figs. 12.10–12.12). However, Anne and
Ben’s trips are not conceptually equivalent when Anne’s two segments rep-
resent different directions (see Figs. 12.10 and 12.11): Ben’s trip is a shortcut.
Because Ben proceeds directly to Anne at the end point of her trip, Ben’s
trip requires less driving, but, paradoxically, the net displacement is the
same for Anne and Ben, thus we can now suggest a new extended mean-
ing to the addition of signed numbers at end of sentence and subtraction. 

Figures 12.10, 12.11, and 12.12 show some possible combinations of direc-
tions and sizes of the two journey parts. In all three examples, X is positive
and rightward is northward, we can get symmetrical examples for X < 0 by
reflecting the given examples (or regarding right as south). In the first two
examples, Y is negative but has a different absolute value relative to X, and
in the third case Y has the same direction as X.

In all the examples that can be generated for this situation, Ben’s trip is
expressed as the sum of the two parts of Anne’s trip regardless of the
signs of the parts, that is, S = X + Y. Similarly, we can express the second
part of Anne’s trip by looking at the difference between the whole (Ben’s
trip) and the part (Anne’s) subtracting the part from the whole regardless
of the number signs, that is, Y = S – X. 

By offering this extension, we stretch the existing senses that children
have about the operations and about equality. This bridge to an equivalence
meaning of equation is different from the approach discussed by Filloy
and Rojano (1989), who identify a didactical gap between arithmetic and
algebra and view the transition to algebraic thinking as requiring the abil-
ity to operate on unknowns on both sides of an equation.

“The equivalence of routes” is a big idea because it requires suppressing
otherwise important psychological features of situations in order to high-
light a certain mathematical invariance. An analogous sort of reasoning is
required when one deals with a string of transactions, each of which may
correspond to a deposit or a withdrawal of funds in a bank account. One
might sum for example 37 transactions over one week to determine a net
effect, say, –$50 on one’s bank balance. When a friend asks, “Has your bank
account changed much in the past week?”, one might answer, “Yes, I spent
$50.” This “short answer,” as opposed to communicating the details of 37
transactions, corresponds to Ben’s shortcuts in the first two trips.
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Can young children understand the idea of equivalent transformations?
The following section details an example of children’s investigation of
alternative routes and discusses its implications. 

EQUIVALENT TRANSFORMATIONS: THE LONG
WAY AND SHORTCUTS 

The following episode from the Early Algebra Project (2000) demonstrated
that third graders could discover shortcuts on the number line (i.e., a dis-
placement that does the work of two consecutive displacements). At the
same time, this episode exposes some difficulties in this process. 
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FIGURE 12.10. Equivalent routes I.

FIGURE 12.11. Equivalent routes II.

FIGURE 12.12. Equivalent routes III.



The Episode

Secret start numbers were disclosed to two children, each of whom per-
formed two (known) displacements on the secret number and showed
where they ended up on the number line. When Carolina ended at 3 and
James at 5 after performing a +2 and then a –1 transformation, several
children claimed (correctly) that they started at 2 and 4 correspondingly.
At this point, Filipe suggested an interesting explanation:

Filipe: I was just thinking it because you had a plus two and then you
minused the one from the two, and then that was only plus one.
Barbara: Ohh. Did you hear what Filipe said? He just gave us a shortcut.
Did you hear Filipe’s shortcut?

With the class-shared experience of “Filipe shortcut,” the teacher assumes
that the children understood the idea of finding one transformation as a
shortcut alternative to two given transformations. The children, however,
were more impressed with Filipe’s role as the fairy godfather (in enacting
one of the problems) than with his mathematical ideas. Thus, despite
being exposed to the shortcut idea, several investigations were needed
before more children understood it. 

In the following task, the children were given a list of starting points.
For each point they were expected to find where one would end up fol-
lowing two transformations: –1 and +4 and were also asked to think about
any kinds [of] shortcuts you can find to do all of these problems. At first,
children perceived the task as requiring the actual performance of the two
moves (i.e., the ritual of moving by –1 and +4 was perceived by them as
an integral part of finding N – 1 + 4, just as a young child sees the count-
ing ritual as an integral part of answering the question, “How many are
there?”). Performing the transformation in a different way still needed to
be made legitimate. When the input number was 5 and Nathan wanted to
give it a try, Barbara (the teacher) was expecting him to suggest a short-
cut but, instead, he said:

Nathan: Eight
Barbara: How did you figure that out?
Nathan: I did it on my ruler, cause five minus one equals four. Plus four. 

One . . . two . . . three . . . four . . . is eight.
Barbara: Okay, . . . you did find a use for your ruler. You’re using it like

a number line, right? You’re using all the numbers. 

The next task involved pattern identification. Different input numbers
were transformed by –5 and +4 and the children were asked to tell what
they discover by looking at the input numbers, the corresponding output
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numbers, and the displacements. Most children could identify the –1
shortcut and the relevant connections. It should be noted that while doing
the transformations, children had no trouble moving below zero. It was
also interesting to note that some confusion was caused by zero as an input.
Zero turned out to be a strange number to operate on, and involved –1 both
as an output and a shortcut (i.e., as a point on the number line and as a
transformation).

During several investigations of this nature, the children discovered
the shortcut concept at different points along the sequence of tasks. Some
discovered the repeating pattern but did not see the connection between
the emerging shortcut and the two original transformations, that is,
between the computation (–5) + (+4) = –1 and getting –1 as a shortcut in
each specific case. Keeping in mind these were third graders, we can look
at the glass half full and conclude that the equivalence concept is attain-
able, but the teaching trajectory should provide appropriate tasks. 

CONCLUSIONS

In this chapter, we suggested that there is an interdependent relationship
between algebra and signed number operations. In the first part, we
argued that algebra provides a helpful context for introducing signed
numbers. In the algebraic modeling of certain situations, one makes full
use of operations defined on signed numbers and of the numbers as a
combination of measure and direction. Arithmetical counterparts of such
problems, on the other hand, do not require the full use of signed num-
bers. Thus, algebraic problems have the potential to facilitate the con-
struction of a richer mathematical signed number operation model.
Modified versions of problems such as the road problem and temperature
problem can be used to generate teaching trajectories for introducing
signed numbers and for introducing signed number operations. Similar
problems can be later used to further enrich the mathematical model by
applying it in a variety of situations where signed number operations
genuinely contribute to the organization and analysis of these situations. 

The second half of this chapter argued that signed number tasks can
contribute to the understanding of algebraic concepts. The study of func-
tions is more complete and meaningful with the extension of the number
line to include negative numbers promoting the habit of checking differ-
ent cases. Signed number tasks can help students move beyond the con-
ception that equations display “an action on one side and its result on the
other” to an “equivalence relation of transformations.” Similarly, signed
number tasks can support the transition from arithmetical additive equa-
tions that have a part–part–whole structure to algebraic equations by pro-
viding an extended equivalence meaning for this structure. 
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III 
ISSUES OF IMPLEMENTATION:

TAKING EARLY ALGEBRA INTO
THE CLASSROOM

The previous sections developed the philosophical and epistemological
groundwork for algebra in the early grades and instantiated these ideas
in more practical terms through empirical classroom studies of children
thinking algebraically. But, the early algebra story entails more than an
epistemology of content, or even evidence of children’s algebraic skills. It
involves understanding the complexities of teacher professional develop-
ment and how curriculum, whether as a prescribed agenda or as an
enacted phenomenon, can build children’s algebraic thinking. What and
how teachers teach is critical to early algebra reform. In large part, the
success of early algebra rests on elementary teachers and their ability to
work flexibly with students’ thinking and curricular resources to build
classrooms where early algebra is a routine part of children’s mathemati-
cal experience. This section looks at how curriculum and professional
development can help teachers bring algebra into the early grades.

Chapters 13 and 14, written from the perspective that one cannot
separate learning from either the mathematical or the sociological context
in which it occurs, underscore how content and context, respectively, mat-
ter in teacher professional development. In chapter 13, Franke, Carpenter,
and Battey contrast their professional development in cognitively guided
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instruction with their more recent work in early algebra to make explicit
the particular ways early algebra content affects professional develop-
ment and how its intrinsic cultural mathematical practices are brought to
bear on teacher learning. The authors explore how key principles of their
professional development, such as using student thinking as a tool that
engages teachers, make explicit their own and their students’ participa-
tion with the mathematics and provide a trace of the communities’ ideas. 

Blanton and Kaput (chap. 14), drawing on a district-based research and
professional development project, widen the lens to examine the institu-
tional context in which teachers learn and how this setting, including its
leadership practice and ability to grow professional communities, can
uniquely support teacher development so that algebraic thinking is
increasingly supported within the larger district enterprise. They elabo-
rate how affordances of the institutional setting, such as the development
of a professional community network, a distributed approach to district
leadership practice, or the integration of district professional develop-
ment initiatives, can support teacher learning.

Chapters 15, 16, and 17 draw on the authors’ extensive work in elemen-
tary classrooms to look at how curricula can more deeply scaffold alge-
braic thinking. The authors frame their ideas around a range of
perspectives on learning, from developmental psychology to sociocul-
tural theories, in building the case that early algebra is more a way of
thinking and acting mathematically (and for the teacher, pedagogically as
well) than just a particular set of tasks. 

The Measure Up Project (Dougherty, chap. 15) builds on Davydoviian
and Vygotskiian traditions by using mathematical generality as a starting
point for developing students’ understanding of structure. In this
approach to algebraic thinking, students begin by comparing abstract
quantities of physical measures as a way to generalize mathematical rela-
tionships about them. Dougherty uses insights from observations of
students’ mathematical understandings of number, operation, and mea-
surement, to examine curricular and implementation issues associated
with Measure Up. 

In chapter 16, Schifter, Monk, Russell, and Bastable make the case that
curriculum can and should deliberately call attention to the generality
inherent in arithmetic, build on students’ interest and curiosity toward
generalizing, and account for how children’s thinking develops. The
authors explore how children engage with ideas related to commutative,
associative, and distributive properties and use this to think about impli-
cations for curriculum design. 

Goldenberg and Shteingold (chap. 17) examine both generalized arith-
metic and patterns and relations in a project rooted conceptually in devel-
opmental psychology. They use their work to portray children’s natural
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tendency toward algebraic thinking and to articulate principles of the
algebraic trajectory through which the Math Workshop curriculum takes
students. 

The chapters in this section raise our awareness of the complexities of
implementing algebra in the early grades. But they also provide concrete
details on how to navigate these complexities. What they offer is not only
evidence that children can think algebraically, but also how profoundly
they can develop this habit of mind when the curriculum draws out (as
Mason describes it) the general rather than the particular. They offer ideas
about how to design professional development so that elementary teach-
ers, schools, and districts can transform the mathematics of rote skill and
procedure to the mathematics of generalization. The reward is students
with a deeper, more connected understanding of mathematics who are
better prepared for the mathematical years after the elementary grades.
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13

Content Matters: Algebraic Reasoning
in Teacher Professional Development

Megan Loef Franke
UCLA

Thomas P. Carpenter
University of Wisconsin, Madison

Dan Battey
Arizona State University

Throughout this book, you have been reading about new conceptions of
algebraic thinking for elementary school students. These new conceptions
of algebraic thinking have implications for how we think about teacher
professional development. This chapter examines how our conceptualiza-
tion of algebraic thinking influences opportunities for teacher learning
and what that means for the design of professional development. We
draw on our work in cognitively guided instruction (CGI) focused on the
development of children’s mathematical thinking primarily around oper-
ating with whole numbers to make sense of what it would mean for
teachers to learn about developing algebraic thinking. We situate our
views of professional development focused on the development of
students’ algebraic thinking in relation to those of our whole number
operation work and we accomplish this by drawing on our years of
research on teacher learning and professional development, the work of
our colleagues, our own practices as we attempted to engage students in
the algebraic ideas, and our time in teachers’ classrooms as they figured
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out how to develop algebraic reasoning. Particularly, the change in terrain
has allowed us to see where differences in the mathematical content of the
professional development influences opportunities for teacher learning
and impacts how we design professional development.

This chapter argues that general principles outlining how to design
professional development, although potentially helpful, are not sufficient
for meeting the needs of teachers.1 Our work over the last 20 years
consistently highlights the complexity of professional development and
the necessity of understanding the details around engaging teachers in
learning opportunities that lead to generative growth. Our algebraic
thinking work provided the opportunity to think carefully about the role
of the mathematical content in the design and implementation of profes-
sional development. We wondered about how the algebraic thinking
professional development work would differ from our earlier whole
number professional development. As we have engaged in professional
development, and studied hundreds of teachers and their students, we
have found there are differences in what we do. This chapter details some
of the critical issues and how we have addressed them. We begin the
chapter by characterizing our whole number professional development
and contrast it with our algebraic thinking work. We use the contrast to
highlight the differences and similarities we see in conceptions of
student thinking, teacher content knowledge and stance toward the content,
the existing cultural practices around teaching the content, and the way
the content plays out in the sociopolitical context. 

EARLY CGI CONTENT: BASIC NUMBER CONCEPTS

The initial CGI work focused on the development of basic number
concepts. At the time we developed CGI in the early to mid-1980s, there
existed a substantial body of research that provided a consistent and
coherent picture of the development of basic number concepts (Carpenter,
1985; Carpenter, Fennema, Franke, Levi, & Empson, 1999; Fuson, 1992).
This research documented that most children enter school with a rich
store of informal knowledge and problem-solving strategies that can
serve as the basis for developing much of the mathematics of the primary
school curriculum. Building on these intuitive problem-solving strategies
both enhances students’ problem-solving abilities and provides a basis for
constructing meaning for addition, subtraction, multiplication, and divi-
sion concepts and procedures.
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Detailing Problem Action and Relations

One principle underlying our model of students’ mathematical thinking
is that children naturally solve problems posed in real or imaginary
contexts by representing the action and relations described in the
problems. Thus, in order to understand how children think about and
solve a specific problem, we needed to be explicit about the types of
action and relations that distinguish different problems and correspond-
ing student solution strategies (see Carpenter, Fennema, & Franke, 1996;
Carpenter et al., 1999). The four problems in Table 13.1 illustrate some of
the critical distinctions among problems that result in different solution
strategies. All of the problems, however, can be solved using a range of
strategies from direct modeling through recall.

Although all four problems could be solved by subtracting 5 from 12,
young children consistently use quite different strategies in solving them. A
first-grade student might solve the first problem using counters by making
a collection of 12 counters and taking 5 from it. The same child might solve
the second problem by first making a collection of 5 counters, adding coun-
ters until the total reached 12, and then counting the number of counters
added to figure out the answer. The strategies are quite different, but in each
case the strategy directly models the action described in the problem. 

Over time, children become more flexible and begin to abstract these
strategies to make them more efficient. For example, a child might solve
the second problem using a counting strategy. The child would start
counting at 5 and count up to 12, keeping track of the number of counts
on her fingers. Children move beyond modeling the problem and using
related counting strategies to rely directly on number facts. Children often
learn doubles (e.g., 6 + 6, 9 + 9) and sums to 10 (e.g., 4 + 6, 8 + 2) earlier
than other facts, so they may use number facts they already know to gen-
erate solutions to the problems in Table 13.1 as follows: “Five and 5 is 10
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Table 13.1
Subtraction Problem Situations That Generate Different Strategies

1. Twelve children were playing on the playground. Five children went home.
How many children were left on the playground?

2. Viviana has $5. How many more dollars does she need to save to have $12
to buy a basketball?

3. Raymond earned $5 babysitting. When he put it with the money he had
already saved, he had $12. How much money did Raymond have before he
earned the money babysitting?

4. Marsha scored 12 points in the class basketball game. Anisha scored 5
points. How many more points did Marsha score than Anisha?



and 2 more is 12, so 5 + 7 is 12. So the answer is 7.” The same progression
characterizes the development of basic multiplication and division con-
cepts and addition and subtraction with two and three digit numbers.
Children extend their strategies to larger numbers by using units of 10 to
model addition and subtraction involving two- and three-digit numbers. 

Critical Features of the Content for Teacher
Learning and Classroom Practice

Teachers engaged in the CGI early number work readily adapted to the
idea that children come to school with a range of intuitive correct ways of
solving problems that can be built on in developing skill and understand-
ing. Because strategies children bring to school are reflected in different
word problems, teachers need to understand the differences across word
problems, how the differences are reflected in children’s solutions, and
then how children abbreviate these strategies to construct increasingly
efficient, abstract, and sophisticated strategies. The evolution of strategies
occurs without too much specific intervention by teachers. Certainly,
teachers can scaffold the progression, and as teachers become more
skilled they do, but teachers can accomplish a great deal in supporting
student learning by posing a variety of problems and asking students to
share a range of strategies. Teachers can support students by asking ques-
tions that focus on the details of the strategy students used and thus pro-
vide scaffolding for students to construct well-conceived sequences of
strategies without worrying too much about the sequencing of problems.

The number concepts content we address directly relates to the early
grades curricula already in place in most schools. However, the approach
we took that focused on solving problems in context where the actions
and relations were made more explicit stood in contrast to traditional
curricula and many teachers’ typical practices. Most often, in existing cur-
ricula, the word problems were relegated to the end of the chapter as an
application task or an assessment measure. Word problems were not often
used as a way to introduce a concept. So teachers would not have had
much opportunity to engage in the practice of using word problems as a
way to introduce concepts and so it required the development of new
practices and the adaptation of existing ones. The CGI whole number
content asked teachers to think differently about the relationship between
skills and understanding and about student development. 

Teachers felt confident they knew enough about the whole number
content to engage with their students, but were often worried that they
could not catch student strategies in the rapid real-time interchanges of
their classrooms, especially initially when the strategies seemed so
foreign to the teachers. 
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CONSIDERING ALGEBRAIC REASONING

Our focus on algebraic thinking in the elementary grades again draws
on the research around the development of student thinking.2 Here we
are particularly interested in the ways students come to reason relation-
ally, making use of the fundamental properties of arithmetic. Our goal
in focusing on algebraic thinking is not to move high school algebra into
the elementary grades, nor is it to cover all of algebra. Rather, we
attempt to reconceptualize algebraic thinking for teachers and create a
way to support teachers to engage in algebraic reasoning in elementary
school (as do many authors in this book). We focus on extending arith-
metic in ways that build algebraic reasoning (Carpenter, Franke, & Levi,
2003; Faulkner et al., in press; Kaput, 1998). We want to help teachers do
more with arithmetic, to extend these ideas for themselves and for their
students in ways that engage them all in algebraic thinking. Our focus
on the development of elementary school children’s algebraic reasoning
is on the ability to generate, use, represent, and justify generalizations
about fundamental properties of arithmetic. Generalizing and repre-
senting generalizations involves the articulation and representation of
unifying ideas that make explicit important mathematical relationships.
We focus on four primary themes: equality as a relation, relational
thinking, articulating fundamental properties of number and opera-
tions, and justification. 

Equality 

Kieran (1992) characterizes the distinction between arithmetic thinking
and algebraic reasoning as a shift from a procedural perspective of oper-
ations and relations to a structural perspective. One of the hallmarks of
this transition is a shift from a procedural view to a relational view
of equality, and developing a relational understanding of the meaning of
the equal sign underlies the ability to make and represent generaliza-
tions. Behr, Erlwanger, and Nichols (1980), Erlwanger and Berlanger
(1983), Kieran (1981, 1989), and Saenz-Ludlow and Walgamuth (1998)
have documented, however, that children in the elementary grades
generally consider that the equal sign means to carry out the calculation
that precedes it, and this is one of the major stumbling blocks when moving
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from arithmetic to algebra (Kieran, 1981; Matz, 1982). We have found sim-
ilar results. When asked to solve a problem like 8 + 4 = _ + 5, students
want to put 12 in the box. Some want to include the 5 in their total, so they
put 17 in the box. Others create a running total by putting a 12 in the box
and an “ = 17” following the 5. In our work, we help teachers to under-
stand the range of solutions students provide for problems like these and
address what their solutions tell us about their understanding of the equal
sign. We draw on Davis’ (1964) work and introduce true–false number
sentences (true or false: 7 = 7) as a tool to help challenge students’ notions
and create an understanding of the equal sign as a relation meaning “the
same as.”

Relational Thinking

A fundamental goal of all of our algebraic thinking work focuses on help-
ing teachers understand and engage their students in relational thinking.
By relational thinking we mean examining expressions and equations in
their entirety rather than as a process to be carried out step by step. Doing
so requires using fundamental properties of number and operation to trans-
form the mathematical expression. For instance, in solving 78 + 34 – 34 = _,
knowing that 34 – 34 = 0 and starting there rather than going in a linear
fashion and starting with 78 + 34 involves relational thinking. Using rela-
tional thinking requires an awareness of properties of number but not the
formal definition.

We begin building ideas of relational thinking with the equal sign and
continue building them as we work on conjectures, generalization, and
justification. If we return to the problem 8 + 4 = _ + 5, our goal is not only
to have children calculate correctly 8 + 4 = 12 and 12 – 5 = 7 so a 7 goes in
the box, but also to solve the problem by looking across the equal sign at
the relationship between the 4 and the 5. Here, students see that 5 is one
more than 4, so a number one less than 8 must go in the box to make the
equation true. The student implicitly used the associative property of
addition to transform the equation.

Ideas of relational thinking fit well into the arithmetic curriculum
because they often make computation easier and provide an opportunity
to make explicit much of what students are doing when they operate on
numbers using standard algorithms. We see this when students add
multidigit numbers and use an invented algorithm, for instance, on the
problem 25 + 37 a child may respond, “I know that 20 and 30 is 50. Then
I added the 5 and the 7. That’s like 5 and 5 is 10, and 2 more. So that’s one
more 10, so 60 and 2 is 62.” Students also can be seen engaging in this type
of thinking when solving a multidigit multiplication problem. Take the
problem 28 × 5. The child can multiply 20 times 5, figure out that is 100,
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then multiply 8 × 5, and know that is 40 getting 140. In the first example,
the child is using repeated applications of the associative and commuta-
tive properties. In the second, the child used the distributive property. We
are not suggesting that the children explicitly recognize that they are
using these properties at this point. The next section discusses making
these properties explicit.

Relational thinking is not learning a set of computational tricks or
memorizing a set of mathematical properties. Relational thinking is about
reasoning; understanding why particular transformations are possible
entails understanding important ideas about the relations between oper-
ations and the fundamental properties. Many students do not have the
opportunity to engage in this type of thinking in elementary school. They
do not understand how basic properties of number operations are applied
in their computations and, as a consequence, they do not recognize that
arithmetic and algebra are based on the same fundamental ideas (teach-
ers also do not see this connection). By failing to take advantage of the
structure of the number system, the learning of arithmetic has been made
much harder.

Articulating Fundamental Properties
of Number and Operations

When students make conjectures about properties of numbers or opera-
tions, they make explicit their mathematical thinking. Conjectures pro-
vide a class with fundamental mathematical propositions for examination
and open up students’ thinking for analysis and discussion. Students
have a great deal of implicit knowledge about properties of arithmetic
operations, but they generally have not made their thinking explicit and
the object of discussion in ways that provide opportunity for systematic
examination and detailing of their ideas. We have found that many
opportunities arise in the context of classroom practice that can provide
entry into the conversation. However, this requires being able to notice
and take up opportunities in ways that support the development of the
conversation. We have also helped teachers to think about how to seed
conversations where students make conjectures about properties of num-
ber and operations. One way to seed the conversation is to pose a
true–false number sentence such as 16 + 9 = 9 + 16 and follow up with
questions about whether this would be true no matter what numbers you
used. This provides students an opportunity to make explicit their ideas
about commutativity and reason about how they know it is true and
when it is true. We find that students need the opportunity to return to
these conversations over time as they continue to challenge and deepen
their understanding.

13. CONTENT MATTERS 339



Justification

The most challenging algebraic thinking work for teachers and students
involves justification of conjectures—answering the “How do you know
that would always be true?” question. Here we focus on what counts as
an adequate response and a more sophisticated response to statements
such as a + b = b + a. We help teachers come to see the range of types of
responses and the evolution of student thinking in response to these kinds
of questions. 

Balacheff (1988) specifies justification as discourse that aims to estab-
lish for another individual the validity of a statement and proof as an
explanation that is accepted by a community at a given time. In negotiat-
ing norms for what counts as a justification in an elementary class, it is
not, however, the case that anything goes, and classes exploring the use of
justification have to negotiate the norms for what counts as a legitimate
justification.

Consistent with the analyses of Sowder and Harel (1998) and others,
we identify three general schemes for justifying mathematical proposi-
tions: appeal to authority, justification by example, generalization. At the
lowest level, appeal to authority, students use or accept as justification
sources other than their own reasoning. The outside source may be an
authority such as a teacher, textbook, a ritual form of argument, or a
meaningless manipulation of symbols. Students who make their justifica-
tions by offering examples are using empirical examples-based proof
schemes. Examples illuminate an idea and can lead to higher levels of
justification. However, justification based on examples can be misleading.
When students rely on empirical examples they do not consider all cases
necessary for more principled generalization. Generalizable arguments
attempt to show that a claim is true for all relevant cases.

Naive generalizable arguments may essentially be based on assumptions
that a given mathematical idea is self-evident: “When you add zero to a
number you always get the same number.” But students can learn to appre-
ciate that they need to provide generalizable arguments for their ideas that
are based on a set of accepted assumptions. For example, a student may
argue that multiplication is commutative by showing that a rectangle can be
rotated and so 3 × 4 and 4 × 3 represent the same number. This example
only applies to specific numbers, but the argument is generalizable to
any array. Thus, although elementary students lack notation to represent
generalizations about numbers, they can engage in argument that repre-
sents general forms of justification.

Teachers may employ all the levels of justification described previ-
ously, and a goal of our professional development is to help teachers to
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examine their own proof schemes in the process of considering the types
of arguments that students may employ.

Critical Features of the Content for Teacher
Learning and Classroom Practice

The content of algebraic thinking we engage teachers with is quite differ-
ent from the early number concept work of CGI. Equality focuses on a
prevalent misconception. Teachers must consider how to challenge exist-
ing notions about equality, not build on what students know about it
(although they can build on what they know about number relations).
Using relational thinking and articulating conjectures build on and pro-
vide opportunity for students to use valid intuitive knowledge. However,
these ideas of relational thinking and conjecture are not explicit aspects of
the typical elementary mathematics curricula and as such are not areas
where teachers have had much opportunity to hear students work with
the ideas. It is often difficult, then, for teachers to initially see how to
incorporate the algebraic ideas in the required mathematics curriculum.
Moreover, justification involves getting students to engage in a practice
that is often unfamiliar. Here students are asked to challenge what they
see as a perfectly good form of justification (by example) to engage with
other more general forms of argument that apply to all numbers. 

The way we have chosen to focus our algebraic thinking work also has
implications for the types of conversations that support the development
of student thinking. In our early number work, the classroom conversa-
tions generally focused on sharing and detailing strategies. The interac-
tions revolved around establishing norms for deciding whether two
strategies were different and how strategies were alike. In our algebraic
thinking work, conversations are about reasoning together around
whether a mathematical idea is always true, or under what parameters it
is true. These types of conversation require students to put forth argu-
ments and support them, challenge each other’s arguments, and continue
the conversations over time. Students need to find ways both to agree and
disagree with each other, to take on the truthfulness of mathematics and
look beyond a set of procedures or strategies. Thus, algebraic thinking
requires different work by the teacher and different kinds of knowledge
and skills to support that work.

CONTENT AND PROFESSIONAL DEVELOPMENT

Although it may seem clear after reading the different descriptions of
the mathematical content that varying opportunities for professional
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development would be necessary, we did not recognize when we began
this work the extent to which this would be true. We purposely set out to
keep some elements of our professional development the same and to
adapt other aspects of our work with teachers. It is only after years of work
with teachers and examining carefully the impact on both teachers and
students across schools and communities that we have a better under-
standing of the professional development that can support teachers—par-
ticularly teachers in urban schools—to make sense of algebraic thinking
within both the contexts of professional development and their class-
rooms. So, here we articulate our view of professional development gener-
ally (which itself continues to evolve and has evolved since our earliest
CGI work) and then contrast our professional development work across
the respective content domains of number concepts and algebraic thinking.

General Conceptions of Professional Development

For us, offering professional development has always involved offering
ongoing opportunities for learning connected to the practices of teach-
ing. As we plan professional development, we design space for teachers
to come together with us and explore ideas of students’ mathematical
thinking, content, and pedagogy, where we can all make our practice
public and develop ways of learning from each other (Little, 1999). In
conceptualizing how to create these opportunities, we draw heavily on
notions of apprenticeship within communities of practice, the develop-
ment of artifacts to support learning, the role of language, the respective
identities of those coming to the work, and the political and social con-
text in which the work occurs (Greeno & Middle School Mathematics
Through Applications Project, 1998; Lave, 1996; Rogoff, 1997; Wenger,
1998; Wertsch, 1998). We work to develop relationships with teachers and
support the development of relationships of teachers with each other
(particularly relationships around the work of teaching and learning
mathematics). We appropriate and develop artifacts that open opportuni-
ties for participation by as many participants as possible (Wenger, 1998;
Wetsch, 1998). 

Our professional development focuses on the details of student thinking,
mathematics, and classroom practices. However, details without struc-
ture that allow one to make sense of them and the relations among the
ideas they represent, leaves little opportunity for continued learning. So
we look for ways to provide and enable teachers themselves to create
structures for making sense of the details. We pay close attention to who
the participants are, what their experiences have been and why and how
they see themselves both learning and contributing to the learning of the
groups. We help teachers make explicit their views and their histories. We
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take seriously what teachers’ share and use their ideas and experiences as
opportunities for ourselves to reflect on the learning of the group and to
make sense of the extent we are providing opportunities for learning that
can be taken up in ways that are productive for the participants.

Contrasting Approach to Professional Development

An initial comparison between the structure and substance of the early
number professional development and the algebraic thinking profes-
sional development highlights many similarities. In both cases, we struc-
ture the professional development to work in ongoing ways with teachers
and to create overlap between the professional development sessions and
classroom practice. In both cases, we attend to the details of students’
mathematical thinking as a focal point of the professional development
work, and we find ways to help teachers organize the relations between
different aspects of student thinking, as well as different mathematical
ideas. We create opportunities to challenge teachers’ existing notions
about students’ mathematical thinking, the content itself, and their class-
room practices. However, because the content differs, we find some very
specific differences in how we have conceptualized teacher learning and
professional development. We have noted ideas particular to our focus on
algebraic thinking that led to adaptations to professional development.
There are other ways in which one must more generally examine any con-
tent domain in designing professional development (considering the
existing cultural practices for instance). We start first with examples of the
specific adaptations we noted based on our conception of the mathemat-
ical content. We provide two specific examples of how the mathematical
content matters in professional development. The first example relates to
adapting existing practice and focuses specifically on posing problems.
The second addresses issues of teacher content knowledge and specifi-
cally teachers’ stances toward the content.3

Posing Problems

In our number concept professional development, teachers learn about
the range of strategies elicited by particular problem types. They learn
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about how problem types build on each other and what progressions of
strategies look like. And while we may focus on the progression, we find
that teachers engage in much productive work with students by posing a
single problem to students and getting students to detail their thinking.
Where teachers put much of their effort here is in supporting students in
detailing their thinking and explaining it to others. Whereas some teach-
ers attend to construction of a careful sequence of problems, many teach-
ers do not. We have observed teachers use a range of approaches for
sequencing problems, all with positive outcomes for students. Sequencing
of problems turns out to be less important in this case. Students are able
to make connections within and across problems without careful sequenc-
ing. So, to get started in the number concept work, teachers could pose a
single problem, then work on improving how they support students’
thinking. They could draw on their many experiences with posing single
problems to students. So productive problem posing begins quite readily
in number concept professional development.

Our algebraic thinking work demands a different type of problem
posing that does not build on existing practices of teachers and demands
careful attention to the problems themselves. Because the focus of our
algebraic thinking work is not on detailing a specific strategy (and its rela-
tion to other strategies), but rather reasoning about a key mathematical
idea, multiple problems are often necessary to engage in the discussion
and the sequence of the problems can be used to highlight elements of the
mathematical idea and/or the students conceptions of the mathematical
ideas. The sequence of tasks and the interaction around those tasks as a
community become very important to developing algebraic thinking.
Take for example 8 + 4 = _ + 5. If the students put a 12 in the box because
they believe the answer comes next, one might pose a true–false number
sentence like 7 = 3 + 4. If the students respond that it is backward and you
cannot write it that way, one might pose 7 = 7 or 7 + 0 = 7 + 0. The idea is
that the number sentence posed is intended to challenge students’ ideas
and, although many different number sentences and sequences of number
sentences could do this for students, working on the algebraic ideas does
require thinking about sequence, not about posing a single problem and
letting students work through it. Focusing on the sequence of problems
requires the teacher to think ahead while keeping the mathematical idea
central and at the same time listening to the students. This requires quick,
real-time decision making while also orchestrating conversation among
the students (which also may be a new practice). 

Creating a sequence of problems to engage in algebraic thinking occurs
not just in working through ideas about the equal sign, but also in working
on ideas of relational thinking and creating opportunities for students to
think relationally requires opportunities for conversation and that
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conversation can be productively scaffolded by choosing problems that
particularly draw out children’s current thinking and challenge them to
think relationally. We saw one such sequence in a situation where a student
had developed good computational strategies for solving problems like
43 + 28 = _ + 42 (for a full account of this interaction, see Carpenter et al.,
2003). The student needed to work with problems that would encourage
her to not use those computational strategies and think across the equal
sign. The teacher posed a several similar open number sentences, which
the student solved by computation. In order to encourage the student to
consider an alternative strategy, the teacher posed the following problem
in which the relations are more transparent 15 + 16 = 15 + _. The student
saw the relation and recognized that she did not need to calculate. This
was followed by a problem similar to the ones the student had solved by
calculating (28 + 32 = 27 + _). With a little support, the student soon real-
ized that she could also use relational thinking for this problem and for all
the problems she had solved earlier. Here the teacher used a sequence that
included a critical problem that pointed to the relational aspects of the
number sentences. The student was not showing any progress in moving
to use relational thinking until this key problem was posed. 

Teacher Content Knowledge and Stance Toward That Content

The fact that algebra in the form of generalizing, representing, and justi-
fying arithmetic ideas proves to be a more challenging content domain
than number concepts for elementary teachers would not be surprising.
However, we find that whereas content knowledge is an issue within both
domains, there are particular differences across the domains in the oppor-
tunities that teachers have had to deepen their knowledge and in the
stances teachers take to that knowledge.

In our professional development work, we have watched while teachers
worked through the content. Teachers not only want to work on solving
the problems themselves, but they also want to think about how to elicit
that range of thinking in their classrooms, how to support students in
making progress in their thinking, how to think about sequencing
problems in productive ways, and how the content of algebraic thinking
is connected to other mathematical ideas that we work with in our class-
rooms. Here is where we see the need for engagement around the content
of algebraic thinking. Instead, we want to support teachers to deepen
their understanding in ways that allow them to design the sequences of
problems they want to pose, to tweak the follow-up questions that they
ask students, and to notice when opportunities for algebraic reasoning
occur within their ongoing mathematics work. So, whereas the profes-
sional development needs to address the content knowledge of teachers
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in algebra and early number content, there are differences in the support
teachers need to teach them. In particular, there are differences in what
teachers need to know to organize their understandings and make explicit
the relationships across students’ thinking and problem sequences.
Engaging in this type of mathematical work requires deep understanding
of the content and because elementary school teachers have had less
opportunity to work themselves or with their students around algebraic
reasoning, often teachers have developed different stances toward the
content and require more support.

Teachers’ stance toward the content makes a difference in the practices
they appropriate, the ways they go about learning the content, and then how
they teach the content. Most teachers we have worked with do not see them-
selves as knowing algebra or as ever having needed to know algebra. And
although we ran into issues of content knowledge in our earlier CGI work,
particularly around the structure of the base 10 representation system, the
teachers seemed to feel confident that they could master the content issues
that might arise as they taught that content. Teachers engaged in algebra
lacked that confidence and worried about being able to productively engage
students in algebraic thinking. This became exceedingly clear in the very
first algebraic thinking professional development session we carried out in
Los Angeles. We began by working with a group of grade K–5 teachers expe-
rienced in CGI as part of ongoing professional development. These teachers
were all from the same urban elementary school (a low performing, predom-
inately ELL school with over 1,400 students) where we had worked together
for more than 3 years on CGI. The teachers as a group were skilled in talk-
ing about students’ mathematical thinking. They worked in their classrooms
to develop mathematical understanding by building on their students’ exist-
ing mathematical ideas; they could talk with and learn from one another,
and they were developing confidence in themselves as mathematics teach-
ers and advocates for their students. 

We were struck immediately by how the teachers responded to the
algebra professional development. The teachers were both anxious about
the algebra they anticipated engaging in and excited about doing some-
thing new. We started with the equal sign. We asked them to predict how
their students would solve some problems of the sort discussed earlier
(e.g., 8 + 5 = _ + 9) and then shared with them data on one of the prob-
lems from first through sixth graders. The data that revealed students’
limited procedure-based understanding of the equal sign made them stop
and think, and they raised a number of options for addressing the equal
sign in their classrooms. But the tone of the interactions changed when we
seeded a conjecture about commutativity. The teachers worked to create a
written conjecture, edit it, and then justify it. As we circulated among the
small groups working together, teachers whispered to us things like, “I’m
not sure we know what you want” or “You know, I am not too good at
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math,” and so on. But the teachers worked diligently on the justification
with those sitting near them. The looks on their faces when they found
they could justify it, were of pride and amazement. They surprised them-
selves that day with their math knowledge. 

We have continued to see teachers surprise themselves with how much
algebraic thinking they are capable of. However, many teachers remain hes-
itant. They do not see themselves as strong mathematically. Some see being
strong mathematically as being able to give answers quickly, immediately
knowing what to do, and knowing what the rules and procedures are—
and, according to this criterion, some teachers are not strong mathemati-
cally. We have teachers who come to the algebra work with views of
mathematics as a predetermined set of procedures to be memorized with
confidence that they know they can share with their students. We have
other teachers who fear algebra. They see algebra as something they have
never been and never will be good at. They see it as an abstract manipula-
tion of symbols that does not make sense. The algebra work seems to bring
out a level of anxiety that does not exist in our earlier work. It also brings
out more of a rule orientation to mathematics.

Considering the particular content knowledge that teachers need,
along with a detailed understanding of how to use that content knowl-
edge in teaching, as well as the stance toward that content knowledge that
teachers bring to the professional development, we have made particular
adaptations to our professional development. In particular, we address
how the teachers see themselves in terms of the content, we create norms
to help them feel comfortable with engaging in content conversations and
to see what they do know about the content, and we support the creation
of tasks that help teachers develop their knowledge in practice.

Issues of Teacher Learning

Beyond these two specific examples of the relationships between profes-
sional development and content, we have also considered some more
general issues related to teacher learning that we take into account when
we design professional development that play out a bit differently
depending on the content addressed: existing cultural practices, the
appropriation of practices, and the social and political context of the work.

Cultural Practices

Various communities have their own long-established ways of doing the
mathematics. These cultural practices form the basis for how students
and teachers engage with the content and highlight the values, beliefs,
and knowledge that teachers, students, and families bring to the mathe-
matical work. Understanding these cultural practices and making them
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explicit then enables us to make them sites for teacher conversation. We
need to understand how particular cultural practices may interact differ-
ently with different mathematical domains to create a more subtle adap-
tation to the design of our professional development. 

Solving multidigit addition and subtraction problems provides a good
example of a cultural mathematical practice related to our number
concept work. Teachers and students engage in solving multidigit sub-
traction problems by using the standard regrouping algorithm; this is the
way to solve multidigit problems. The procedure defines the mathemat-
ical norm, what’s right, explicitly and completely. The standard algo-
rithm is passed on from older brother to younger sister, from parent to
child, from teacher to student, and so on. It exists both inside and outside
the school (although different algorithms are standard in different coun-
tries). We have heard students describe how their parents made them
erase all the mathematical work from their homework page and do the
standard algorithm, so they can turn it in right. Teachers ask us again and
again to show them how to teach the algorithm right, as if we have a sim-
ple and elegant way to teach it so that every child, if they listen, will get
it the first time. 

The standard algorithm for regrouping exists across settings and is
viewed as the method to use—it is what we all know to do. The standard
algorithm for regrouping serves as the basis for engaging in practice
around multidigit addition and subtraction, and engaging teachers in
thinking about alternative invented algorithms—as we do in our work—
must take these long-established practices into account by making them
explicit sites for conversation and learning.

Algebra carries its own set of standard cultural practices. Algebra is
often seen as bounded by rules; algebra involves doing a series of steps
and making sure you do not forget any: “Do the same thing to both sides.”
So many of the teachers we work with in solving problems themselves
repeat this mantra and cannot solve problems in any other way. The
cultural practices around algebra are also evident in how we notate and
how we use language. Multiplication is notated as 3a instead of 3 × a. The
word equal means the answer comes next, whereas in our work we use
the words the same as for the equal sign to highlight the relational aspect
of the symbol. The notation and language associated with the content
plays out in how teachers talk about algebra, how our professional
development conceptualization of algebraic thinking may be different
from the norms of teacher communities, and how those coming to profes-
sional development may be used to different sets of norms and language.

But, maybe even more important than these particular culture prac-
tices, algebra carries with it a sense of who can participate. Smart kids do
algebra and smarter kids do algebra earlier in their academic career.
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Teachers report that their students do not yet have the skills necessary to
do algebra. Girls tell us it is okay if they are not in the group doing alge-
bra because they are not ready yet and need to be in a group that goes
more slowly, because algebra is hard. Parents who hear that their child is
learning algebra are proud and hopeful. 

The culture around doing mathematics helps determine the stance that
teachers and students take toward the work of algebra, and so our under-
standing of this culture of algebra should influence how we design learn-
ing opportunities.4 We must consider the practices that exist in and
outside of the classroom and school, as well as the notation and language
used to support the practices, and use them to shift the substance of the
conversations in professional development.

Teacher Appropriation of Practices

As teachers begin engaging with new ideas in the professional develop-
ment, they immediately begin to wonder how to make sense of the ideas
in terms of their classroom practice. Teachers begin to understand the
development of students’ mathematical thinking and want to figure out
how to make use of it in their classroom practice. As teachers do this work,
they immediately draw on those practices available to them at that time,
practices the teachers have used for many years with many different
students, practices that have been refined to accomplish particular goals
under particular conditions. Figuring out which teaching practices can
support the development of student thinking or algebraic reasoning
constitutes significant mathematical work. Teachers must draw on their
existing practices, tweak them, and adopt new ones. And the practices that
support the development of student thinking in place value may not be the
same as those that support students’ algebraic thinking. We have learned
in our studies of teachers across the content domains that there are some
significant differences in the practices that support the development of
student thinking, and we have learned that the kinds of adjustments
teachers need to make to their existing practices are also different. We
have seen this particularly in the kinds of questions teachers ask, and the
ways that existing practice influence how teachers implement the ideas of
the professional development in their classrooms.
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Teacher Questioning

In our number concept professional development, we spent time provid-
ing opportunities for teachers to develop skill and understanding around
how to elicit student thinking. As teachers developed a sense of the poten-
tial range of student strategies and what to listen for, they also developed
ways of questioning to elicit the strategies. Teachers saw eliciting student
thinking as challenging work until they developed questions that would
support students and learned how and when to ask them. Most of the
questions the teachers asked students required students to explain a strat-
egy, to in some way explain to the teacher what they did. 

In our algebraic thinking work, again teachers elicit student thinking,
but here teachers are not trying to elicit what strategy students’ used, but
rather they need the student to explain more about why they did what
they did. Take, for instance, the problem we have discussed throughout
the chapter, 8 + 4 = _ + 5. Often teachers begin by asking, “How did you
solve the problem, tell me what you did.” This will productively get the stu-
dent to explain how they added the 8 and the 4. If they put a 12 in the box,
then more questions are necessary to find out why they put 12 in the box.
If they put 7 in the box, asking students to explain how they got to the 7
will not help students who compute both sides to think relationally. The
same would be true for a problem like, 75 + 28 – 28 = _. Teachers may
begin by asking, “How did you do that?” This is a question they have
asked before and they appropriate here. And, whereas this question
begins to get students to talk about their thinking (I took 28 – 28 and got
zero and then 75 – 0 is 75), it does not as readily lead students to thinking
about a conjecture they might be able to make about the properties of
zero. Over time, the teachers come to ask more often, “How did you know
that? Will that work for all numbers?” These questions get students
to reason why particular approaches work and lead to potential for
generalization. However, figuring out how and when and what questions
to ask is not simple and takes significant work on the teacher’s part. It is not
about learning a predetermined set of questions to ask. It is figuring out
how these questions fit with and do not fit with the questions they already
ask, which of these are best asked when, of which students, under which
conditions, and so on. Having questions to draw on helps the teachers get
started in engaging students in algebraic thinking, but many of the ques-
tions they ask need tweaking to get at the algebraic ideas we address.

How Existing Practices Influence
Teachers’ Implementation

When working with teachers who have little experience in eliciting stu-
dent thinking, we found that their existing practices lend themselves to
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not eliciting or engaging in conversations around the ideas of algebraic
thinking. Often the existing practices of teachers do not include ways of
getting at student thinking, but do include many ways of getting at
students’ answers and making sure students get the correct answer. One
of our biggest professional development surprises came when we worked
with a group of teachers on the equal sign and true–false number sen-
tences and they turned our jointly constructed lists of potential true–false
number sentences designed to challenge students’ notions about the
equal sign into a worksheet. The teachers were very concerned about the
data around students’ understanding of the equal sign and they had col-
lected their own data only to find their students also had many incorrect
notions about it. The teachers wanted to “fix” this situation immediately.
We discussed true–false number sentences and created together
sequences we could use to challenge these notions; we watched conversa-
tions other students had as they engaged with the true–false number sen-
tences, and we talked about the kinds of discussions that may ensue. Yet,
after leaving the professional development, teachers relied on existing
practices to help them. They created worksheets of true–false and open
number sentences so they could practice getting the correct answers to
problems like 8 + 4 = _ + 5. The teachers used the worksheets for contin-
ued practice. They were collected, graded, and returned to the students.
The worksheets were not used to promote discussion, to challenge exist-
ing ideas, or to figure out why 12 would not go in the box. The worksheet
was an artifact of existing practice. The teachers used the sequences we
discussed in class in the context of an existing practice and changed the
purpose of the number sentences themselves. Here the teachers appropri-
ated a practice that was not helpful in relation to developing algebraic
thinking, particularly relational thinking. In retrospect, we should not
have been surprised by this. The work around the equal sign did lend itself
to this existing practice, and it was a case where teachers saw themselves as
having to get to it immediately because they were appalled that their
students were getting these problems wrong. We need to recognize the
teacher’s need to quickly address the issue as well as the practices they have
to draw on, discuss them, and create tools to support different practices
teachers can use.

The Social and Political Context of the Classroom
and School Community

Certainly the way that the broader community defines what is important
in mathematics makes a difference in how teachers come to the professional
development and make sense of it in their classroom. We worked in one
district where the district administrators were thrilled to have us because
they saw the importance of engaging elementary school students in algebra.
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They had a large high school drop out rate and high failure rate in alge-
bra. They saw our work as a way to solve their problems. However, the
district as a whole had a procedural view of mathematics, and their goal
was to raise test scores. They had done little work in developing mathe-
matical understanding. We began our partnership by working with all
teachers in one elementary school within this district. Because the school
had a history of teachers alienated and not working together, our work
there was a struggle. We had designed professional development where
teachers needed to work together and make their practice public. We
learned a great deal in this setting about how teachers appropriate exist-
ing practices that are not productive for engaging in algebraic reasoning.
We also learned how algebra opened administrative doors for our work,
but at the school level, teachers’ struggles to see how algebraic thinking
fit; the skills-based testing and accountability agenda of the school and
district made our work more challenging. 

We also work in districts where the curricula is mandated and the
teachers are held to a daily pacing plan with benchmark accountability
measures at the end of each academic quarter. In this environment, seeing
the “fit” of the professional development work with the pacing plan and
assessments proves challenging. This has not been the case in our number
concept work, where all teachers see the operations as central, and the
strategies are so robust that almost regardless of what teachers do, some
of the strategies arise as teachers work through these problems with
students. Teachers may not see how central the role of word problems is,
but they are already in the textbooks quite explicitly so our work requires
supporting teachers to see how to make use of them as resources for the
development of children’s number and operations concepts. 

In our algebraic thinking work, fit becomes an issue that requires atten-
tion and a different kind of work. Teachers need support in noting where
these ideas emerge. We have found with the algebra work that teachers
have to strive to make space for algebraic thinking in their classrooms. We
are asking teachers to notice when opportunities arise in doing arithmetic
to extend these ideas to algebraic thinking. This happens when writing
number sentences and taking the time to talk about the equal sign; it
happens when asking how many legs 6 cows have, and the students all
solve the problem by making 4 groups of 6, providing an opportunity to
make a conjecture about commutativity. Noticing were algebraic ideas
can be addressed is challenging work. Openings for algebraic reasoning
come up quite often, but they are not readily apparent nor is it easy to
know how to take them up.

In each of the professional development settings, the political and
social culture played out in our work. In some of the cases, like that
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described earlier, algebraic reasoning may not have been the best starting
place because of the fit issue. In other cases, the political face validity of
algebra and the severe difficulties in later algebra courses motivated the
district to ensure teachers had time to participate, which provided us
entry and time to build relationships with schools and teachers in a way
that could lead to ongoing learning.

ADAPTING PROFESSIONAL DEVELOPMENT

As we reflect on the changes to our professional development and our shift
from addressing number concepts to algebraic thinking, we recognize that
we have maintained our general approach to professional development.
But we have also adapted the artifacts that we use, and the ways in which
we interact around the artifacts. Our final section provides specific exam-
ples of the adaptations we have learned to make in our algebraic profes-
sional development. These examples include the development of new
artifacts and the adaptation of others to support teacher learning through
practice and the creation of opportunities for teachers to enrich their
knowledge in practice.

Development of New Artifacts

Index Cards. As we mentioned earlier, the teachers often appropriated
practices that focused on whether students got the correct answer and not
how they were thinking about the mathematical idea (as they did when
creating worksheets to help students learn about the equal sign). Teachers
also took the true–false number sentences and used them with students
without thinking about how to productively sequence the number
sentences in relation to student responses. So, we created a tool to support
a different type of classroom practice. As we worked in professional devel-
opment in creating true–false number sentences to challenge students’
notions about the equal sign, we had teachers write the number sentences
on index cards. As we discussed sequencing, we talked about how one
might move through the set of index cards and how different responses
from students could justify different card selections by the teacher. The
focus became creating sequences of number sentences that could vary. We
created the image of carrying around a stack of cards, rather than creating
pre-made worksheets. Our goal was not necessarily to get each teacher to
carry a stack of cards, but rather to use the index cards as ways to commu-
nicate a nonlinear, flexible approach to working with the true and false
sentences that required teachers to focus on sequencing and to emphasize
student conversation over student answers.

13. CONTENT MATTERS 353



We used index cards throughout the professional development when
we created true–false number sentences to foster the learning of number
facts, or different number facts to seed a conjecture, that teachers added to
their set. As we learned, we added additional index cards to our sets, and
whereas teachers collected their own set, the cards were co-constructed
within the group. We often used these cards for review, to reflect on how
we were thinking about and using the ideas in the classroom. The index
card artifact was designed to be used both within the professional develop-
ment and the classroom and to help carry new ideas and practices
between the settings. The artifact then lent itself to the work of algebraic
thinking both in the professional development and in the classroom.

Creating Video Excerpts. The index cards were not the only new arti-
facts were supplemented by predesigned video segments that depicted a
sequence of a student’s responses as their mathematical ideas developed.
These sequences were not about a single answer to a single problem, but
focused on how a student responded to a series of true–false number sen-
tences and how the responses changed throughout the engagement. We
also included video episodes of classroom interactions to provide oppor-
tunities for conversation about teachers and students engaged in discus-
sion around the mathematical ideas. The content of the algebra work
develops often as students engage with and challenge one another.
Disagreement and argumentation, as well as agreement, become part of
developing algebraic ideas. These ways of engaging are often different
from how elementary teachers think about teaching mathematics and dif-
ferent from how they think about the mathematics. We wanted to support
talk about the pedagogical moves teachers could appropriate to support
this learning. 

Supporting Knowledge in Practice

Drawing Examples from Teachers’ Classrooms. As we attempted to build
teachers’ classroom practice into the professional development and to
help them develop knowledge about identifying opportunities for alge-
braic thinking, we bring examples of interactions we observed in teachers’
classrooms to the group for discussion. For example, in a third-grade
classroom, we watched the teacher pose the following problem to her
class as a warm-up: If 6 cows have 4 legs each, how many legs are there
altogether? She asked the students to share their strategies at the board
after having solved the problem at their desks. The teacher elicited four
different strategies. All of the students represented the problem as 4
groups with six in each group. Two drew pictures (four circles with six tal-
lied in each), one counted by 6, four times and one added 6, four times.
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The teacher acknowledged that the children had done a good job and
asked a follow-up question about the number sentence that could be writ-
ten. But she did not pursue commutativity. We brought the story of this
example to this teacher’s next professional development session, as well
as to other professional development groups, to discuss what might have
been the array of options at that point and why you may or may not pur-
sue the different options. The goal here was to help teachers notice when
opportunities for algebraic thinking come up and how they might pursue
them (as do Blanton & Kaput, 2002). We see numerous examples as we
watch teachers engaged in teaching mathematics that create great oppor-
tunities for discussion, sometimes because of the exciting things a student
may have said or a question the teacher asked that opened up discussion,
or a missed opportunity for engagement in algebraic thinking. We did not
find that we did as much of this in our CGI work. Often the teachers
would bring these examples themselves, and when they did it was often
more about what a child had done and less about how the teacher moves
in relation to what the student said. And whereas we can prompt teach-
ers to bring them up, the prompting has been less successful in algebra.
Having conversation around teachers’ own practices (real-life situations
that come up) engages the teachers in sense making around their own and
their colleague’s practice. It helps teachers learn to make their algebraic
thinking practice public and over time we do see some teachers bring up
these examples on their own. We do think having to work more carefully
on noticing opportunities for algebraic reasoning relates to the difficulty
with creating a space for algebra in contrast to the whole number work,
which is everywhere.

Build in Ways to Reflect on Student Understanding. In the second year
of our work with over 100 teachers in a large urban district, we have
found ourselves creating structured opportunities for teachers to reflect
on where their own students are in their understanding of the various
ideas of algebraic thinking. This group of teachers uses the same mathe-
matics textbook and follows a district pacing plan that is connected to
quarterly benchmark assessments. However, although opportunities
exist to use algebraic thinking in textbooks and on some of the bench-
mark assessments, the teachers often do not have a sense of where their
students are in their ability to engage in algebraic thinking. We created a
midyear student assessment that covers key ideas we had been working
with using a limited number of problems. 

In one professional development session, we asked the teachers to give
the assessment to their students and determine if they could notate, as
they walked around and asked questions, what their students were doing
in attempting to solve the problems. Then, in the subsequent professional
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development, we looked them over and discussed where we might want
to go with the different ideas. Our goal is to support teachers to create
ways of knowing more about their students’ algebraic thinking and to
generate possible next steps. We hope to provide opportunities for the
teachers to create structures for making sense of student understanding
with the algebraic ideas. This is not as clear in the algebra work as in the
early number work. Moreover, the existing curricula does not support
teachers to build these ideas because the district assessments focus so
much on whether students can do mathematical operations and solve
narrowly defined types of problems.

CONCLUSIONS

We have always focused on the substance of what occurs during profes-
sional development. We agree with our colleagues that we must make
explicit the content of teachers’ inquiry as we characterize professional
development (Grossman, Wineburg, & Woolworth, 2000; Lehrer &
Schauble, 2000; Little, Gearhart, Curry, & Kafka, 2003; Richardson, 1990,
1994; Schifter, 1997; Warren & Rosebery, 1995). We recognize that success-
ful professional development that leads to ongoing, generative teacher
learning cannot be created by considering only the forms of professional
development, such as the use of cases or lesson study or the use of student
work. In creating learning opportunities for teachers, we have found that
it is not just the form of the professional work that makes a difference, but
the content-driven interactions within those forms. So, on the one hand,
we can enumerate some key general principals for supporting profes-
sional development: (a) Support the development of communities where
teachers engage in inquiry; (b) understand that student thinking provides a
tool that engages teachers, makes explicit their and their students’ partici-
pation with the mathematics, and provides a trace of the community’s ideas;
and (c) understand the histories and cultures of the communities that we
enter. On the other hand, what we now realize is how deeply these
general ideas interact with the specific mathematical content on which the
professional development is based.

Our change in mathematical terrain has highlighted for us the role of
specific mathematical content in coming to understand how to create
learning opportunities that teachers can take advantage of and make
sense of in meaningful ways. Given the variations across content in cul-
tural practices, including the extent to which that content is already rep-
resented in standard texts and curricular expectations, in political and
social contexts surrounding it, and teachers’ understanding and stance
toward it, the artifacts and forms of engagement also may need to vary.

356 FRANKE, CARPENTER, BATTEY



This chapter begins to articulate in what particular ways content may
make a difference in the design of learning opportunities for elementary
school teachers. We recognize that professional development for teachers
requires constant attention to and explicit articulation of the mathemati-
cal content being addressed. We are more convinced than ever that content
matters in designing professional development. 

ACKNOWLEDGMENTS

The research reported in this chapter was supported in part by a grant
from the National Science Foundation (No. ESI9911679) and a grant from
the Department of Education Office of Educational Research and
Improvement to the National Center for Improving Student Learning and
Achievement in Mathematics and Science (No. R305A60007-98). The
opinions expressed in this chapter do not necessarily reflect the position,
policy, or endorsement of the National Science Foundation, the Department
of Education, OERI, or the National Center.

REFERENCES

Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In
D. Pimm (Ed.), Mathematics, teachers and children (pp. 316–230). London: Hodder
& Stoughton.

Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equal sign.
Mathematics Teaching, 92, 13–15. 

Blanton, M., & Kaput, J. (2002, April). Developing elementary teachers’ algebra “eyes
and ears”: Understanding characteristics of professional development that promote gen-
erative and self-sustaining change in teacher practice. Paper presented at the AERA
annual meeting, New Orleans, LA.

Carpenter, T. P. (1985). Learning to add and subtract: An exercise in problem solv-
ing. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving:
Multiple research perspectives (pp. 17–40). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Carpenter, T. P., Fennema, E., & Franke, M. L. (1996). Cognitively guided instruc-
tion: A knowledge base for reform in primary mathematics instruction.
Elementary School Journal, 97(1), 1–20.

Carpenter, T. P., Fennema, E., Franke, M., Levi, L., & Empson, S. (1999). Children’s
mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann.

Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating
arithmetic and algebra in elementary school. Portsmouth, NH: Heinemann.

Chailkin, S., & Lesgold, S. (1984, April). Prealgebra students’ knowledge of algebra
tasks with arithmetic expressions. Paper presented at the annual meeting of the
American Educational Research Association, New Orleans, LA.

Clement, J. (1982). Algebra word problem solutions: Thought processes underlying
common misconception. Journal for Research in Mathematics Education, 13, 16–30.

13. CONTENT MATTERS 357



Collis, K. F. (1975). The development of formal reasoning. Newcastle, Australia:
University of Newcastle. 

Davis, R. B. (1964). Discovery in mathematics: A text for teachers. Palo Alto, CA:
Addison-Wesley.

Driscoll, M. (1999). Fostering algebraic thinking. Westport, CT: Heinemann.
Erlwanger, S., & Berlanger, M. (1983). Interpretations of the equal sign among ele-

mentary school children. In J. C. Bergeron & N. Herscovics (Eds.), Proceedings
of the North American Chapter of the International Group for the Psychology of
Mathematics Education (Volume 1, pp. 250–259). Montreal, Canada: Program
Committee.

Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children’s understanding of
equality: A foundation for algebra. Teaching Children Mathematics, 6(4), 232–236.

Fuson, K. C. (1992). Research on whole number addition and subtraction. In
D. Grouws (Ed.), Handbook of research on mathematics teaching and learning
(pp. 243–275). New York: Macmillan.

Greeno, J. G., & Middle School Mathematics Through Applications Project. (1998).
The situativity of knowing, learning, and research. American Psychologist, 53, 5–26. 

Grossman, P., Wineburg, S., & Woolworth, (2000). What makes teacher community
different from a gathering of teachers? Paper published by the Center for the Study
of Teaching and Policy, University of Washington.

Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of
mathematical power by “algebrafying” the K–12 curriculum. In the National
Council of Teachers of Mathematics & the Mathematical Sciences Education
Board (Eds.), The nature and role of algebra in the K–14 curriculum: Proceedings of a
national symposium (pp. 25–26). Washington, DC: National Research Council,
National Academy Press.

Kieran, C. (1981). Concepts associated with the equality symbol. Educational
Studies in Mathematics, 12, 317–326.

Kieran, C. (1989). The early learning of algebra: A structural perspective. In
S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra
(pp. 33–56). Reston, VA: National Council for Teachers of Mathematics.

Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.),
Handbook of research on mathematics teaching and learning (pp. 390–419). New
York: Macmillan.

Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture, and Activity, 3,
149–164.

Lehrer, R., & Schauble, L. (2000). Model-based reasoning in mathematics and
science. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 5, pp. 101–159).
Mahwah, NJ: Lawrence Erlbaum Associates.

Little, J. W. (1999). Organizing schools for teacher learning. In L. Darling-
Hammond & G. Sykes (Eds.), Teaching as the learning profession: Handbook of policy
and practice (pp. 233–262). San Francisco: Jossey-Bass.

Little, J. W., Gearhart, M., Curry, M., & Kafka, J. (2003). Looking at student work
for teacher learning, teacher community, and school reform. Phi Delta Kappan,
85, 185–192.

358 FRANKE, CARPENTER, BATTEY



Loucks-Horsley, S., Hewson, P. W., Love, N., & Stiles, K. E. (1998). Designing
professional development for teachers of science and mathematics. Thousand Oaks,
CA: Corwin.

Matz, M. (1982). Towards a process model for school algebra errors. In D. Sleeman
& J. S. Brown (Eds.), Intelligent tutoring systems (pp. 25–50). New York: Academic
Press.

Richardson, V. (1990). Significant and worthwhile change in teaching practice.
Educational Researcher, 19(7), 10–18.

Richardson, V. (1994). Conducting research on practice. Educational Researcher,
23(5), 5–10.

Rogoff, B. (1997). Evaluating development in the process of participation: Theory,
methods, and practice build on each other. In E. Amsel & A. Renninger (Eds.),
Change and development (pp. 265–285). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Saenz-Ludlow, A., & Walgamuth, C. (1998). Third graders’ interpretations of
equality and the equal symbol. Educational Studies in Mathematics, 35, 153–187.

Schifter, D. (1997, April). Developing operation sense as a foundation for algebra. Paper
presented at the annual meeting of the American Educational Research
Association, Chicago, IL.

Schifter, D. (1999). Reasoning about algebra: Early algebraic thinking in grades
K-6. In L. V. Stiff & F. R. Curcio (Eds.), Developing mathematical reasoning in grades
K–12 (pp. 62–81). Reston, VA: National Council of Teachers of Mathematics.

Sowder, L., & Harel, G. (1998). Types of students’ justifications. Mathematics
Teacher, 91, 670–674.

Warren, B., & Rosebery, A.S. (1995). Equity in the future tense: Redefining relation-
ships among teachers, students and science in language minority classrooms. In
W. Secada, E. Fennema, & L. Adajian (Eds.), New directions for equity in mathe-
matics education (pp. 298–328). New York: Cambridge University Press.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity.
Cambridge, England: Cambridge University Press.

Wertsch, J. V. (1998). Mind as action. New York: Oxford University Press.

13. CONTENT MATTERS 359



http://taylorandfrancis.com


14

Building District Capacity for Teacher
Development in Algebraic Reasoning

Maria L. Blanton
James J. Kaput

University of Massachusetts, Dartmouth

How can elementary teachers who have been schooled in a way of doing
mathematics defined largely by the memorization of facts and procedures
emerge from the constraints of practice that this creates to build class-
rooms that teach a more powerful and general mathematics for under-
standing? How can this type of change be supported systemically and
institutionally so that it becomes deeply embedded in instruction and not
limited to cosmetic features that might be discarded if other demands
shift teachers’ attention? These are some of the questions that have
guided our thinking as we engaged in a 5-year, district-wide research and
professional development project designed to transform how elementary
teachers understand and teach mathematics so that algebraic thinking is
at the heart of instruction. This is an especially challenging task when the
change under consideration is transformative rather than additive, and
when it involves all dimensions of a teacher’s practice. Our effort did not
involve adding new curriculum on top of existing curricula, nor did it
involve substituting a new curriculum for the existing one as occurs when
one implements a standards-based curriculum to replace a traditional
basal text, for example. Rather, it involved getting teachers to see mathe-
matics in a new way, as a process of generalization and formalization, to

361



reorganize their classroom practice to make teaching to this new vision of
mathematics possible and viable, and to change their relationship to their
instructional materials base from one of implementer/consumer to one of
active transformer. 

Our intent in this chapter is to examine the teacher learning that
occurred in this project as a process situated within an institutional context
(Cobb, McClain, deSilva Lamberg, & Dean, 2003) and how both process
and context interact reciprocally to support development. Our findings are
not necessarily unique, but contribute to empirical and theoretical argu-
ments on what is entailed in bringing about generative and self-sustaining
teacher learning (e.g., Coburn, 2003; Elmore, 1996; Franke, Carpenter,
Fennema, Ansell, & Behrend, 1998; Franke, Carpenter, Levi, & Fennema,
2001; Garet, Porter, Desimone, Birman, & Yoon, 2001) with special focus on
the sustained integration of algebraic reasoning in elementary mathemat-
ics. We draw evidence from a large data corpus gathered over a 5-year
period and consisting of teachers’ reflections and written work, students’
written work, observations of classrooms and seminars with teachers and
principals and administrators, and interviews with teachers and principals. 

SUPPORTING TEACHERS IN ALGEBRAFYING
THEIR PRACTICE

Our professional development project, Generalizing to Extend Arithmetic
to Algebraic Reasoning (GEAAR), asks teachers to algebrafy their practice
by transforming and extending the mathematics they teach (typically,
arithmetic) to algebraic thinking and to establish classroom norms of
participation so that argumentation, conjecture, and justification are rou-
tine acts of discourse. An important intrinsic feature of this algebrafication
of elementary mathematics is its own generality (see Kaput, Blanton, &
Moreno, chap. 2, this volume). It cuts across most domains of mathemat-
ics defined by national standards in elementary mathematics (National
Council of Teachers of Mathematics, 2000), and it impinges on virtually all
aspects of elementary teachers’ work. Our approach with teachers has
been to exploit this generality across three dimensions by helping teach-
ers transform the ways they (a) algebrafy their existing instructional
materials by turning these materials into starting points for generalization
and its associated symbolization processes, (b) interpret and build on stu-
dent thinking, and (c) construct classroom practice and culture, so that
algebraic thinking is at the heart of classroom mathematics rather than an
easily marginalized enrichment activity (Kaput & Blanton, 2005). 

Our content goal is to deepen the nature of elementary school mathe-
matics, shifting its focus from the particulars of number and computa-
tional technique to purposeful generalization of mathematical ideas and
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the expression of generalities with increasingly sophisticated symbol
systems (Kaput, 1999, 2001; Kaput & Blanton, 2005). Although such gen-
eralizations naturally arise in arithmetic and in the use of arithmetic to
model situations and phenomena, they can be developed in any mathe-
matical domain and can result in a richer and more varied mathematical
experience for young children (see e.g., Boester & Lehrer, chap. 9, this vol-
ume; Dougherty, chap. 15, this volume; J. Smith & Thompson, chap. 4, this
volume). At their heart are symbolization processes that are not part of
mainstream practice but are at the core of most mathematical thinking.

Our concept of algebrafying classrooms also addresses teachers’ class-
room practice. Algebraic thinking thrives in an instructional context that
both elicits students’ thinking and uses it to build a climate of conjecture
and argumentation so that conjectures can be established or rejected as
valid mathematical claims, especially conjectures regarding the generality
of claims. Thus, in algebrafying classrooms, we are also asking teachers to
unpack years of instructional practice that likely did not attend seriously
to students’ mathematical thinking, including the various symbolization
processes students use (Kaput et al., chap. 2, this volume). 

Because the complexity of change needed in teachers’ mathematical
and instructional knowledge to algebrafy elementary classrooms is
substantial, we need to understand how school and district contexts sup-
port and/or constrain teachers’ growth. This chapter describes how the
school district in which we worked helped build capacity for teacher
change so that algebraic thinking was supported, made intelligible to
teachers, integrated as a regular part of instruction, and related to other
district priorities and initiatives. We organize our discussion around some
of the areas that we have come to view as essential in helping teachers
algebrafy their classrooms: the development of a professional community
network; a distributed approach to district leadership practice, the develop-
ment of a school mathematics culture, the integration of district professional
development initiatives, and the development of teachers’ capacity to
algebrafy their own instructional resource base. 

First, Change Teachers’ Experiences

One perspective on research in teacher development characterizes it as a
process of changing teachers’ beliefs and practices (Cooney, 2001). In a
similar vein, Coburn (2003) describes deep change as going “beyond
surface structures or procedures . . . to alter teachers’ beliefs, norms of
social interaction, and pedagogical principles as enacted in the curriculum”
(p. 4). We characterize such change as effected by a perturbation in what
teachers experience, accompanied by a shift in how they perceive these
experiences relative to their existing beliefs and practice. Thus, we have
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come to interpret the heart of professional development to be about
changing teachers’ mathematical and pedagogical experiences in their
classroom settings and providing a subsequent context in which teachers
can collectively reorganize these experiences. Although this may seem
overly simple, it illustrates an important shift in our own thinking about
our role and that of teachers in professional development. In particular,
our intent became to situate teachers’ learning within the intellectual
space in which they could most authentically think about their beliefs and
practices—their own classrooms. Our assumption was that teachers’
notions about what constitutes good practice or good mathematics,
whether professed or enacted, could be most effectively challenged in the
real time of classroom instruction and through the collective negotiation
of their classroom experiences within a professional teacher community.
As Franke et al. (2001) describe it, professional development should “create
opportunities for teacher learning through professional communities
whose activities are embedded in teachers’ everyday work” (p. 655).

We want to emphasize this point because it clarifies our task as profes-
sional development providers: to support teachers in modifying their
actions in the classroom so that they will experience content and instruc-
tion, and its effects on students’ ways of doing mathematics, in ways that
respect the many and subtle variations in their personal histories and
their school contexts. It also underscores that our task was not to provide
a contained program—one that operated from an extant, finalized set of
ideas and resources—for teachers to study outside the parameters of
their school experiences. In other words, we came to value contextualiz-
ing teachers’ experiences within their own school communities, and the
larger district community, as a way to build the intellectual space for
deeper insight, messiness, and ambiguity—out of which could come real
growth.

The Role of a Professional Community Network 

The Necessity of a Teacher Community for GEAAR. Perturbing teachers’
classroom experiences raises the need for a cohesive setting—a commu-
nity—where teachers can collectively make sense of these experiences. It
is widely recognized that the existence of community is crucial for teacher
learning to be generative and self-sustaining over time (National Research
Council, 1999, 2001). We found that community was critical for building,
sustaining, and extending teachers’ capacity to algebrafy their class-
rooms. In contrast, learning is not generally maintained through random
isolated professional development, such as the professional development
that occurs when teachers take ad hoc courses or attend brief workshops
removed from the intellectual space of their school experiences. 
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Lave and Wenger (1991) argue that teacher learning occurs as teachers
participate in a community of practice. As teachers negotiate discrepancies
in their expertise in order to improve their practice, they arrive at new
meanings and understandings that “derive from and create the situated
practice in which individuals are co-participants” so that “learning becomes
a by-product of participation in joint activities for which teachers have
mutually held goals” (Stein, Silver, & Smith, 1998, p. 29). Thus, a commu-
nity of practice supports collaborative relationships that engage teachers
in research and practice (Carpenter & Fennema, 1992) and is constituted
by mutual professional trust among its members. It exists as a network by
which teachers share ideas and adopt the ideas of others, and reflexively,
as teachers engage in this type of collaboration, the community’s capacity
to sustain growth expands. 

Our professional development design used the following iterative
cycle of activity based on approximately biweekly after school seminars
that consisted of teachers representing multiple grade levels. Teachers
were recruited through district channels (which relied heavily on school
principals) and compensated according to established district patterns:

• Working in small groups, teachers solved authentic and challenging
algebraic reasoning problems (which they sometimes contributed).

• They shared and compared the various groups’ mathematical solutions.
• They discussed how to adapt the problems to the various grade levels

they taught.
• Outside of seminars, working mostly on their own or with school

colleagues, they further adapted the problems and implemented
them in their own classrooms, writing brief reflections on the class-
room episodes.

• At the next seminar, they collectively analyzed classroom stories
based on teachers’ records and reflections on students’ thinking and
artifacts of instruction, including student work. Discussion specifi-
cally focused on the grade-to-grade differences in the problems and
in the student work, particularly the evolution of symbolizations
across the years. It also included examination of differences in
teachers’ strategies and student classroom responses across grades.

• A subset of the problems and their adaptations, teacher reflections,
and student work was selected to become part of a continually
evolving district resource that teachers used as teacher leaders with
new participants.

A second version of this cycle was based on examining teachers’ existing
text and other available materials for standard one-answer arithmetic
problems, as well as somewhat more complex patterning problems, and
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systematically modifying these to build opportunities for generalization
and expression of generality (we refer to this process as algebrafying). Quite
often algebrafying involved varying the givens of the problem so that it
became a sequence of problems that served as a base for generalization. For
example, in the Handshake Problem, instead of treating it as a count of the
number of handshakes for a group of specific size, it was modified to be a
problem about a group of any size (Blanton & Kaput, 2004).

This approach necessarily keeps the attention on teachers’ own prac-
tices, how they understand and are able to transform the mathematics
they typically teach, and how students in their classrooms are able to
think mathematically and how that thinking evolves across grade levels.
In all, it creates a context in which teachers are intellectually vulnerable
and that vulnerability requires the development of professional trust in
order for collegial sharing to occur and to be viable when it does occur.

We have seen that as teachers experiment with ideas, reflect on class-
room experiences, and discuss how students are reasoning algebraically
and how their instruction supports this, they forge a community com-
prised of those who engage, at some level, in this process. Not all teach-
ers participated from within the 15 (district-targeted) participating
schools (there are 28 small elementary schools in the district). Some
selected not to be part of the professional development project; a small
minority (10%) attended at least 1 year of professional development but
remained isolated within the group. We maintain that those in the latter
case were unable to algebrafy their classrooms in isolation and ultimately
suspended their work with the group as other professional development
options arose. Some teachers were especially worried regarding their abil-
ity to deal with “algebraic” thinking and took a less visible role in the
seminars; those who were otherwise active in professional development
had different professional obligations that took priority for them, particu-
larly a high-profile literacy initiative that had begun several years earlier.
As a result, the teacher communities that developed emerged organically
around those teachers who were open to collaboration and inquiry about
mathematics and teaching mathematics and who subsequently became
leaders in their respective communities.

The Development of Community. Thus, whereas the need for community
is not in question, the sticking point is understanding what it takes to
support teachers in creating a community of practice. All organizations
have idiosyncratic features that affect the ways that learning occurs and
renders certain learners (e.g., teachers) potentially unaffected—or affected
in different ways—by external interventions. Moreover, as we have found
and as other research bears out (Garet et al., 2001), constructing community
is a fragile process that requires long-term, sustained collaboration
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among teachers. We estimate that it requires 3 to 4 years to establish a
community of teacher leaders who are at some level of generativity and
self-sustainability in algebrafying their classrooms and in leading school-
based groups to do so.

We find reasons for this time scale in the notion that communities are
constituted by trust relationships, which are in turn constructed through
experience as “ideas and concepts migrate throughout the community via
mutual appropriation” (Brown, Ellery, & Campione, 1998, p. 349). For
example, the development of the GEAAR teacher leader community has
involved ideas, practices, and knowledge developing in individual teach-
ers through experimentation, being shared through collaboration, then
ultimately traveling across schools in the district as teachers test the ideas
of their peers—a process requiring years rather than months. 

A Professional Community Network: Extending the Notion of Community.
Thus, we have found that a teacher community is critical in supporting
teachers as they algebrafy their classrooms, and that constructing
community is a long-term, delicate enterprise. However, we maintain that
even the development of a robust teacher community without a broader
network in which it can exist—or better yet—thrive, can isolate teachers
and threaten the life of this community. Cobb and McClain (2001) note the
difficulties that arise when teachers form a professional community that
is locally viable and responsive yet disconnected from district leadership.
Our view is that the development of teacher communities must be situ-
ated within the context of a larger network that accounts for and is
supported by the institutional setting in which teachers learn and grow.
As such, the broader intent of GEAAR evolved to deliberately generate
distributed capacity at the teacher, school, and district levels by helping
to build networked communities of teachers, principals, and other admin-
istrators. In other words, not only do we advocate for a teacher commu-
nity of practice, but also for what we describe as a professional community
network. By this, we mean an infrastructure consisting of interconnected
but distinct communities that have parallel purposes and that can and do
support each other toward a common goal. We view it as an ever-widening
community system that is strengthened as the complexity of its internal
connectivity evolves and that could conceivably extend beyond district
borders to include, say, parent–teacher communities.

We observed at least three categories of communities evolving within
this district (although they were not all at the same point in their growth
after 5 years) with the mutual goal of supporting teachers’ capacity to
algebrafy their classrooms: teacher communities, principal communities,
and communities based on teacher–principal partnerships. We viewed
these as distinct communities because they were based on differences in
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relationship dynamics (e.g., hierarchical vs. peer) and because each group
necessarily addressed a unique set of issues and purposes. We use com-
munity in plural because of fluid boundaries that allowed participants
membership in like, but logistically separate, communities. For example,
teachers within a particular school sometimes collected as a community
within that school, but also reconnected as part of a district-wide teacher
community. The result was that membership in multiple communities
layered the complexity and potential effectiveness of relationships within
the network.

Bringing District Leaders Into the Professional Development Agenda. To
create systemic support for teacher communities, we offered professional
development for district principals and administrators. This enabled them
to (a) understand and support algebraic reasoning and its implications for
teacher practice so that the evaluation and hiring of teachers would be
aligned with the teacher professional development agenda; (b) assist in
structuring professional development to allow for ongoing teacher collabo-
ration; and (c) promote mathematics literacy school-wide and to integrate
it with other district initiatives so that change would be truly systemic. We
led a superintendent-sponsored Leadership Academy for principals and
administrators, where activities were patterned after those used with our
teachers and teacher leaders were invited to share their classroom
experiences with district leaders. For example, during one meeting of the
Leadership Academy, participants solved an algebrafied version of the Hand-
shake Problem (see Blanton & Kaput, 2004, for a detailed treatment of this
problem), viewed video of district third graders solving it, and then dis-
cussed students’ strategies with the presenting teacher who was also the
instructor for the third-grade class in the video. In another meeting, a sec-
ond-grade teacher discussed with participants how her students’ work
incorporated reading and writing in order to integrate the goals of the
district literacy program. In fact, our mathematics effort was renamed as
the “Mathematics Literacy Program” to establish it as a parallel program in
administrators’ and teachers’ eyes.

As a result of the Leadership Academy, we observed the emergence of
a small group of principals who showed serious (sometimes hands-on)
support for the work in which teachers were engaged with GEAAR. This
included principals and teachers collaborating in specific schools for
the purpose of designing and leading staff development to incorporate the
ideas of GEAAR in existing programs, or principals participating in
school-wide GEAAR teacher professional development to gain more under-
standing about the kinds of knowledge teachers need. Moreover, principals
in the district began participating in a separate (but ideologically parallel)
professional development program, organized and supported by district
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administrators, whose goal was to think about the kinds of content and
instructional knowledge needed to evaluate classrooms that support
learning mathematics with understanding.1

Our intent was to foster the development of a professional community
network. Through joint leadership meetings with district leaders (e.g., the
mathematics curriculum coordinator) and the provider of principal
professional development subsequent to our Leadership Academy, we
engaged in coordinating the respective goals and purposes of both teacher
and principal professional development so that they were as mutually
supportive as possible. As we will explore in the following section, the
existence of communities based in part or whole on principal membership
and connected to the goals of the teacher community seemed to develop
from a particular approach to leadership and emerged as an agent of teacher
change in this district.

The Role of District Leadership

Cobb et al. (2003) point out the need to move beyond the dichotomy of
thinking that exists in research on teacher change that focuses on either
“the role of professional development in supporting teachers’ reorganiza-
tion of their instructional practices and their views of themselves as learn-
ers” or “the structural or organizational features of schools and . . . how
changes in these conditions can lead to changes in classroom instructional
practices” (p. 13). Instead, they and other scholars increasingly view
teacher learning as a process situated within an institutional context and
thus intrinsically constrained or enabled by this context (Cobb et al., 2003;
Franke et al., 2001; Gamoran, 2001; Gamoran et al., 2003; Gamoran,
Secada, & Marrett, 2000; Nelson, 1999). 

This suggests that an interpretation of teacher change should account
for how the institutional setting is organized, how its practices are
defined, how its human and material resources are allocated, and so forth.
Moreover, it draws our thinking to the nature of leadership2 practice of
principals and administrators in the district, because this practice in large
part defines how the institutional setting is organized, and consequently,
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how it constrains or enables teachers in algebrafying their classrooms.
Spillane, Halverson, and Diamond (1999) assert that leadership must be
distributed throughout an organization (e.g., district or school) and should
include the use of teachers as leaders. Gamoran (2005) further argues that
district leadership can increase schools’ capacity for change by providing
substantial time for professional development, giving teachers a choice in
content and instructional practice, and appropriating resources in ways
that respond to teachers’ efforts. Moreover, Gamoran found that leader-
ship supports teacher change when it allows teachers the autonomy to
develop their own expertise and assume leadership roles that reflect this. 

A Brief District History. Primarily, the nature of the decisions and
actions of school principals and district-level administrators are what
constitutes its formal leadership practice. Like any district, the one in
which we worked had its own administrative idiosyncrasies and histo-
ries that have shaped its direction. And, like the administrative bodies in
most districts, it has had a fluid membership whose collective character-
istic is its flux in purpose: as personnel are replaced, district priorities are
often recast in subtle or dramatic ways. This district experienced three
superintendents during our work in the district, the first and third being
district veterans and the second an external hire with a sophisticated
understanding of curriculum and instruction. When the first superinten-
dent departed, the long-time, influential assistant superintendent for
curriculum and instruction accepted a position at a nearby university.
She had been an academic leader in the district for almost 20 years and
had more recently promoted the district’s literacy program, a strong
elementary grades science program, and in cooperation with us, major
improvements in K–12 mathematics curricula and instruction. Her lead-
ership style was informal and collegial, and given a relatively free rein on
academic matters, she promoted the development of school-based study
groups to address issues of curriculum and instruction through a
distributed, organic system of leadership (Gamoran, 2005). Soon after her
departure, and with her political support, the district hired curriculum
coordinators for social studies, language arts, mathematics and science,
and—from within the district—a new assistant superintendent for cur-
riculum and instruction. The mathematics coordinator, at one time a high
school teacher within the district, was in tune with the reform intentions
of the outgoing assistant superintendent for curriculum and instruction. 

This significant flux in personnel resulted in varying levels of commitment
to mathematics teacher professional development at the district level,
underscoring for us the susceptibility of teacher learning to an intrinsic
feature of institutional settings: shifts in regimes. The consistency of
support for our work was through the Title I director and his chief
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academic assistant, a former science department chair at the high school
with strong interest in mathematics and teaching and excellent rapport
with teachers across the district. They regularly attended GEAAR teacher
leader seminars and provided critical support in identifying and recruiting
teachers. Whereas this led to a disproportionate percentage of Title I teachers
as leaders (about 30%), the connection with Title I provided us a critical
avenue for recruiting teachers and learning about the district from an
inside perspective, as a lived-in enterprise (Cobb et al., 2003; Wenger, 1998). 

The net effect of the structures, styles, and specific circumstances
described earlier was to provide both flexibility and credibility for the ele-
mentary mathematics work, as well as specific insider perspectives and
pragmatic assistance. GEAAR’s capacity-building approach fit within a
larger district reform effort that was given varying degrees of support
through to the superintendent level. The result is that we had long-term
access to a subset of the district’s elementary teachers as volunteers.
Whereas a few elementary schools adopted a whole-school approach to
GEAAR, a number of teachers participated as individuals rather than as
members of school-based team. Not surprisingly, whole-school configu-
rations of teacher groups best supported the development of teacher
communities, whereas individual teachers participating in GEAAR
risked remaining isolated within their schools. However, whole-school
efforts seemed to have been largely led by individual principals and not
promoted as vigorously at the district level. Our belief was that increased
collaboration between principals and district administrators—that is, the
strengthening of a principal/administrator community as part of the
professional community network—would increase the possibility for
whole-school teacher development, which would in turn support the
development of teacher communities of practice. As the next section dis-
cusses, during our work there were positive indications of an emerging
principal learning community being more explicitly supported by priori-
ties set at the district level.

A Principal’s Distributed Leadership Practice. Interviews with district
principals and administrators revealed cases of principals’ distributed
approach to leadership and its effect on how teachers participated in
GEAAR. We illustrate this first with the case of Julia3 and Joan, a principal
and third-grade instructor for one of the schools in the district. Julia char-
acterized her principal leadership practice as evolving from a top–down
perspective to a school team approach. In her school, a school-based lead-
ership team evolved from an existing literacy team that had been formed to
discuss issues arising from the school’s literacy collaborative: 
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Initially the group began as a training team to know more about the [liter-
acy] initiative, and slowly we began to discuss other issues in the school,
other parts in the curriculum as well. So . . . very quickly, within a year, we
began to notice that we were becoming more of a leadership team than just
a literacy team, um, just by the nature of the needs of the school. And it
created a much better collaboration among teachers because for the first
time they were able to discuss in an, in almost an informal format, concerns
about children and curriculum that we had not had the opportunity to talk
about before. (Julia, interview)

As she described it, there were two leadership teams for the school—one
for Grades K to 2 and one for Grades 3 to 5. The teams met biweekly out-
side school hours and all teachers were invited to participate on their
grade-level team. Regarding her role, Julia noted:

“I am part of the team . . . and all the concerns and issues and problems are
put forth to the team and most of the decisions are made from there. What
I bring to that team is the ability to facilitate, um, the decisions because
I might see the broader picture or have the connections to carry out the
decision.”

We see Julia’s practice of shared decision making through team collabora-
tion as an example of the type of distributed leadership scholars advocate
in order to support teaching for understanding (Gamoran, 2005).
Moreover, it underscores why she was able to collaborate with Joan to
bring GEAAR into school-wide focus. Prior to this, Joan had been one of
only two teachers from her school that had participated in GEAAR.
Having been with the project from its inception, she was one of our vet-
eran teacher leaders and had approached Julia about designing a school-
based teacher professional development day that focused on algebraic
reasoning. After meeting with Julia, Joan wrote to us: “I am doing a
professional development day. . . . I have put together quite a little packet
for the teachers and would like to do a few activities with them. . . . I spoke
to the principal of the [school] about my idea. She thought that would be
great and [would] impress the seriousness of the math program.” 

As it turned out, Joan’s one-day workshop marked the beginning of a
collaboration with Julia that grew into a multiyear effort to integrate the
mathematics of GEAAR with the school’s literacy program. The integra-
tion grew out of two very practical needs: (a) classroom instruction time
required for the highly structured literacy program consumed the first 3
hours of the school day, leaving very little room for the time-intensive
kinds of mathematics we were advocating; and (b) the school had access
to large literacy grants and could justify the expenditure of these funds on
mathematics if there was a legitimate connection to literacy.
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Joan wrote to us, “[Julia] is very interested in professional develop-
ment for the staff next year. I told her it would be something that we
would talk about. It seems as if it is falling into place.” In describing their
collaboration, Julia noted, “[Joan] and I sat and developed a bibliography
of titles that would be good ‘read alouds’ and good literacy books to work
in the math curriculum, to connect with the math curriculum and from
there we were able to expand the Math Initiative (as GEAAR was termed
by the district) by making that connection. So [Joan] was able to teach the
[math] initiatives as well as make that connection with literacy.” 

We later revisit the significance of integrating GEAAR with other ini-
tiatives across the district. Our point for now is that the distributed nature
of Julia’s leadership practice allowed her to utilize Joan’s expertise and
interests to support teacher professional development, as Gamoran (2005)
advocates. Although Julia was involved in the process, she transferred
autonomy to teachers by supporting teachers in leading professional
development. The result was that Joan was able to integrate her GEAAR
expertise into school-wide staff development. 

Principal Leadership Practice in the District

As with GEAAR teachers, we observed an emerging community of principal
leaders that we anticipated could affect the culture of leadership among
their peers, provided there was sustained, ongoing support at the district
level. Indeed, Julia’s case was not unique among principals in this district.
Leslie, an experienced principal at a small (two-unit) school described a sim-
ilar practice of leadership based on forming group consensus among staff.
Part of her practice involves immersing herself in what teachers are doing:
“I’m involved, I work with the children, I’m in the classrooms, uhm, I go to
all the workshops. I’m there for them.” She also encourages teachers to iden-
tify the programs they are interested in to pursue for further development. 

Marcia, a principal in her third year at a three-unit school, is also deeply
involved in staff development for her school and tries to give her staff the
independence to pursue their own professional development interests. She
noted, “I don’t ask my teachers to do anything that I wouldn’t do myself.
So any professional development activities that I have asked them to
participate in, I have participated in with them.” (In fact, she enthusiasti-
cally participated in one of our summer institutes for teacher leaders.)

Moreover, to support her school’s implementation of GEAAR, Marcia
spent a lot of time in the classroom working with students. As she
explained, “I need to figure out how to do these things myself and . . . I
need to see how the children will react to it.” She described that she and her
teachers engage deeply with GEAAR activities and are thus able to bring
that experience of struggle to bear on classroom practice:
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We felt the same frustrations that the kids feel when we were learning things.
So then we took that and went into the classroom. Of course, in addition to
the classroom teachers some of the Title I teachers participated, so we’d go in
as a group and work with the class. Sometimes there’d be four teachers in the
classroom doing the same thing. It was fun. (Marcia, interview)

As a result of her participation in the GEAAR professional development
at her school (led by two GEAAR teacher leaders), it seemed that Marcia
had come to appreciate the value and complexity of GEAAR mathemat-
ics for teachers and students and so was able to share in how teachers
were experiencing GEAAR. She also subsequently volunteered to be a
teacher leader for her school. As she explained, “I’m doing it for selfish
reasons because math is not my strength, so I thought maybe I could win
something here.”4

Principals such as Julia, Leslie, and Marcia formed the core of an
emerging principal community that existed as part of the district’s
professional community network and whose distributed leadership
practice supported the development of teachers’ understanding of how to
integrate algebraic reasoning into their classrooms. These principals also
partnered with teachers in their schools, thus bringing about a commu-
nity based on principal–teacher collaborations. What was common
among the practices of these principals was a commitment to working
with teachers for the benefit of their own understanding of the profes-
sional development in which teachers were engaged, preserving teachers’
autonomous role in leading and designing professional development, and
sharing decision authority with teachers on issues that affected the school
community.

Although these forms of leadership practice existed prior to our work
in the district, the Leadership Academy was able to leverage this depth of
practice by raising the awareness of principals and administrators to the
kinds of knowledge teachers need to support students’ algebraic reasoning.
Moreover, the academy helped initiate a GEAAR principal community
(although this community was still fairly young relative to its potential
influence on the district) that specifically supported teachers in the imple-
mentation of GEAAR through choices in how resources were allocated,
through planning and participating in the professional development with
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teachers, through joint instruction with teachers in classroom GEAAR
activities, and so forth. Leslie noted that her participation in the
Leadership Academy had given her an initial understanding of “how
important and exciting” the mathematics advocated by GEAAR was for
children. This, in turn, gave her the legitimacy with teachers to support it
as a school-wide initiative. 

Given what we observed with how principals in the district were coming
to understand and support GEAAR based on their experiences with it, we
maintain that effective teacher professional development is enabled by
parallel principal professional development whose purposes include
building a principal community that supports the particular goals of
teacher professional development and whose members operate within a
distributed approach to leadership. Because new GEAAR teacher partici-
pants in the fourth and fifth years of the project were increasingly drawn
from a population who were less enthusiastic about professional develop-
ment in teaching mathematics (those eager to participate were naturally
among the first wave of participants), we found that the existence of a
cadre of principals who wanted to integrate algebraic thinking into their
schools was an essential resource for accessing this more reticent teacher
population. We should note that, although participation was always
voluntary, if a school principal decided (usually in concert with both
district-level administrators and one or more teacher leaders who hap-
pened to be in their school) to promote GEAAR, then not volunteering
was to resist peer pressure in a conspicuous way. Hence participation at
whole-school sites was typically at 90% or higher.

Developing Congruency Across Professional
Development Initiatives

Garet et al. (2001) assert that teacher professional development has more
impact when teachers perceive the program as relevant to other school
activities. We watched this play out firsthand in the district, where increas-
ing congruency between GEAAR and other professional development
initiatives helped leverage the influence of GEAAR across the district by
bringing access to teachers with a focus on other agendas. The goal of
what we describe as professional congruency is to increase connectivity within
teacher development by identifying and strengthening ways in which
teachers’ professional obligations and interests can reflexively support
each other. The flexibility of the GEAAR algebrafication approach is that
it is not constrained by a curriculum, but rather is designed to help teachers
transform and extend the mathematics they teach, regardless of their
existing instructional resource base. This flexibility allowed us to draw
from and connect with other district initiatives to address professional
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congruency. In our work, this occurred most visibly in GEAAR’s integra-
tion with (a) MCAS, a statewide, high-stakes assessment on which this
district’s performance has been among the lowest in the state; (b) the
district’s highly intensive and structured Literacy Initiative; and (c) in our
fifth year, an extension to another mathematics teacher development
effort, Developing Mathematical Ideas (Schifter, Bastable, & Russell,
1999), adopted by the district to support entry into GEAAR by the least
mathematically prepared teachers and lowest performing schools.5

Integrating Competing School Agendas. The high-stakes nature of MCAS,
with student scores reported at the district, school, and classroom levels,
understandably generates pressure among teachers and administrators
across the district to orient all that they do to improving students’ perfor-
mance on the test. This is complicated by the inability of classroom instruc-
tion that focuses on memorizing number facts and arithmetic procedures
to prepare students for the complexity of problem solving and the diversity
of topics (e.g., probability) found on the highly challenging MCAS tests. So,
to the extent that rote instruction on arithmetic skills existed across the
district, there was an urgent need to change teacher practice so that student
performance could improve. In all, this placed MCAS at the center of what
teachers perceived as relevant to their daily practice.

To address this, one of our objectives was for teachers to algebrafy
MCAS, that is, to identify instances among the existing test items where
algebraic reasoning occurred or to extend tasks so that they involved alge-
braic reasoning, and to adapt these fourth-grade items across grades K–5
for teachers to implement in their daily instruction. We should note also
that we utilized released eighth-grade MCAS items as a source of prob-
lems for the teacher seminars described earlier. In doing so, we were able
to tap into substantial teacher energy and administrative support that
could be aligned with the algebrafication agenda. Simultaneously, as
teachers were made aware of ways in which MCAS already expected
algebraic reasoning, this strengthened the legitimacy of our project in
teachers’ eyes. 

The K–5 Literacy Initiative, begun 3 years prior to GEAAR, was a sub-
stantial and well-funded district-wide focus that required significant
human and material resources and thus constrained what was available
for other professional development initiatives. It began as voluntary,
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whereby a school could choose to become a “Literacy Collaborative.” This
committed the school to supporting the development of a school literacy
coordinator who, in turn, would train the remaining teachers through an
intensive and highly structured program. With extensive summer and
academic year training that took coordinator trainees from their regular
classrooms for as much as a week per month, and a daily 3-hour commit-
ment of classroom instructional time to literacy, Literacy Collaborative
schools tended to be dominated by this initiative, especially during the
first 3 years of participation as a Literacy Collaborative school. 

Teachers found—not surprisingly—that there was not enough time to
account for all the necessary innovations required for literacy, GEAAR,
and other professional development programs offered by the district.
Because of these felt constraints, we tried to design GEAAR so that it
would be congruent with, not in conflict with, the Literacy Initiative. One
of the forms this took was supporting GEAAR teacher leaders, through
regular meetings with us, to integrate the mathematics of GEAAR into
their literacy program and in some cases, to lead school-based programs
in doing so. 

To get a more concrete look at how this played out in the district, we
return first to the case of Julia and Joan. As we described earlier, a one-day
professional development workshop integrating GEAAR mathematics
and literacy that Joan conducted for her school was well received by
teachers. As a result, Julia and Joan collaborated in the design (to which
Julia, the school principal, credited mostly Joan) of a multiyear profes-
sional development agenda in which teachers could explore algebraic
thinking in the context of their ongoing Literacy Collaborative. The core
task was to locate children’s literature that could be used in conjunction
with existing algebraic thinking tasks or for which new tasks could be
developed. In the process of examining the literature, teachers would
solve the mathematical tasks and thus increase their understanding of
algebraic reasoning. Joan wrote to us about the program’s design:

I have talked to Julia and it seems that we are doing a course next year
with or without funding. It would run similarly as what you did. Begin
with a share. Then what we want to do is integrate a piece of children’s
literature. We want each question to align with the [Massachusetts
Curriculum Frameworks]. Also, I am looking for an MCAS question to
accompany the problem. The teachers would walk away with a valuable
binder that they could add to. Hopefully, teachers would bring in more
problems that they could add.

Joan’s plan was to model the teacher meetings after the GEAAR seminar
structure, with teachers sharing their experiences and their students’
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thinking and contributing resources that were or could be algebrafied and
adapted across the grade levels. Perhaps more significantly, we viewed
Joan’s intent to incorporate MCAS questions and to link teachers’ work to
the state frameworks as recognition of the practical need for professional
congruency across efforts.

As Joan described to us, the program was enthusiastically received by
teachers and led to new ways of thinking about mathematics. She wrote:

Our first grade teacher [Carol] has been very involved in the literacy
program. . . . She is also very quiet, but always brings samples of her
students’ work. I really didn’t know how she was thinking. Not knowing
her very well, I got up the nerve to ask her if she always taught math this
way or was this new since we started the class. She told me that she never
really taught this way, but knew what she had been doing before really was-
n’t working. She has admitted that she has changed the way she teaches
math (more open-ended and listens more to how the children are thinking).
She actually looks forward to the problems and is willing to make them
appropriate for her grade level. Some teachers are asking what am I going
to do next year to keep this ongoing in the school. A lot of enthusiasm. [sic]

We took Carol’s case as an example of how professional congruency could
provide teachers access to a diversity of essential innovations while
strengthening their awareness of connections across these innovations.
That is, Carol was simultaneously thinking about algebraic reasoning,
children’s literacy, and how the two domains could be connected. In 4
years, Carol had not participated in GEAAR, yet was heavily involved in
the school’s literacy program. By integrating GEAAR with the literacy col-
laborative, Joan provided a setting that would overlap with Carol’s inter-
ests and open her thinking to new ways of teaching mathematics. And
perhaps most importantly, aligning the professional development would
provide coherence to students’ academic experience. 

Joan’s arrangement was special because she was working within a
literacy professional development agenda. Other teachers successfully
used the GEAAR project as a platform to think about and plan ways to
integrate mathematics and literacy. Gina, a first-grade teacher leader from
a different school in the district, worked creatively in her own practice
to integrate mathematics into the literacy portion of her school day by
selecting literature for “read alouds” that connected to mathematical con-
cepts. In connection with this, she used what she called a “Math Board”
as an interactive forum for students to write math stories connected to
their readings, usually during the literacy portion of the day. The Math
Board has a prescribed structure for story writing that includes identify-
ing number, subject, setting (i.e., Where is the subject found?), and action
(i.e., What does the subject do?). For example, a poem Gina selected for a
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read aloud described “measuring yards and yards of string.” Students
studied measurement concepts, measured string in order to make a kite
tail, then wrote stories for which the subject was kite, the setting was beach,
and the action was twirl. Whereas this particular activity did not involve
algebraic reasoning per se, it is a reflection of an important level of math-
ematical awareness that has grown out of GEAAR.

What teachers such as Gina and Joan were doing in their individual
classrooms and schools was subsequently shared with teacher leaders as
a resource for the seminars they led throughout the district so that, ulti-
mately, these ideas traveled in some form across the district. The result
was that interest in integrating math and literacy spread across teacher
leaders, who by the fifth year of GEAAR were actively identifying
children’s literature to be used in connection with mathematics. For exam-
ple, teacher leaders selected a book whose story line involved doubling
quantities as a context for in/out problems building functional thinking.
Mathematically, this genre of problems became significant for teachers as
a basis for student explorations into more complex and formalized
notions of function (for examples of this, see Blanton & Kaput, 2004,
2005a, 2005b. Situating these problems within children’s literature concep-
tualized the mathematics and thereby gives students an additional way to
access the problem semantics.

As a final example of professional congruency, we describe a collabo-
ration with Developing Mathematical Ideas (DMI), a national mathematics
professional development project adopted by the district in our fifth year.
DMI is consistent with the goals of GEAAR not only because it empha-
sizes student thinking and understanding mathematics conceptually, but
also because it supports real growth in content knowledge necessary for
GEAAR mathematics (Bastable & Schifter, chap. 6, this volume; Schifter,
Monk, Russell, & Bastable, chap. 16, this volume). One of the challenges
of GEAAR was the difficulty in enlisting teachers to think about algebraic
notions when more fundamental mathematical concepts (e.g., place value
and the properties of the operations) were at issue and when the teachers
had no experience in trying to systematically examine student thinking.
DMI addressed an important, foundational content need for the district
and we, in turn, worked with district teacher leaders to think about the
role of algebraic thinking in DMI mathematics.

In all, we have found that increasing the congruency between our own
and other professional development and district initiatives supported
teachers in algebrafying their classrooms for the 110 teachers and 15
schools in which GEAAR had a major presence. At a minimum, it
increased the range of contexts in which algebraic reasoning could occur
and so has increased its potential frequency of integration. Perhaps more
significantly, we maintain that the process of integrating algebraic reasoning
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in diverse subject areas and settings involves a reorganization of concep-
tual structures that can fundamentally alter teachers’ views of mathemat-
ics and how it could be taught. Moreover, we conjecture that building
algebraic reasoning within the context of other subject areas (e.g., reading
and writing) is fundamentally different than teaching it within the context
of a mathematics class. In part, it draws on a different set of teacher skills
and knowledge that requires teachers to find mathematics in a nonmath-
ematical context. But also, the subject areas themselves draw on a differ-
ent personality of instruction. By this, we mean that teachers who feel more
connected to a particular subject area because of inherent interests,
knowledge of the subject, or other biographical factors, can bring a certain
personality to bear on how they teach that particular subject. For exam-
ple, it is widely recognized that weak content knowledge and diffidence
in a particular subject evokes a tendency to control and direct classroom
conversation (if there is any) so that dialogue does not veer into territory
unfamiliar to the teacher. Conversely, a teacher who feels particularly con-
nected to and confident in a subject is more likely to be open and flexible
in how she teaches it. Thus, situating mathematics within a subject area
more comfortable for a teacher can leverage her personality of instruction
for that subject. It was not uncommon for us to find teachers such as Carol
who were less comfortable with mathematics but were deeply involved in
literacy instruction. We claim that integrating mathematics with literacy
supported their mathematics teaching because it accessed their personal-
ity of instruction for teaching literacy.

Thus, we maintain that teachers can develop a deeper and more
compelling view of how to teach in ways that support students’ algebraic
reasoning when they have occasion to think about it across the breadth of
their daily and professional experiences. This has required us to look inclu-
sively at the district’s professional development initiatives in order to
build connections that increased how teachers perceived GEAAR as rele-
vant to their daily practice. Finally, we strongly emphasize that the coordi-
nation of professional development initiatives by and for teachers has
required the support of a professional community network that included
the type of (distributed) leadership practice that would encourage teachers
in designing and leading school-wide professional development.

Developing a School-Wide Mathematics Culture 

I wanted to tell you also that we now have a small study group working
on making a math day a month. We are looking at the end of the math
book to see what kinds of activities are back there that no one gets to. We
are considering having Fraction Day, where all classes will work on fraction
activities appropriate to their grade level. Probability will be on another
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day. . . . It is almost like “back of the math book awareness.” We are also
thinking about giving all classes in the school certain problems to work on
and have an answer on a given day. All of the details will be worked out as
soon as the group is in place. (Joan, e-mail)

This account might seem somewhat removed from the idea of algebrafy-
ing classrooms, but we maintain that it reflects what became an impor-
tant part of reaching out to new participants and supporting them in
transforming their classrooms. Joan’s excerpt is about creating a school-
wide network that can support a culture of mathematics in general and
the ideas of GEAAR in particular. The idea of a school mathematics culture
is connected to the existence of a professional community network; it is
difficult, if not unlikely, that one teacher can impact the culture of a
school without the resources and support of administrative leadership or
the intellectual availability of teachers. Indeed, one of the challenges
teachers faced early in GEAAR’s implementation was being the only
teacher or one of only a few teachers from a particular school who were
participating in GEAAR. Thus, although these teachers became part of a
district-wide community of teachers, they did not have frequent, daily
interaction with this community and were essentially isolated within
their schools.

“Monthly Math Day”

What Joan described, a tentative idea for getting an entire school to focus
on math concepts that were often neglected due to other curricular
demands, grew into a significant event that embedded cross-grade inves-
tigations into fractions, symmetry, measurement, triangles, and geometric
solids into shared school interests. For example, as part of Fraction Day,
each class had to design a class flag whose components could be fraction-
ally described as parts of the whole. The flags were displayed on the
school bulletin board and were used as part of the Olympic ceremonies in
the “Math Olympics” organized by the gym teacher (this ran in parallel
with the 2002 Winter Olympics).

“Our school wide initiative is still building up steam. Teachers are
looking forward to it and we try to get all the supportive people involved
as well” (Joan, e-mail). As the school year progressed, increasing attention
was given to making math a more significant and visible part of the
school culture. Students’ work on common projects across the elementary
grades was posted throughout the school building; nonmathematical
components of mathematical tasks were distributed to those with the
expertise or facilities to accommodate the task. For example, the gym
teacher helped students collect basketball data during gym class so that
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these data could be analyzed in a subsequent math class, whereas the art
teacher worked with students on the artistic development of a Geometric
Circus, in which students constructed three-dimensional geometric
shapes to create a circus with its various components.

There was a reflexive process at work here by which school culture
supported the development of and was simultaneously sustained by a
professional community network, particularly school-based communities
of practice. This process helped build connectivity among teachers, lead-
ers, and ultimately schools via the principals’ network. Because they are
based on shared experiences, school-wide activities such as Monthly
Math Day can help diminish the isolation teachers feel and serve as an
incubator in which community can be nurtured and maintained. At the
same time, the community itself can support the extension of a mathemat-
ics culture so that it becomes more deeply embedded in the fabric of
school activity. What seemed clear in our work is that the development of
a school-wide mathematics culture required the existence of a profes-
sional community network. As we observed this play out, GEAAR teach-
ers who were able to impact school culture did so by leveraging
congruency across professional development initiatives with the support
of a distributed, rather than a centralized top-down, leadership practice,
drawing support from the professional community network as it existed
within their own schools or the district at large.

Enabling Teachers to Construct
Their Own Resource Base

Just an interesting aside so early in the year [sic]. I started right
out with prime and composite numbers, using the number of
days we have been in school. We talked a bit about what would
make a number a prime number and a composite. When we got
to the number 5, Anthony started to think that all odd numbers
would be prime. I asked him to give me another number hoping
it would be 7. It was. Jackson really started getting angry with me
because I wouldn’t call on him, but I wanted this to evolve. I
called on Jackson and he told Anthony that he was wrong.
Anthony started to argue with him, trying to prove his point
explaining that all of the numbers were odd up to this point.
Jackson told him that 9 was odd, but there were different ways to
make 9, so it had to be composite. Anthony just shook his head,
and agreed with him. Then he said I should have gone further. We
took the opportunity to talk about how you have to try many
examples before you can prove your point. I congratulated
Anthony for his conjectures. He looked at me very strangely. I
told him that was a good thing, then explained what conjectures
were. Not bad for the first week of school. (Joan, e-mail)
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The vignette described here, sent to us as Joan, a teacher leader, began
her fifth year as a GEAAR participant, illustrates one of our central strate-
gies for professional development: to help teachers algebrafy their
instructional resource base so that their ability to identify and extend
opportunities for algebraic reasoning would not depend on professional
development providers or resources. As we have detailed elsewhere
(Kaput & Blanton, 2005), this involved teachers developing new activities
or adapting existing materials to use in classroom instruction. Perhaps
more significantly, it required learning to respond flexibly to students’
thinking in the course of daily instruction so that algebraic thinking could
be spontaneously integrated into instruction in meaningful ways. The
mining and algebrafying of instructional materials is designed to build
teacher capacity to exploit their instructional resource base, independent
of its curricular particulars; GEAAR teachers were encouraged to find
and act on their local resources to serve the algebrafication objectives.

Practically speaking, teachers learned to algebrafy their resource base
as they worked in small groups within GEAAR seminars to modify prob-
lems for use in their own classes, with the intent that tasks were to be inte-
grated within their regularly defined curricular responsibilities and not
marginalized as enrichment activities. After teachers implemented their
modified tasks in their own classrooms, they discussed their experiences,
including students’ strategies and representational systems, in GEAAR
seminars. As different grade- level approaches to the problem were com-
pared, teachers came to see their students’ work within the longitudinal
context of the grades that surrounded their grade level, thus situating
their own activity within the broader curriculum. 

In our work, the heart of algebrafying existing arithmetic tasks is to trans-
form them from single-numerical-answer problems into opportunities for
pattern building, conjecturing, generalizing, and justifying mathematical
facts and relationships. This might occur through varying a given problem
parameter (see Blanton & Kaput, 2004), making known quantities unknown
so that the task involves the analysis of relative differences (Carraher,
Brizuela, & Ernest, 2001), or describing and applying generalized properties
of whole numbers (see e.g., Bastable & Schifter, chap. 6, this volume; Kaput
et al., chap. 2, this volume; Schifter et al., chap. 16, this volume). In the
vignette from Joan’s classroom, Andrew’s idea that all odd numbers are
prime presented an opportunity for algebraic reasoning, for examining
whether his conjecture was a valid mathematical generalization for a class
of numbers. Joan was able to spontaneously extend the conversation so that
through peer argumentation, students disproved the conjecture and subse-
quently began to examine what counts as mathematical proof. 

We maintain that the type of mathematical autonomy exhibited here by
Joan is essential in order for teachers to operate independently of a limited
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professional development program. Teachers need a mathematical knowl-
edge that is self-sustaining so that they are not dependent on extant, and
sometimes inaccessible, materials as their sole source of algebraic reasoning.
Our objective was to help teachers see opportunities for algebraic reasoning
in their available resources, or as these opportunities arose in daily class-
room instruction. 

Gamoran (2005) notes that forgoing a prepared curriculum, at least ini-
tially, “helped teachers to match their curricular interests to their students’
emergent thinking” (p. 310). We maintain that teachers’ capacity to algebrafy
their classrooms is supported when teachers are able to generate their own
resource base by rethinking the mathematics they are currently teaching so
that it can be extended in powerful, algebraic ways. As Coburn (2003) sug-
gests, teacher change requires going beyond surface characteristics such as
changing materials or adding specific activities. When teachers are helped to
understand content so that mathematical resources are treated as a dynamic
and flexible body of knowledge that can be adapted for particular classroom
mathematical purposes, they are able to function in more generative and
self-sustaining ways. 

GEAAR teachers seemed to be learning, at different levels of proficiency,
to algebrafy their resources and develop new tasks that incorporated alge-
braic reasoning (Blanton & Kaput, 2005a; Kaput & Blanton, 2005). Gina was
typical of our teacher leaders in that, as she reported, for the first year of her
participation in GEAAR, she focused exclusively on the tasks that we pro-
vided, but grew to regularly identify tasks from her own resources that
could develop students’ algebraic reasoning skills. We describe this as the
development of teachers’ algebra “eyes and ears” (Blanton & Kaput, 2003).
As a teacher leader, Gina observed her “client” teachers become increasingly
able to connect their resources with the mathematics of GEAAR. It became
an important activity not only because it generated mathematical autonomy,
but because it also increased teachers’ perception of professional congru-
ency. Moreover, the development of teachers’ capacity to algebrafy their
own instructional resource base evolved as a shared process situated within
a professional community network. Whereas some teachers showed greater
individual resourcefulness in how they retooled their curricular resources,
their continual sharing of task ideas in community seemed to embed teacher
growth across a larger teacher population so that the end result was a more
deeply instantiated notion of how algebraic thinking fit into the curriculum.

CONCLUSIONS

Our intent in this chapter was to detail ways in which we observed a district
build its capacity to support teachers in algebrafying their classrooms.
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What seemed to be common in our observations was the need to build
connectivity so that teacher change occurred within a complex network
of mutually supportive relationships and ideas. This included building
connections among people and groups through the development of a
professional community network, building connections across teach-
ers’ professional activities so that distinct teacher development agen-
das did not occur in isolation but would make professional congruency
visible and explicit for teachers, building connections across content
domains so that teachers developed a broader, deeper way of thinking
about the content they taught and were able to help students appreci-
ate these relationships, and building connections across the curriculum
so that teachers saw how the content (in our case, algebraic thinking)
could be embedded across a broad expanse of topics. Practically speak-
ing, it involved the coordinated professional development of teachers
and principals and administrators, being flexible in our purposes in
order to increase professional congruency for teachers, and giving
teachers autonomy in developing mathematical insight, making curric-
ular decisions, and providing peer leadership. What emerged from this
was the development of communities of learning where teachers and
principals worked to effect change in how their schools thought about
mathematics.

We were never far from the recognition that our work was a fragile
process subject to constraints and events over which we sometimes had
no control. State budgets and mandates, district priorities, changes in
leadership, teacher interests and availability, all converged to define
how GEAAR would affect the district. In all, it was a fluid process that
required flexibility in our curriculum, goals, and implementation. Our
intent was to help teachers become generative and self-sustaining in
their instructional knowledge and content knowledge so that the princi-
ples of GEAAR would survive the inevitable vagaries of educational cir-
cumstance, outlast our presence in the schools, and continue to evolve
more deeply in teachers’ daily and highly situated mathematical prac-
tices. This will be a measure of the viability of the approaches we have
taken. Ultimately, as we have come to more deeply appreciate, how
teacher learning develops apart from our intervention will be in part a
reflection of the institutional setting in which teachers live their profes-
sional lives.
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Measure Up: A Quantitative
View of Early Algebra

Barbara Dougherty
University of Mississippi

Imagine the following dialogue in first grade as Caylie and Wendy compare
three volumes, D, K, and P:

“I think that volume D is greater than volume K,” said Caylie.
“How do you know that, Caylie? We didn’t directly compare those two
volumes,” said Mrs. M.
“Well,” said Caylie, “we found out that volume D is equal to volume P and
volume P is greater than volume K, so volume D must be greater than
volume K.”
“I agree with Caylie,” said Wendy. “Because volume D and volume P are
really the same amount so if volume P is greater than volume K, then
volume D also has to be greater than volume K.”

The previous dialogue comes from a classroom that is part of the Measure
Up (MU) project at the Curriculum Research & Development Group
(CRDG), University of Hawaii. The MU approach derives from work
originally conducted by a group of mathematicians, psychologists, and
mathematics educators in Russia (Davydov, 1975a, 1975b). Their work
stemmed from a need to improve student achievement so that students
entering secondary education could successfully deal with more complex
mathematics. Rather than focus on changing mathematics in later grades,
they decided that perhaps enhancing the mathematics in earlier grades
was the key to improvement. 
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In their view, beginning in the early grades was not indicative of
rearranging the sequence of conventional elementary topics. Instead, the
Russian group thought more about what children naturally do at early
ages—they compare things. Young children continually ask “who has
more” and create ways in which to measure such as laying objects on top
of each other or putting them side by side. Combining this notion with
Piaget’s work on child development and Vygotsky’s ideas on how to let
instruction lead development, the Russian team began a series of a studies
focused on changing elementary mathematics from a number-centered
approach to a mathematical structure approach.

Traditionally, early elementary students would begin with learning to
count and move from that to whole number addition and subtraction. The
Russian team wanted students to develop an understanding of the struc-
ture of mathematical systems but this could not be accomplished by solely
working with whole or natural numbers. If students understood structure,
Davydov and his colleagues believed that they would be able to apply
properties and underlying foundations to any number system, rather
than only to natural numbers. They used that perspective as the basis for
their mathematical content development. 

Vygotsky’s reference to scientific concepts (1978) was used to further
support this perspective. In Vygotsky’s view, there are two basic means
by which students learn, through either spontaneous or scientific con-
cepts. Spontaneous or empirical concepts are developed when children
can abstract properties from experiences with specific cases, in this
instance number. In particular, these concepts in conventional elementary
programs progress from natural numbers to whole, rational, irrational,
and finally real numbers, in a very specific sequence. Topics are taught
within each number system, and often not connected across the different
systems. Vygotsky distinguishes scientific concepts from spontaneous
concepts. Scientific concepts, as he describes them, develop from experi-
ences that focus on big ideas or conceptual foundations and then lead to
identifying, applying, and analyzing those generalized big ideas in more
specific instances. If developing scientific concepts is the basis of instruc-
tion, then teaching would focus on properties of real numbers by using
tasks that embody the conceptual side of number and operations, with
specific cases found in natural, whole, rational, and irrational numbers at
the same time. Students do not see each number system as a special
case but rather see that the mathematical structure applies to all types of
numbers. 

Davydov (1975a) conjectured that a general to specific approach in the
case of the scientific concept was much more conducive to student under-
standing than using the spontaneous concept approach. To do this, the
Russian group use nonspecified, continuous quantities, such as volume or
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length, to model real number properties and operations. These quantities
are represented by literal symbols, or letters, so that relationships of and
actions on those quantities can be described. Because no numbers are
used during this period of instruction, Davydov refers to this as the
prenumeric stage. It constitutes more than half of a traditional school
year. Having young children working exclusively with quantities and
literal symbols for the initial part of the school year is not typical in an
elementary mathematics program.

The use of scientific concept development to promote an understanding
of mathematical structures led the Russian team to recommend changes
in elementary mathematics teaching from specific instruction about num-
ber to a more generalized approach involving measurement contexts.
This work has inspired MU and has led to collaboration between the
Institute of Developmental Psychology and Pedagogy in Moscow and
their Russian partner institutions. 

Using Davydov’s and his colleagues’ early research work, MU has
adapted the measurement context in which to develop most mathematics
topics, especially number, operations, measurement, geometry, and algebra.
This chapter describes how MU approaches algebraic thinking through
measurement and the implications of such an approach to classroom
implementation. 

MU incorporates the research findings and recommendations from the
Davydov team. However, the Russian research was first carried out with
8-year-old children. Because MU begins with first grade, it is important to
consider other developmental factors. 

Another general premise of MU is that students need to have the phys-
ical models linked simultaneously with diagrams (part–whole and line
segments) and symbolism. Instead of first using a sequence of physical
models, then using diagrams, and finally moving to symbols, students
experience each of these representations at the same time. This helps
students include a mental picture of the physical model as part of a more
robust and substantive understanding of the symbolic representations.

HOW IS ALGEBRAIC THINKING DEVELOPED
THROUGH MEASUREMENT?

MU, like Davydov’s team, assumes that children enter first grade with a
view of quantities that centers around comparisons. First graders are
concerned with who has more than they do, who has less, and who has
the same amount. Their intuitive and spontaneous approach to measure-
ment is the base for mathematical development that promotes first
graders’ building, recognizing, and using properties of real numbers
before they deal with whole or natural numbers. This is called the prenumeric
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stage in which students work with nonspecified, continuous quantities
such as area, length, volume, and mass, rather than discrete numbers.

Children in grade one first identify what attributes of an object can be
compared. They come to realize that comparing colors, textures, and over-
all shapes does not tell “how much” of something there is. They focus
instead on four measurable attributes: length, area, volume, and mass.
These measures are developed, not in the formal sense, but in terms of
working definitions that are usable by children at this level. For example,
first graders treat area as the region within the boundaries of a shape or
object by moving their hand over that region as they discuss area. This
allows them to compare areas, as well as other measures, of different
objects without being confined by a more formal definition (see Fig. 15.1).
These working definitions are important because students can use the
measures to perform actions that model many types of relationships, as
described later in this section.

Within the first week of school, children can rather quickly learn to
compare and describe measurements along the above four dimensions in
terms of equal to, not equal to, greater than, and less than. As they perform
measurements on several objects, the teacher presents a problem in which
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the physical objects disappear so that students must communicate in writing
or orally to someone else about the results of a comparison. They find it
difficult to do so because they do not have the linguistic tools for quanti-
fying measures. 

This problematic situation creates a need for students to find names for
the quantities they compare (see Fig. 15.2). They may suggest using colors,
but soon realize that this is not sufficient as the color of the object or the
attribute could be the same in both comparisons. For example, if two
containers hold volumes of green liquid, there is no way to describe
which volume is larger by using color. Thus, the teacher guides students
to move to naming the quantities with a letter. The use of the literal
symbols is a precursor to variables and comes early in the elementary
grades, contrary to others’ thoughts (see Carraher, Schliemann, &
Schwartz, chap. 10, this volume).

The fundamental properties of equality—reflexive, symmetric, and
transitive—are then easily introduced. Because the children are modeling
the properties with physical quantities, they can clearly see and describe
how these properties work. The following dialogue taken from a first-
grade class illustrates how they describe them in the context of mass:
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“I see something,” said Justin.
“What do you see?” asked Mrs. M.
“Look,” said Justin. “Every time two things are equal we can only write two
statements. Like when mass K and mass B are equal. We can say mass K
equals mass B and mass B equals mass K. Mass K and mass B are the same
amount.”
Mrs. M wrote K = B and B = K on the board. “That’s a good observation,
Justin,” said Mrs. M.
Wendy raised her hand and continued, “But if two things are unequal we
can write four statements.”
“Four statements?” said Mrs. M.
“I agree with Wendy,” said David. “There are four statements. See, volume
F is not equal to volume A and A is not equal to F. And F is less than A and
A is greater than F.”
Mrs. M wrote F/A, A/F, F ≠ A, and A ≠ F on the board. 
“Hey,” said Mia, “We can even write more because A = A.”
(Taken from observation notes, Education Laboratory School, September
2003)

It is important to note the significance of writing statements in the way in
which these first graders are doing. The use of the equal sign in the state-
ment K = B is the symbolic representation of an experience that Justin,
Wendy, and David are explaining. They see quantities that are the same
amount and use the equal sign to record their observation. This is an
instance where no operation is used in the equation; it is merely a recording
that indicates two quantities of the same amount. Yet, the use of the equal
sign in instances like these help students to not confuse the equal sign as
an operator, as studies (Kieran, 1981) have shown.

The introduction to the reflexive and symmetric properties moves to
the transitive property. Students are asked to compare two objects by
some attribute, say length. The students are told that the objects cannot be
moved, they have to think through how the comparison can be made.
They decide that they can create an intermediate measure that is
compared to the objects’ attributes. By comparing the outcomes of these
measures, students can then infer the comparison of the two attributes.

In Figure 15.3, lengths G and X were first compared. Length X is now
the intermediate measure, used to measure another object’s length,
length B.

From the comparison statements students can infer that length G is less
than length B without directly comparing those two lengths. As David
described it: “We use an intermediate measure when we have to compare
two things that we can’t move” (Taken from observation notes, Education
Laboratory School, February, 2004).
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From the equality properties and comparison experiences, a variety of
number and operation concepts emerge. First, students explore how to
make unequal amounts equal. For example, if they have two lengths,
length A and length B, that are unequal such that B > A, they explain, for
example, “you can make the two lengths equal if you do one of two
actions. You could subtract a quantity, say length H, from B or you could
add the same length H to length A.” Length H is given a special name,
difference. Students explain that the difference can be added to the amount
that is less or subtracted from the amount that is greater to make the two
quantities equal (Fig. 15.4).

This quantitative modeling enables students to see at least two mean-
ings of subtraction. One is the action of take away and the other is
comparison. The comparison model helps students see that if two quan-
tities are unequal, the amount by which they are unequal is the difference.
Consequently, if the quantities are equal, then the difference is zero. The
difference is the amount that is added to or subtracted from the quantities
to make them equal.

FIGURE 15.3. Student work with transitive property.



Second, students explore the effects of changing two equal quantities
with the constraint that they must maintain the equal relationship by
adding or subtracting. By modeling the actions of adding or subtracting
with length, area, volume, or mass, they make the generalization that it is
possible to keep two quantities equal if you add (or subtract) the same
quantity from both. 

Third, first graders must change two quantities while maintaining a
given unequal relationship of those two quantities, which is somewhat
more difficult. As Richard noted:

To keep them unequal, you can add or subtract but you have to be careful. If
you add too much, they’ll be equal. Or if you subtract too much, they’ll be
equal. You can’t add or subtract the difference. It has to be more or less than the
difference—it depends on what you’re trying to do. That’s what I think. (Taken
from observation notes, Education Laboratory School, November, 2001)

Finally, numbers are introduced when situations arise that require the
quantification of differences in comparisons. How much larger is length K
than length Q? At this point, students decide that a unit must be found to
measure the lengths of both objects. Without a unit, it is not possible to
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quantify the differences or to make definitive comparisons between the
two lengths. 

This is a significant point in children’s development of mathematical
thinking because the generalized approach now shifts to specific quantities
and the counting of units that make up those quantities. In a traditional
classroom, children would count a collection of discrete objects, assuming
that each object is one. In essence, they see each object as a unit in and of
itself. This is not the case in the progression found in MU, where ad hoc
units play an important role at the outset. Students first identify what is
meant by a unit—it could be an area unit that is made up of three squares
or it might be a volume unit that can be used to measure two volumes in
noncongruent containers that could not be compared visually. The multi-
plicity of ad hoc units, the recognition that units may be different depend-
ing on the context, creates a more flexible approach to thinking about
relationships among quantities. 

The conjectures that are made at this point by the students are funda-
mental to understanding relationships between units and quantities.
Physical measurements help students see that the smaller the unit, the
more times it must be iterated to measure a given quantity. However,
students have developed residual mental images of the process of
measuring a quantity with a unit, that is, mental pictures of the actions
they have done. This helps them to make inferences from only the
symbolic representations. For example, given and , (read as
quantity B measured by unit E is 5 and quantity B measured by unit Y is
8), they conclude that because the quantities B are the same, then unit Y
must be smaller than unit E. They justify this with the explanation that
unit Y had to be used more times to make B than unit E was used. This
means that unit Y is smaller. 

In a similar way, if two different quantities are measured by the same
unit and represented only symbolically, a comparison can be made with-
out seeing the actual quantities. For example, if and , then W >
P because it took more unit Es to measure W. Being able to draw conclu-
sions with symbolic representations like these is typically not possible for
first graders in a traditional curriculum that has focused solely on whole
or natural numbers. And, it focuses on a different view of quantitative
reasoning than offered by Smith and Thompson (chap. 4, this volume).
The consistent use of letters to name physical quantities gives students a
feeling of confidence with literal symbolic representations. Quite natu-
rally, they begin to manipulate the letters in ways characteristic of older
and sophisticated mathematics students. For example (see Fig. 15.5 where
Caylie is measuring volume units), as students are finding the relation-
ship between the volume unit E and volume H, they write the following
equations:

P
E

= 7
W
E

= 10

B
Y

= 8
B
E

= 5
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E + E + E + E + E + E = H H – 3E = 3E

6E = H E = H – E – E – E – E – E

H = E6

(Taken from observation notes, Education Laboratory School, February
2003)

By thinking of different ways that a quantity can be separated into
parts, students can describe those ways with multiple symbolic represen-
tations. The previous representations show that quantities can be sepa-
rated into parts, which, when (re)combined, make up the whole. Each of
the equations expresses a different way to think about the relationship of
the unit E to the quantity H. 

Diagrams are also used to illustrate these relationships. These diagrams
are consistent throughout MU and are explicitly called part–whole
diagrams. If the aforementioned example is put in diagram form, students
may write something as shown in Figure 15.6. The diagrams in Figure
15.6 show that the whole, quantity H, is made up of six equal parts of unit
E, which can be broken up in different ways. This expresses an additive
relationship even though the symbolism that children used may be more
formally thought of as multiplicative.

Given any of the three diagrams, children could construct quantity H by
iterating unit E the number of times indicated in the diagram. The exam-
ple used leads to questions about the relationship of the parts to the

H
E

= 6
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FIGURE 15.5. Using a volume unit to measure volume.



whole. Does every whole have to be broken down into equal parts? Or,
conversely, do equal parts have to be used to make a whole? Students’
generalizations about these relationships usually include statements that
the parts do not have to be equal, but the unit needs to be clearly identified
so that it is possible to determine the relative size of the parts. 

That the sum of the parts is to equal the whole is well established with
first graders even as they move to the more specific cases of number. A
natural link between the general cases shown in the measurement context
is the number line, thought of as a length constructed with equal-sized
units. It can be constructed using any size unit and allows students the
opportunity to create multiple number lines (or rays or segments) to fit a
specific purpose. For example, if volume is the context, and a volume unit
L has been identified, a number segment can be created by placing a piece
of tape from the bottom of a container to its top. Each time a volume unit
is added to the container, a unit is marked on the tape. When the
container is completely filled, students have constructed a number seg-
ment that shows how many volume units were used to fill it. In Figure
15.7, Justin is creating the number segment by adding a volume unit and
marking its height on the tape.

The number segment that Justin created is part of a number line.
Rather than thinking of a number line as something that is just given to
students without any meaning or context, students in MU create one
using a given unit length (see Fig. 15.8). In doing this, they realize that a
number line must use a consistent length unit. If the units are not consis-
tent, then quantities cannot be compared. 

Representing quantities on a number line requires that students link
one type of measurement—say volume—to a different representation—
length. To use a number line with understanding, students have to asso-
ciate two measurements that do not “look” the same. In Figure 15.8,
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FIGURE 15.6. Part–whole diagrams.



Michael has shown multiple representations of volume using a picture of
the physical model and then representing it with a number ray.

A number line is used to represent any quantity that is found in length,
area, volume, or mass. Calvin is creating a number ray using a
Cuisenaire™  rod as his length unit in Figure 15.9. This ray will be used to
represent the mass units that Stephanie measured.

Once students begin working with units and number lines, they are
careful not to jump to conclusions about number relationships. For example,
in an interview with a first grader, the following dialogue took place: 

“Which is larger, 3 or 8?” asked Mrs. W.
“It could be 8,” said Caitlin. “But it could be 3.” 
“Why could it be either one?” asked Mrs. W.
“Because it could be a small 8 or a big 3. See, if you have 3 really, really,
really big units, then 3 could be greater than 8. Or you could have 8 really,
really, really, really small units. Then 8 would be less than 3. So it’s hard to
tell if you don’t know the unit,” said Caitlin.
“What if it’s on a number line?” asked Mrs. W.
Caitlin thought and then said, “Oh, then that’s . . . uh, different. You know
that 8 has to be larger than 3 because the units are the same.”

(Taken from interview dialogue, Education Laboratory School, February,
2002)

The impact of this child’s experience with units clearly shows in her
response. Rather than assuming that three and eight have a static relationship
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FIGURE 15.7. Creating a number segment using volume units.



based on a common unit taken implicitly to be one, she placed a caveat on
their relationship that is dependent on the unit used to create the quantity
represented by the two numbers. Minskaya (1975) pointed to the impor-
tance of unit in these comments:
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FIGURE 15.8. Multiple representations of volume.

FIGURE 15.9. Mass represented by length.



Many first graders who are good at counting (by the ordinary stan-
dards) still identify a number (a set of units) with an actual aggregate.
They make no distinction between what they are counting and the method
of recording the result and . . . they do not understand that number
depends on the base, which is chosen. As a result, these children do not
acquire a full-fledged concept of number, and this has a negative effect on
all their subsequent study of arithmetic. (p. 211)

MU findings agree that, without an understanding of unit, the values
or magnitude of number has little meaning for students. It is only after a
unit has been identified that one can make assumptions about relation-
ships among quantities. 

Building on the work of units and relationships within generalized,
and now more specific, quantifications, students begin to actually use a
literal variable to represent an unknown number or specific quantity. This
is a shift from their previous use of letters to represent continuous,
nonspecified amounts. Students’ experience with units and part–whole
relationships enables them to deal with known and unknown quantities
in a more sophisticated way. Equations that are written to represent the
part–whole relationships are fluid—that is, students can think of the parts
as addends or as the difference and the subtrahend. 

If quantities are known, equations (and inequalities) can be written,
such as:

7 = 3 + 4 4 + 3 = 7 7 – 3 = 4 7 – 4 = 3

These four equations represent a fact team that is useful as students move
to the next phase of combining known and unknown quantities. For
example, if students know that 3 and x are the parts, and 7 is the whole,
then they can show the relationships among the parts and whole with the
following equations

3 + x = 7 x + 3 = 7 7 – 3 = x 7 – x = 3

To find the unknown quantity, some students recognize that the third
equation (7 – 3 = x) is helpful in finding the missing part. Other students
describe the process of finding the unknown quantity as the amount that
when added to 3 gives 7 as shown by the first two equations. 

Students generalize that the fact team relationship can be used across a
variety of numbers. It is not limited to whole numbers because, as they
have come to know, numbers are only descriptions of quantities. If a
part–whole relationship is known, a fact team can be used to represent the
relationships. See Figure 15.10 as an example of the kind of generalization
that occurs regardless of the measurement context. Jensen has shown that
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nonspecified quantities can be used to write equivalent statements with-
out knowing the quantities that any of the variables represent.

Measurement contexts provide opportunities for students to develop
an understanding of place value that is quite different from the traditional
models using the base 10 blocks for whole numbers. Because an under-
standing of place value is the foundation for working with all computa-
tional algorithms and for creating a strong number sense, students should
understand how and why place value processes (e.g., regrouping and
exchanging) work the way they do. It is difficult to model physically the
building of the different places in base 10 because each successive place to
the left of the ones increases exponentially. Thus, MU begins with smaller
bases, like base 3 or 4. 

In a base 4 system, students can build a three or more place quantity
and model it with any of the four measures that might include length,
area, volume, or mass. If they use length, they realize that four length
units make up the Place II position (represented with 104) and four of
the Place II units make the third place value to the left (1004). With each
successive place to the left of the Place III, the pattern continues. In Figure
15.11, a portion of a wall chart created by second graders is shown. They
used the chart to find similarities and differences across bases and to
make generalizations about how quantities compare.

Patterns within and across bases promote a deeper understanding of
when and why exchanging (or regrouping) is necessary. By beginning
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FIGURE 15.10. Student works with variables or unspecified quantities.
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FIGURE 15.11. Wall chart depicting base notations.

FIGURE 15.12. Student process for comparing numbers in different bases.



with a specified unit of measure, students build quantities that are based
on the way in which number is developed, second graders become fluid
in dealing with bases from 2 to 10. They can use the patterns they notice
and their experiences with the physical models to create multiple algo-
rithms for a variety of processes, including comparing numbers in different
bases, comparing numbers in the same base, and adding or subtracting
multidigit numbers (see Fig. 15.12).

At this point, students develop a stronger ability to make and defend
generalizations from patterns observed in both specific and general cases.
For example, students may be asked to compare the following 2 two-digit
numbers in the base 10 system:

5γ 4γ

It is made clear to students that the unknown quantity, represented by γ,
is a digit of a two-digit number. In this example, they establish that the
base is the same and it is a base greater than base 5, as indicated by
the size of the digits in the Place II position. From there, they reason that the
quantity on the left must be greater than the quantity on the right because
the value of Place II is greater. That is, the Place II digit 5 represents a
greater quantity than the Place II digit 4.

Students are also confronted with a problem such as 

λφ λα.

This is a generalized representation similar to the previous problem and
students are advised to note that the symbols represent digits of a two-digit
number. Again, they are asked how the two quantities compare. Although
some students would like to illustrate their reasoning with specific exam-
ples in which they substitute numbers for the symbols, others write that
they cannot compare them because the Place II value is the same in both
quantities so their relationship is dependent on the values in Place I. 

Because place value is developed from a conceptual basis, students in
the MU project see addition and subtraction in terms of units (e.g., ones,
tens, hundreds, and thousands in the decimal system). Thus, each place
value has a specific relationship to the initial unit (or ones), called a main
measure. In the decimal system, students explain that it takes 10 main
measures to create a Place II or 10s unit. To make a Place III or 100s unit,
you need 10 of the 10s units. One generalization that they make as a class
is that, in base 10, “any time you have 10 of any unit, it creates the next
place.” The idea is generalized to any base so that exchanging or regroup-
ing is viewed as an integral part of adding or subtracting (combining,
taking away, or comparing).
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This concept supports the construction of algorithms that use 10 as
their basis. For example, in the “round number strategy,” numbers are
broken apart so that they can make a 10 (Fig. 15.13). In this case, 28 can be
thought of as 3 and 25. Thus, 37 and 3 can be combined to make a round
number, 40. It is now much simpler to add 40 and 25 to get the final sum. 

Having the ability to compose and decompose numbers based on the
parts and whole gives students the opportunity to construct specific
quantities in multiple ways. They realize that combining 12 and 17 results
in 29 regardless of whether you add 12 to 17 or 17 to 12. This enhances
their understanding of properties, including the Commutative Property
of Addition, Identity Property of Addition, and the Associative Property
of Addition. These properties are made explicit by name and linked to the
actions that show why they “work.”

Almost seamlessly, students move from the models of addition and
subtraction to multiplication and division. The concept of unit permeates
the foundation of these operations in that the introduction of multiplica-
tion and multiplicative comparisons stems from the need to create an
intermediate unit.

The scenario used is that the teacher needs to find how many volume
unit Es make up volume Q, which is in a rather large container. Volume
unit E is quite small. As two third-grade students begin measuring Q with
E, they quickly realize that it will take a very long time to find the
number if Es in Q. To speed up the process, they suggest that an intermedi-
ate unit C could be created. Then the intermediate unit could be used to mea-
sure volume Q. Their reasoning is that if they know how many volume unit
Es it takes to make intermediate unit C, and they know how many interme-
diate unit Cs it takes to make quantity Q, they are able to find the number of
volume unit Es needed to make the quantity Q by, in essence, repeated
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FIGURE 15.13. Using a round-number strategy and part–whole relationships.



addition. The diagram of this process shows that an initial unit E is used
nine times to make the intermediate unit C. The intermediate unit is then
used eight times to make quantity Q. That would mean that Q is equal to the
sum of nine 8s or the product of 9 and 8 as shown in Figure 15.14. 

Although this example illustrates the repeated addition model for
multiplication, the model also allows a division concept to develop natu-
rally, by focusing on the relationship among the quantity, unit, and
intermediate unit. If, for example, the quantity is known and the unit is
known, students can use their understanding of the relationship among
the unit, the intermediate unit, and the quantity to find the missing
amount. In this case, the missing amount is the intermediate unit. In a
similar fashion, if the quantity and the intermediate unit are known,
students can find the missing amount, the unit. Consequently, multiplica-
tion and division can be simultaneously developed rather than sequen-
tially—analogous to addition and subtraction being treated simultaneously.
This supports the need for students to be able not only to build quantities
but to be able to decompose them as well.

The fluidity that comes from the introduction of all number operations
in MU promotes the development of properties often neglected until
students reach much higher grade levels. Properties that students found
when they worked with addition (e.g., commutative, associative, and
identity) apply to multiplication and division as well and are facilely
modeled in a similar fashion. For example, the Commutative Property of
Multiplication is modeled by selecting a unit (unit E) and iterating five
times to produce an intermediate unit D. Intermediate unit D is used four
times to create quantity J. This illustrates that quantity J is comprised of
20 unit Es. Likewise, unit E could be iterated four times producing inter-
mediate unit Q. Unit Q is then iterated five times to make quantity J.
Again, unit E was used 20 times to make quantity J. It is illustrated in the
two arrow notations in Figure 15.15.

Other, more complex, properties are accessible by students through a
generalized arithmetic, or patterning, approach. For example, in a prop-
erty that students call the Division with Multiplication Property, they
made this conjecture:

If you have a number that is divided by a product, it gives the
same result if you divide the number by the first factor of the
product and then divide that quotient by the second factor. 

With prompting from students, this property is written in the general-
ized form of a a ÷ (b × c) = (a ÷ b) ÷ c . Detecting and then representing the
property in this generalized form gives students a tool to help them in
computational settings where they can apply it as needed. Some students
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find that it is easier for them to do a series of divisions rather than find a
product first and then divide by that product, especially if they are not
sure about the value of the product. Other students may find that they
prefer to find the product first, and then do the division as the left side of
the generalization is stated. Regardless, being able to state properties in a
generalized form gives students more fluency with numbers and opera-
tions.

The multiple representations used in MU (physical, diagrammatic, and
symbolic) provide a structure for solving computational word problems.
Problems like the following can be seen as a description of relationships
of quantities rather than an unsolvable problem:

Jason has v mass-units of rice. Jon has w mass units less than Jason. How
many mass units of rice do Jason and Jon have together? 

One model that could be used to solve the above problem is with a line
segment diagram (see Fig. 15.16). Students see that it is the combining of
v and v – w that gives the amount of mass that Jason and Jon have alto-
gether. As one student noted, it ends up being “like two Vs put together
with w taken out” (Macy, Education Laboratory School, December 2003).
Writing an equation that represents the quantities in the problem becomes
a literal translation of the diagram— V + (v − w) = A, where A represents
the amount they have altogether.

Similarly, given problems that show a multiplicative relationship, students
are able to think about the way the quantities interact to solve the problem.
For example, the following problem was given to third-grade students:

Jessica has 7 oranges. Raul has 4 times as many oranges as Jessica. How
many oranges do they have altogether? Students use the relationship of
the unit to the quantity to create a diagrammatic representation. 
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The relationships can be expressed in multiple ways:

E + (E + E + E + E) = 5E (E represents seven oranges as a unit). 
5E = 35 oranges.

In this problem, Richard’s diagram (observation notes, Education Laboratory
School, third-grade) shows that two quantities. In the first line, the 7-unit
represents Jessica’s quantity. The 7-unit repeated four times in the line
beneath indicates Raul’s quantity. Figure 15.17 shows by the end notation
that the total amount is the addition of the two quantities.

WHAT ARE THE IMPLICATIONS FOR IMPLEMENTING
A CURRICULUM SUCH AS MEASURE UP?

Developing mathematical understanding through measurement and with
an algebraic reasoning foundation requires teachers to understand math-
ematics in a different way. They must be able to see the quantitative,
prenumerical relationships in grade one and understand how they lead to
the specific numerical cases that will follow. In a traditional curriculum
where new topics are introduced with sometimes little or no connections
to previous topics, there is no undercurrent that provides the cohesion for
a full curriculum. In MU, the teacher has to be aware of how the topic was
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developed, what topics are approaching, and how the bridges are made
between and among them. 

Most important, teachers who are using MU must be open to thinking
about mathematics in a different way. They need to have multiple ways of
thinking about relationships and be able to apply those relationships to a
more formal mathematical structure. Even in early grades, this content
knowledge must be well developed.

Pedagogical techniques are also important. Clearly, if young children
are to be able to access a curriculum rich in algebraic ideas in the early
grades, the pedagogy aligned with that mathematics must be different
than what would be expected in a conventional mathematics classroom.
The teacher has to expect twists and turns within a lesson and be ready to
handle them. The unpredictability of what students will say makes the
daily lesson a challenge. 

The orchestration of the physical actions with objects, intermediary
representations, and symbolism is challenging. Teachers must constantly
be thinking about how the action is linked to the symbolism and then
encourage and model appropriate languaging about the students’ obser-
vations of such actions.

Aligned with Vygotsky’s (1978) suggestion, the pedagogy must include
a strong language component so that children have opportunities to
describe the relationships they find, make conjectures, justify their thinking,
and use multiple representations to describe what they see and think.
Without this, young children cannot make sense of the mathematics in a
meaningful way. It is this sense making that helps children apply the
mathematics appropriately across a wide variety of situations. This does,
however, demand a student-centered classroom that has an inviting envi-
ronment to motivate students sharing ideas. 

In preliminary professional development institutes associated with
MU, a focus on mathematical content has taken precedence. With institute
instructors modeling the pedagogy, teachers are given authentic learning
tasks that allow them to experience the mathematics in a different way
than they may have originally learned it. The tasks are derived directly
from student tasks so that teachers too have the opportunity to learn
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mathematics through measurement. Such experiences challenge teachers’
conceptions of what they have believed mathematics to be and what they
have thought to be true.

Because MU is still in its infancy stage, curriculum materials from the
project are not available to teachers in the professional development insti-
tute. Instead, the institute focuses on helping teachers enhance the content
in their programs by adapting tasks and creating higher order questions.
The adaptation process and the creation of the questions are based on
teachers’ new and altered understandings of the mathematics found in
elementary curricula. 

Thus, the implications for instruction and the level of teacher content
knowledge may be complex. In the early stages of this project, it appears
that teachers will have to learn more and different mathematics, as well
as become comfortable in using a wide array of instructional techniques
even with young children. 

CONCLUSIONS

An approach to elementary mathematics that focuses on nonspecified,
generalized quantities is often thought to be too abstract and thus, not
accessible by young children. MU preliminary results, however, support
Davydov’s claims that it offers young children a meaningful foundation
on which to build sophisticated and complex mathematics. Understanding
the structure and properties of mathematics creates a way for children to
construct solid underpinnings that lead to substantive mathematics (this
sentence seems to be a tautology). It builds confidence so that even within
nonroutine or unfamiliar situations, children can reason through the rela-
tionships expressed in the problem. 

The combination of physical, diagrammatic, and symbolic representations
in a measurement context that underlies all of the mathematics appears, in an
early analysis in MU, to have a strong positive influence on children’s abili-
ties to deal with more complex mathematics at an earlier age. Davydov
(1975b) contended that “there is nothing about the intellectual capabilities of
primary schoolchildren to hinder the algebraization of elementary mathe-
matics. In fact, such an approach helps to bring out and to increase these very
capabilities children have for learning mathematics” (p. 202).

Davydov’s work has caused our group to rethink what might be pos-
sible if we step out of the box of conventional elementary mathematics.
Using continuous measures rather than focusing on counting discrete
objects provides a context in which children can explore and describe
mathematical relationships that are fundamental yet substantial mathe-
matics. We have seen that young children can grapple with and come to
some resolution about mathematical ideas that are typically found in later
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years such as the relationships of quantities measured by different-sized
units. They are capable of using symbolic notation as a means of convey-
ing their understanding and interpretation of problem situations.
Students see relationships among operations, noting that addition and
subtraction or multiplication and division have commonalities that go
beyond the way you get an answer. Equations are viewed as statements
of relationships with the equal sign functioning as an indicator of that
relationship and not an operator. They can flexibly use multiple repre-
sentations, interchanging how they express their ideas. However, the
Davydovian approach has also raised issues about what are the trade-offs
when an elementary program is constructed around these premises. 

How are data analysis and probability developed with young children
when measurement is the underlying context? Because children use mul-
tiple strategies and decompose numbers so flexibly, how do they develop
algorithms that support an efficient way to solve number problems? Is
this important? What if mathematics for very young children started in
pre-kindergarten (before age 5) with a focus in measurement? What is the
potential? 

By using specific diagrams to represent the mathematics, we are
concerned that students focus on structure rather than on the mathemat-
ics that drives the structure. This will be an issue that we continue to
monitor as the project matures.

Preliminary results seen in students participating in MU indicate that
Davydov’s recommendations are worthy of further exploration in our
journey to improve students’ achievement in mathematics.
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A New York Times article from December 19, 2002 (“Cutting Jargon, Klein
Offers a Report Card Johnny Can Read,” Abby Goodnough), reports on a
controversy sparked by the introduction of a new report card for New
York City’s elementary school children. Parents, teachers, and Schools
Chancellor, Joel Klein, complained the report card was too long and too
dense. Offered as an example of the bewildering descriptions of the skills
fourth graders were expected to acquire was the rubric, “understands the
commutative, associative, and distributive properties.” 

The properties cited in New York City’s report card fracas help to
define the basic operations. The methods students use when operating on
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two or more numbers can be defined in terms of these fundamental
properties or laws. From the standpoint of mathematical analysis, then,
inclusion of “understands the commutative, associative, and distributive
properties” among the standards prescribed for the elementary curricu-
lum would seem inarguable, however unfamiliar to nonmathematician
adults the terms in which they are described.

This chapter holds that curriculum appropriate to children in the
elementary grades cannot be determined through mathematical analysis
alone, but must be developed in conjunction with systematic work
exploring how children’s mathematical thinking develops. The view that
underlies this thesis grows out of many years of collective experience,
ours and that of many others in mathematics education, spent trying to
answer questions like, “What does it mean to say of a fourth grader that
she or he ‘understands the commutative, associative, and distributive
properties’?” What we, the authors of this chapter, have seen is that, as
children learn about addition, subtraction, multiplication, and division—
developing an understanding of the kinds of situations that can be mod-
eled by the operations, sorting out various representations for them, and
figuring out how to compute—they observe and comment on regularities
in the number system. They may notice, for example, that the calculations
72 – 38 and 74 – 40 produce the same result, or that successive answers to
a series of problems (10 + 1, 10 + 2, 10 + 3, . . .) increase by 1. In our view,
such regularities, emerging naturally from children’s work, become the
foundation not only for exploration of generalizations about number and
operations, but also of the practices of formulating, testing, and justifying
such generalizations—and it is these practices that are at the heart of what
we mean by early algebra.

To repeat, when making decisions about content of the elementary
mathematics curriculum, one must consider both the perspective of the
mathematician who identifies fundamental concepts of the discipline as
well as that of the child first learning how to explore and negotiate num-
bers and operations on them. This chapter examines the three fundamen-
tal properties (also called the laws of arithmetic) from both points of view.
We find that, at times, there is considerable overlap and, at times, there is
significant difference.

BACKGROUND

Recent calls for the improvement of mathematics education in the United
States have set, alongside demands for computational proficiency, ambi-
tious goals for conceptual understanding (Cohen, McLaughlin, & Talbert,
1993; Hiebert et al., 1996; Kilpatrick et al., 2001; National Council of
Teachers of Mathematics, 2000). These calls have also urged elimination
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of many of the most serious barriers to a full and enabling mathematics
education for all students. Among these barriers (foremost among them,
some have argued; Moses & Cobb, 2001; Moses, Kamii, Swap, & Howard,
1989) is school algebra, which continues to baffle large numbers of middle
and high school students, including many who have been generally suc-
cessful in their first 6 or 7 years of mathematics study. To the extent that
middle- and high school algebra courses act as social filters for a variety of
future career opportunities, children who do not succeed in algebra are
largely shut out of such mathematics-related careers as medicine, engineer-
ing, and business (Steen, 1995). A number of researchers have argued that
to overcome this barrier, K–5 students should be exposed to the ways of
thinking and communicating that form the foundation out of which alge-
bra develops and is formalized (Kaput, 1995; National Council of Teachers
of Mathematics, 2000; RAND Mathematics Study Group, 2003).

But, in the history of mathematics education reform in the United
States, these recent calls for the inclusion of algebra at the elementary level
are not unprecedented. On the contrary, as those who remember the “New
Math” of the Sputnik era, the late 1950s and the 1960s, can attest. “The new
emphasis on operations was largely a means of providing a systematic,
logical rationale for the operations of algebra. For example, 7a + 2a = 9a not
because of the fact that 7 apples together with 2 apples amounts to 9 apples
but because of the distributive property of multiplication over addition”
(Osborne & Crosswhite, 1970, p. 284). The Cambridge Conference report
of 1963 includes in its recommendations for grades K–2: “Questions that
lead the children to ‘discover’ the commutative nature of addition and
multiplication,” and for Grades 3–6, simply, “Commutative, associative,
and distributive laws” (DeVault & Weaver, 1970). Readers may have
encountered the remnants of this reform in their school textbooks, which
encouraged committing definitions of these terms to memory, but offered
little opportunity to understand their significance.

As evidenced by the Times article, current efforts to improve the teaching
and learning of mathematics urge renewed attention to the laws of arith-
metic. The focus on integrating the building blocks of algebra throughout
the grades, rather than waiting for the single course in high school, is one
reason educators and curriculum designers are thinking about what it
means for elementary school children to study these properties. For exam-
ple, in the Grades 3–5 section of the Principles and Standards for School
Mathematics (National Council of Teachers of Mathematics, 2000), among
the expectations listed under algebra is that all students should be able to
“identify such properties as commutativity, associativity, and distributivity
and use them to compute with whole numbers” (p. 158).

But what does such a statement mean? Readers may have seen, and
may have even been victims of, attempts to incorporate study of these
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properties in the elementary curriculum in ways that lead only to struggles
with strange-sounding terms—and memories of these struggles may be
responsible for the reactions of the New York City parents and teachers.
How does the demand for “identify[ing] such properties as commutativ-
ity, associativity, and distributivity and us[ing] them to compute with
whole numbers” translate into the classrooms of 6- to 12-year olds who
are making meaning for the basic operations? How do we build on
students’ emerging knowledge of number and operations to help them
engage with the ideas of algebra?

In our work, the authors of this chapter have seen that the regularities
children are prepared to notice are not usually of the same order of
abstraction as the mathematicians’ axioms. In the elementary classroom,
exploration of ideas that may seem trivial to the mathematician can prove
immensely fertile, and some distinctions important to mathematicians
can make no sense to children. Therefore, as designers of K–5 mathemat-
ics curriculum, we have chosen the path of identifying regularities
implicit in students’ work on arithmetic, investigating which of those
regularities can be explored productively, and collaborating with teachers
to focus classroom activity on those same regularities. We hypothesize
that significant foundational work can occur during these years, work
that will prepare students for later encounters with algebra. We hypothe-
size further that this approach to early algebra can help students meet
more confidently the challenges already part of every K–5 program—to
understand number and operations and develop computational proficiency.

In this chapter, we step into the elementary classroom to see how ideas
related to the commutative, associative, and distributive properties can be
engaged. First, we view young children’s varied and textured considera-
tions of the significance of the order of terms in an arithmetic expres-
sion—the substance of the commutative property. We next inquire into
their work on propositions related to the associative property, establish-
ing that students’ proofs can flow quite naturally from their visual repre-
sentation of the operations. And, finally, we examine two episodes in
which children discuss, first, strategies for multiplication and, second, a
proof that the sum of two even numbers is even—two consequences of
the distributive property. These examples are preceded by a description of
the context of our work and the data from which we draw. We close with
reflections on implications for curriculum design.

THE CONTEXT OF OUR WORK

Our observations come out of the work of the algebra team (the four
authors of this chapter) responsible for revising a component of the K–5
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curriculum, Investigations in Number, Data, and Space.1 In the context of this
project, our central tasks are two-fold: to bring out, for teachers and for
students, the generalizations that underlie students’ work in number and
operations; and to design a unit at each grade level for a K–5 strand on
functions and the mathematics of change. In the last 2 years, we have
worked together to investigate how early algebra can arise quite naturally
out of the work of the elementary classroom, how teachers can further
encourage and develop it, and how a curriculum can help guide teachers
as they do so. 

Although we have been working on the Investigations curriculum revi-
sions for just 2 years, members of our team have been pursuing questions
about children’s algebraic thinking for many more (Bastable & Schifter,
chap. 6, this volume; Monk, 2003; Schifter, 1999; Tierney & Monk, chap. 7,
this volume). For example, in the context of previous professional devel-
opment projects, teacher participants had written cases based on mathe-
matics discussions that had taken place in their classrooms, some of
which touched on ideas of early algebra. 

Now, in our current project, a group of teachers2 has been collaborating
with us, bringing examples of early algebra from their classrooms and
helping us understand what happens when they structure their lessons in
particular ways or include certain questions as part of their classroom
routine. For example, what happens when children build the habit of
addressing such questions as: Why does it work out that way? Will it
always work that way? How do you know? A teacher might say, I’m not
convinced; prove it to me. Can you convince your classmates? Can you
convince a younger child?

During our first year of work together, monthly meetings of project
staff with collaborating teachers were organized around both an initial
outline of the main mathematical ideas to be treated in the curriculum
and a set of mathematical tasks developed to help teachers explore those
ideas. In addition, teachers read and discussed some of the cases, reflec-
tive and usually detailed descriptions of classroom episodes, produced in
the earlier projects.

As teachers engaged together on the mathematics and on the cases,
they refined their understanding of the mathematical ideas involved,
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analyzed children’s responses, and considered which classroom activities
would best support children across the grades as they take up these ideas.
The teachers introduced these or related mathematics activities to their
students, then wrote their own cases (meant to be shared with the group)
documenting the resulting classroom process. They reported on their
students’ thinking as this was reflected in classroom conversations, the
ways in which representations were used by their students, and the ques-
tions this episode brought up for them about their own teaching practice.
Staff members read and responded to each case, highlighting in particu-
lar the mathematical-conceptual issues in play. 

These cases, together with videotapes from the classrooms of a small
subset of teachers in the group, provided data we used to refine our own
thinking about the key algebraic ideas to be addressed in the curriculum,
the development of those ideas across the grades, and the classroom tasks
that could draw out those ideas.

At the time of this writing, in the second year of the project, the teach-
ers are field testing the curriculum materials so far produced. Written and
oral feedback from the teachers, their own case writing, field notes by
classroom observers, and video footage are analyzed as we seek to further
refine the curriculum.

EXPLORATIONS IN THE PROPERTIES
OF THE OPERATIONS

In the context of our project, teachers have been explicitly addressing gener-
alizations about number systems with their students. As we begin to attend
to student thinking about, for example, the consequences of changing the
order of the numbers in a calculation, we find their ideas to be much more
nuanced and complex than we had previously imagined. Some of the ques-
tions this raises for us are: What does it mean for students to understand the
properties of the operations? What kinds of representations and arguments
can students of different ages use? What are the steps along the way?

The Complexity of Apparently Simple Ideas: 
Approaching the Commutative Law of Addition

I asked [my third-grade students] if 0 + 10 was the same as 10 + 0. As a
group, they decided the answer was YES and NO: “YES, because they are
the same numbers and they equal the same, 10; but NO, because they’re in
a different order. They’re not in the same spots.” 

In this short vignette, teacher Jan Szymaszek captures what it means to
find regularity in our number system—to identify what stays the same
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among things that are changing. In the context of a discussion about addition
pairs that make 10, Szymaszek’s students had written 0 + 10, 1 + 9, 2 + 8,
3 + 7, 4 + 6, and 5 + 5, and then concluded, “You can switch them around
for the other ones.” Upon questioning by their teacher, they specified that
(now paraphrasing) even though the order of the addends changed, the
addends, themselves, stayed the same, and so did the value of the sum.

When given opportunities to articulate their observations in a mathe-
matics classroom, this idea—that changing the order of two addends does
not affect the sum—arises frequently. However, probing more deeply, this
simple idea turns out to be a more textured notion. To illustrate this point,
we visit three classrooms.

Ana Vaisenstein’s First-Grade Class, November: Localized Generalizations.
In the first few months of Ana Vaisenstein’s first grade, students periodi-
cally worked on a type of problem called “How Many of Each?” Students
are told they have a given number of objects (e.g., seven vegetables) com-
prised of two categories (e.g., some are peas and some are carrots).
Students answer the question, how many of each? Early in the year, they
might find just one answer. Later, they find several. Still later, they might
address the question: How do you know if you have found all possible
solutions?

In November, Vaisenstein wrote about her students’ thinking about
“How Many of Each?”:

In conversations we have had about the different ways one could have, for
example, seven peas and carrots, children brought up the idea of “oppo-
sites.” By that, they meant that 2 peas and 5 carrots is the opposite of 5 peas
and 2 carrots. The “opposites” became an idea that many children began to
adopt. They brought it up in observations of other children’s work, or as a
strategy to solving this type of problem. . . . As these first graders are hold-
ing onto [the idea of “opposites”] very strongly, I think it is worthwhile
exploring it as much as possible. . . . The most important thing right now is
to watch out for keeping the expression “opposites” alive, and not just a
word that the children say repeatedly which loses meaning in the process. 

The children in this first-grade classroom are intrigued by a regularity
they see in their “How Many of Each?” problems. Within this class of
problems, they can find what stays constant within the differences: Even
though the total number of objects may change from one problem to the
next, whenever x of an object of Type 1 and y of an object of Type 2 is a solu-
tion, so is y of an object of Type 1 and x of an object of Type 2. The very fact
that children have given a name to this phenomenon—“opposites”—
indicates that they have formulated a generalization. At first glance, the
students seem to have discovered x + y = y + x. 
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However, we must be careful not to impose on these children a gener-
alization immediately obvious to us. First, their observation may still be
very local, confined to the set of problems characterized in their program
as “How Many of Each?” Second, perhaps more importantly, these
children may not yet have a notion of addition as an operation. At this
point in first grade, they are simply listing pairs of numbers. As of now,
opposites is a property of “How Many of Each?” and not necessarily a
property of addition.

Carol Walker’s Second-Grade Class, April: Justification and the “=“ Sign.3 By
April in second grade, the children in Carol Walker’s class certainly do have
an idea of addition as an operation, and the generalizations they make
extend beyond the context of particular problem types. Walker wrote:

Turn arounds came up first when we were generating ways to make ten early
in the year. The children made a list like 5 + 5, 4 + 6, 3 + 7—and then would
suggest 6 + 4, 7 + 3, etc. and referred to them as turn arounds. Soon every-
one was calling 4 + 6 and 6 + 4 turn arounds and it became almost a vocab-
ulary term without ever really discussing its implications. So I decided to
ask them to think about turn arounds and see if they might define it or
describe it or illuminate something about it for me. These are some snippets
of what I watched and heard.

Natalie4: Turn arounds always work. I just know they do.
Me: How do you know?
Natalie: Well, look. 27 + 4 = 31 and 4 + 27 = 31.
Me: But does this always work, for any number, no matter how big it gets?
Natalie: Well, let me try it.

So Natalie tried numbers in the hundreds and added them together both
ways and felt convinced that it always worked. Her reasoning seemed to be
based on her having done many of them and having had them always work
out to be the same answer.

I did ask her if something like 13 + 23 = 23 + 13 is true. Her immediate
response was that, no, it didn’t work. Several other children confirmed that
it didn’t work either, saying, “There’s no answer here.” Even after they felt
sure that 13 + 23 = 36 and that 23 + 13 = 36, no one felt like the original state-
ment could be true. 

Other children spent their time making up additional problems and solv-
ing them both ways. Ingrid’s [written] work [which starts with single- and
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two-digit numbers, extending into hundreds, thousands, and ten thousands]
is an example. She was using a calculator and expressed real satisfaction
with this work. 

Early in the year, when Walker’s students first made the observation
about turn arounds, one could have concluded that they had discovered
additive commutativity. However, now in April, once Walker probes
more deeply, she discovers that there are issues yet to be pursued.
Although Natalie is convinced that turn arounds “always work; I just
know they do,” other children in the class find satisfaction testing pairs of
numbers, extending to quantities larger than those they are familiar
with—providing a form of self-motivated, mindful computational prac-
tice as well as development of number sense.

When asked about the equation 13 + 23 = 23 + 13, children say “it does-
n’t work,” although they don’t doubt that 13 + 23 and 23 + 13 result in the
same sum. Most likely at issue here is their interpretation of the equal
sign. Many children seem to believe that “=” is a directive to write down
the answer to the calculation on the left (Carpenter, Franke, & Levi, 2003;
Carpenter & Levi, 2000; Kieren, 1981, 1992). “There’s no answer here,”
Walker’s children say in explanation for why the equation doesn’t work.

The issue of the equal sign aside, many of the children in this class
seem convinced that changing the order of two addends does not change
the sum, and they are convinced because they have tried it for many pairs
of numbers. Yet, not all children in the class take that position. A colleague
from Walker’s school, Lisa Seyferth, observed the same lesson and wrote
about the whole group discussion that took place.

At the end of class, when the children shared what they worked on, Emily
showed how she worked with adding 70 and 35. She had 70 cubes in stacks
of 10, and this was separated by a wooden block from 35 cubes in stacks of
10 and one 5 (Fig. 16.1):

She said she added 35 to 70 by counting on: 80, 90, 100, 105. Then she
moved the two groups of cubes so that the 35 was to the left of the block and
the 70 was to the right. She counted on again: 45, 55, 65, 75, 85, 95, 105. This
pair worked because they added up to 105 in either order. Walker asked
if Emily thought it would still work for different numbers. Emily said she
didn’t know because she only did these ones.

A few more children shared their thoughts and then Emily raised her
hand again. She said that she could use the same cubes but divide them up
differently and it would still work. When asked to demonstrate, she moved
the block to another spot and said that the two new parts would also add
up to 105, no matter what order she added them. She said it would work no
matter how she divided the cubes because there would always be 105. . . .
Nathan [added] she will always get the same answer because she is always
starting with the same number of cubes. 

16. EARLY ALGEBRA 421



Emily has taken a different approach to studying turn arounds, modeling
the operation of addition with cubes. Having 70 cubes on the left side of
a wooden block and 35 cubes on the right, addition is accomplished by
counting the number of cubes in the joined collection. She shows how, if
35 is moved to the left and 70 to the right, the total stays the same, and she
demonstrates by counting them all again. Initially, when asked if this
would work for other numbers, Emily says she doesn’t know because she
only tried these. 

However, after thinking about the question for a bit, she offers some
new thoughts. No matter how the 105 is decomposed, you can switch the
order and the parts would still add up to 105. Although still limited to the
sum of 105, Emily has extended the application of her representation to
any two whole numbers that total 105. In making this observation, Emily
has also shifted her interpretation of addition. Whereas before she started
with two quantities that were joined, now she begins with a total and
decomposes it into two parts. 

We do not see Emily or Nathan taking this idea further. However, the
physical representation they have built could provide the basis for a
proof—an argument for the original proposition that does not rely on
“trying it lots of time.” That is, given any number of blocks, that number
could be decomposed to represent an addition statement, and the parts
rearranged while preserving the number of blocks one started with. The
representation embodies the operation of addition, and (in imagination)
can accommodate any whole number of blocks because it does not depend
on the actual number of blocks at hand. It depends on a concretely based
realization of the invariance of the total across rearrangements of its parts.
The students are leveraging their experience of invariance in the physical
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FIGURE 16.1. Emily used an arrangement of cubes to demonstrate
that 70 + 35 and 35 + 70 both equal 105.



world to serve their understanding of addition. Also note that students
are learning to pay attention to what counts for two expressions to be con-
sidered equivalent. As they learn to identify what stays the same among
things that are changing, Emily and Nathan understand that when deter-
mining equality, quantity does count, while location does not. 

Jan Szymaszek’s Third-Grade Class, September: Changing the Order of Terms—
for Which Operations Over Which Domain?5 It was in Jan Szymaszek’s third-
grade class that students articulated what is the same and what is different
about 0 + 10 and 10 + 0, as recounted at the beginning of this section. Given
the initial discussion, Szymaszek chose to “push them on this a bit more”
and so, with their input, she wrote out the “Switch-Around Rule” she
thought they were expressing: When you add two numbers together, you
can change the order and still get the same total. Yet, after they discussed it
further, Szymaszek decided she needed more information about what each
child believed. She wrote:

The next day, I asked them to write the “Switch-Around Rule” in their own
words, and give examples to show if it’s always, sometimes, or rarely true.
Their comments helped me to see that the term “switch-around” meant dif-
ferent things to different students. [Among their comments were:]

• If you switch around the numbers in a math problem, you will get the
same answer. I think it’s true, but I’m not sure about division.

• The switch-around rule says 2 – 1 = 1 and 1 – 2 = 1.
• The switch-around rule is you put two numbers together and you switch

the numbers and it equals the same thing, like 7 + 3 = 10 and 3 + 7 = 10,
100 + 700 = 800 and 700 + 100 = 800, 30 + 40 = 70 and 40 + 30 =
70, 3 + 27 = 30 and 27 + 3 = 30, 6 + 5 = 11 and 5 + 6 = 11, 1000 +
8000 = 9000 and 8000 + 1000 = 9000.

• The switch-around rule is an example that 3 + 7 = 10 is the same as 7
+ 3 = 10 and 5 – 3 = 2 but 3 – 5 = ?, so it does not work for some num-
ber sentences.

• The switch-around rule is when you take two numbers and add them
together and try switching them around. Say you had 5 + 3 = 8. You
would switch them around to 3 + 5 = 8. For 5 – 3 = 2, then switch them
around to 3 – 5 = –2.

• The switch-around rule is if you have two numbers and you put the
numbers in the other one’s place, it will equal the same thing, but, you
can’t use subtraction otherwise it will not work, like 4 + 5 = 9 and 5 + 4
= 9, but 8 – 7 = 1 and 7 – 8 = –1.
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• The switch-around rule is if I have, say, three apples and four plums, if
instead I said I have 4 plums and 3 apples it will still equal seven pieces
of fruit.

• When you add or subtract two numbers and you switch them around
you get the same total. Most of the time true 8 + 7 = 15 and 7 + 8 = 15, 8
– 7 = 1 but 7 – 8 = 0. I think the switch around rule works only when you
add.

• The switch-around rule says that no matter which way they’re put, they
equal the same.

• The switch-around rule says you can change the order of the numbers. It
works every time you add two or more different numbers. 5 + 7 + 3: 7 + 3 =
l0, 5 + 10 = 15. 4 + 8 + 1: 8 + 1 = 9. 9 + 4 = 13. 8 + 9 + 4: 8 + 4 =12
and 12 + 9 = 21. 7 + 3 + 4 + 1: 4 + 1 = 5, 7 + 3 = 10, 5 + 10 = 15. 

What is particularly striking in the entire list, of which this is an excerpt,
is how many of the children interpret the switch-around rule to apply to
other operations, even though the rule was written “when two numbers
are added together.” Some children consider addition, subtraction, multi-
plication, and division; others addition and subtraction; and some specify
that the switch-around rule is about addition. Some children do not iden-
tify whether the rule applies to particular operations: “The switch-around
rule says that no matter which way they’re put, they equal the same.”

Of those students who consider switch-arounds for subtraction, some
say it works, others say it doesn’t. Of those who say it does not work, the
evidence they offer includes “8 – 7 = 1 but 7 – 8 = 0” (this child hasn’t yet
learned to think in terms of integers) and “5 – 6 = –1 and 6 – 5 = 1” (this
child has). Among those who say switch-arounds do work for subtrac-
tion, one child writes, “The switch-around rule says 2 – 1 = 1 and 1 – 2 =
1” (misunderstanding what is involved in subtracting a larger whole
number from a smaller), and another offers, “For 5 – 3 = 2, then switch
them around to 3 – 5 = –2.” In this last example, the student seems to dif-
fer from her classmates over what counts as the same and what counts as
different—an interpretation of sameness that departs from what is consid-
ered relevant in the commutative law.

One student wrote, “The switch-around rule is if I have say three
apples and four plums, if instead I said I have four plums and three
apples it will still equal 7 pieces of fruit.” Although the rest of the students
all wrote in terms of “naked numbers,” devoid of context, this child’s
thinking harkens back to ideas about order encountered by Ana
Vaisenstein’s first-grade students. 

Another child extends the idea of switch-arounds to multiple addends,
offering examples that involve a combination of the commutative and
associative properties. This child sees that, when given three or four
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addends, you can group them and order them in any way, yet preserve
the sum. Here, commutativity and associativity are not seen as distinct
properties—all of the examples illustrate joining addends in various
orders without affecting the total. (Although this student may understand
that, no matter how many addends are involved, order doesn’t change
the sum, in other classrooms this is an open question; Bastable & Schifter,
chap. 6, this volume.)

The following day, Szymaszek began with a discussion in which the
class clarified for itself that switch-arounds work differently for addition
and subtraction; she then asked the class to think only about addition:

Teacher: How many people would agree that if we’re talking about addi-
tion, the switch-around rule works all the time? . . . Raise your
hand if you’re sure that it’s always going to work for addition.

Mark: Do you mean for every number in the entire world?
Teacher: For every number in the entire world.
Chris: Two different numbers?
Teacher: Two different numbers, two same numbers . . . Add them

together, switch them around, they’re still going to equal the
same amount.

Many hands go up:

Teacher: Raise your hand if you’re not sure.
Steve: If you’re not positive?
Teacher: Yup.

Two hands go up. One is Steve and the other is Marina:

Teacher: So, Marina, what do you think would convince you? What are
you still not sure of that would make a difference to you?

Marina: Well, I’m not too sure it will work for every single number
because . . .

Steve: Because we haven’t tried every single number. 

Perhaps it seems as if Steve and Marina are behind their third-grade
classmates and even those second graders who are convinced that
switch-arounds, or turn arounds, will always work. However, we have
seen that by third or fourth grade, many students become aware of the
infinite nature of the number system and now realize checking particu-
lar pairs of numbers is not enough to establish the general rule (Ball &
Bass, 2003). They may still be thinking about whole numbers, which
they now know extend forever and reach quantities they cannot imag-
ine. Or perhaps they are becoming aware of other classes of numbers—
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integers, for example—that may have a different character. Indeed, in
other third-grade classrooms, the question of order arises again once
work with integers is begun: If you add 4 and −6 (move from zero on the
number line up four and back six), do you land at the same place if you
add − 6 and 4 (move from zero on the number line back six and forward
four)? And will this always be true?

Thus, even as we see that, early in first grade, children recognize a reg-
ularity that some educators might call the commutative law of addition,
how children make sense of this law involves considerable complexity.
These vignettes reveal several issues.

When faced with the question about whether changing the order of
addends always leaves their sum unaffected, many children interpret
always to refer both to all numbers and to all operations. (Although not
depicted here, the children in Carol Walker’s class also considered turn
arounds for subtraction.) Thus, they must sort out that it does apply to
addition, but not to subtraction. In fact, deliberately contrasting these two
operations is not only a particularly effective way to deepen students’
understanding of commutativity, but also, as well, of the operations of
addition and subtraction themselves. Once they move into their studies of
multiplication and division, they will have to think through why turn
arounds work for multiplication, but not for division. (See Schifter,
Bastable, & Russell, 1999, for cases about the commutative law for multi-
plication.)

Furthermore, even when the discussion is restricted to addition, the
issue of whether one can always change the order of addends is, in itself,
complex. Can we ever say always when we can’t test all numbers? What
constitutes proof at the elementary level? Even after always is established
within a domain (e.g., whole numbers), the question must be revisited
when that domain is extended to other kinds of numbers (e.g., integers).

Finally, for children, questions about the effect of reordering two
addends can extend to the reordering of any number of addends. From
the students’ point of view, the properties of commutativity and associa-
tivity for addition are not separable, but are implicated in the same ques-
tion, “Does the order of addends matter?” Therefore, as the number of
addends increases, students may again need to reconsider this question. 

What Is Basic for Whom? Considering
the Associative Law of Multiplication

The previous section presented vignettes from classrooms in which
children’s observations hit directly on the basic concern of additive
commutativity—the order of addends. In contrast, we find that questions
about associativity do not arise with the same immediacy in elementary
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classrooms. In fact, especially with regard to multiplication, the law
expressed algebraically as (xy)z = x(yz), elementary students rarely see
problems with three or more factors and so have no occasion to notice
what happens when factors are regrouped. However, we have found con-
siderable interest in related propositions, which, in fact, follow from the
associative property for multiplication. 

For example, some students realize that you can double one factor in a
multiplication statement if you halve the other, keeping the product con-
stant (see, e.g., Russell, 1999). This proposition follows from the associa-
tive law: (x2)z = x(2z), the factor (x2) being halved, the factor z, doubled.6

For children, it is their representations of multiplication that they call on
as the basis of their justifications (Fig. 16.2). “If I had half as many groups,
I’ve got to have twice as many things in them to equal the same amount.”
Or, “If I cut this rectangle in half and rearrange the parts, I still have the
same area.”

Another observation that engages elementary children is that the fac-
tors of a number are also factors of that number’s multiples, a proposition
that follows directly from the associative law of multiplication: If a is a
factor of b (b = ma) and c is a multiple of b (c = nb = n(ma)), by associativ-
ity, c = n(ma) = (nm)a, which means that a is a factor of c. But again, for
children, it is their representations of multiplication that are the basis of
their proofs.

To illustrate this point, we will visit two classrooms where this idea is
explored.
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6As we have shared this problem with mathematically sophisticated adults,
some see it as a direct application of the associative law of multiplication; others
see it as a combination of commutativity, associativity, the product of 2 with its
multiplicative inverse, and the multiplicative identity. Students’ observations and
their use of representations of the operations to justify them at once give meaning
for what the operation does and provide students with the ability to maneuver
about the number system flexibly.

FIGURE 16.2. Doubling one factor and halving the other keep
the product constant.



Jan Szymaszek’s Third-Grade Class, April: Factors of Factors and Physically
Based Justification.7 In this third-grade classroom, students had been
working on what numbers one can count by to land on a particular num-
ber. For example, to land on 30, one can count by 2s, 3s, 5s, 6s, and so on.
They began to notice patterns and formulated questions about them. One
such question had engaged their interest: “Is a factor of a factor also a fac-
tor of the number?” Szymaszek described the following lesson:

The next day, when my class was finding factors of 120, I also asked them to
find out whether all the factors of the factors of 120 were also factors of 120.
As I checked in with them while they were working on this problem, I over-
heard one partner pair, Allan and Ben, talking about a short cut way of
checking for factors of factors. When the class gathered for a whole group
discussion about what they had learned, I asked Allan and Ben to share
their idea first.

Teacher: When I saw what Ben and Allan did to show how the factors of
the factors were also factors of 120, I wondered if this might help
us see how we could show it could work for all numbers and all
factors.

Ben: We had ours in “eight-sticks,” the way we do now. 

The array he had in front of him looked like this that depicted in
Figure 16.3:

Ben: When you came over to us you asked a question if all the factors
of eight are also factors of 120. I said, “Sure!” and I just took one
stick and I just took the factors out.

Teacher: Could you show us how you did that?

Ben broke one of the eight-sticks into two 4s, then four 2s, then eight 1s
(Figure 16.4):
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Teacher: Allan, how did you two know that all those factors were also fac-
tors of 120?

Allan: Because all the multiples . . . Well, every stick is the exact same
thing, because it’s made with the same number of cubes, so if
there are certain factors of 8, they have to be the same factors of
all the other 8s.

At this point, many students sighed with “Oh!” as a sign of acknowledg-
ment that this idea could work for them, too:

Teacher: Let’s let that sit with us all for a few seconds, and then we’ll see if
anyone else can find a way of saying that idea in another way. 

After a short silent “think time,” I asked Allan to call on someone who
wanted to restate his idea. He picked Sharon:

Sharon: What they were saying, I think, is that since you could split one of
the 8s into 1s or 2s or 4s, you could split all of the 8s into 1s or 2s or 4s, and
that would mean that the 120, you can split into 1s or 2s or 4s. 

Allan agreed that Sharon’s paraphrase matched what he was saying.

When Ben and Allan presented their proof that all factors of 8 must
also be factors of 120, some of their classmates recognized that their
method offers proof for the general claim. The children explain what the
cubes show: If a number is broken into groups of equal size, then if one
group is broken into its factors, all of the groups can also be broken into
smaller groups of that same size—demonstrating that the smaller number
is also a factor of the original number. 
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Nancy Buell’s Fourth-Grade Class, January: Factors of Factors—More
Representations, More Justification Strategies.8 In Nancy Buell’s fourth-grade
class, children worked on a similar idea, calling on different representa-
tions to prove their claims. The students’ explorations arose following a
lesson in which the class had listed the factors of 100, 200, 300, and 400
(Table 16.1).

Using the phrase “hundreds numbers” to mean multiples of 100, Buell
posed the following questions: “What patterns do you see in looking at
the factors of different hundreds numbers? How might the patterns help
you figure out the factors of a hundreds number that is not yet on our
chart?” By the end of the period, the class had come up with 25 observa-
tions. The following day, Buell handed out compilations of those observa-
tions and then asked each student to pick one they wanted, determine if
it is always or sometimes true, and offer a proof.

As they got to work, different children selected observations at differ-
ent levels of generality. Their proofs relied on their representations of
multiplication or division, highlighting different interpretations of what
these operations do.

430 SCHIFTER ET AL.

8This episode is excerpted from a case that appears in Schifter et al. (2008).

Table 16.1

Factors of Hundreds Numbers

100 200 300 400

1 1 1 1
2 2 2 2
4 4 3 4
5 5 4 5

10 8 5 8
20 10 6 10
25 20 10 16
50 25 12 20

100 40 15 25
50 20 40

100 25 50
200 30 80

50 100
60 200
75 400

100
150
300



The first observation on the list was, “1, 2, 4, 5, 10, 20, 25, 50 and 100 are
always or sometimes factors of all the other hundreds numbers.” Some
children chose to prove the claim of always for each factor separately. For
example, Betsy suggested, “All hundreds numbers are even and all even
numbers can be divided by 2, so 2 is a factor of all hundreds numbers.”

Shavon said that she thought of dollars and quarters when considering
25 as a factor. Buell asked the class, How many quarters in $2? $3? $4? $5?:

Teacher: So what does that tell you about 25?
Joey: That 25 goes into 100 four times and, so, however many dollars,

there are, umm, there will be four quarters for each one—or
four 25s.

Teacher: So what does that prove?
Joey: That there’s 25 in any hundred.

Still other children, also working from observation 1, interpreted it as
“All factors of 100 are factors of other hundreds numbers.” Thus, they
offered a single proof for all 9 factors. 

Chang, Ivan, and Khalid, working as a small group, thought about this
claim in terms of skip counting. Although they spoke in terms of specific
numbers, they explained that they were talking about all factors of 100.
Khalid used 25 as his first example—you go up four for each additional 100.

Chang interrupted, excited by his own insights:

Because 100 has those numbers as factors. Say I’m skipping by 2. I need,
umm, 50 skips to get to 100. Umm. Just add 50 more, then you got a factor
of 200. Just keep adding by 50s, you get to higher numbers, the other
hundred numbers.

When asked if there are any hundred numbers that you can’t get to that
way, Ivan spoke up. “700 has 7 hundreds in it. So all those numbers are
factors. You just have to take more jumps.”

Jon, Williamson, and James worked on the observation, “If you double
the numbers in the 100 column you get numbers in the 200 column.” (If
you double a factor of 100, you get a factor of 200.) Because this rule is
about a finite set, it could be checked for each case. However, these boys
chose to think about it in terms of arrays. First they wrote:

I think this works because 100 is half of 200, and therefore the factors
of 100 are half of the factors of 200. Then they drew the following picture,
as shown in Figure 16.5.

When asked if there was any way to see factors in the picture, Jon filled
in some more numbers. “See, 20 × 10. And inside here there is 10 × 10.” 

Jon’s picture (Fig. 16.6) illustrates a rectangle whose area is 200, with ver-
tical sides of 10 and horizontal sides of 20. Half the rectangle, whose area is
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100, has vertical sides of the same length (10), and horizontal sides half the
length (10). However, Jon did not stop to explain this. Instead, he went
ahead and drew a picture to demonstrate the same notion with another pair
of factors. Starting with 50 × 4 as factors of 200, he cut his rectangle in half
to show that half of 50, 25, is the corresponding factor of 100 (Fig. 16.7).9 

These boys also made a general claim, but, as in Chang’s group, relied
on specific examples to justify it. And again, as in Chang’s group, their
justifications were not merely a matter of testing the claim by checking
particular number facts. In this case, the children were using representations
of multiplication to illustrate how the quantities involved are related. As
had Emily in Carol Walker’s second-grade class, or Ben and Allan in Jan
Szymaszek’s case, they, too, employed a representation with particular
numbers. However, unlike Emily, they seemed to be saying that their rep-
resentations demonstrated the general claim. They were seeing the
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FIGURE 16.5. Jon argues that the factors of 100 are half the factors of 200.

100 100

200
10

10 10

20

FIGURE 16.6. 20 is a factor of 200, and half of 20 is a factor of 100.

9It is not clear to us that Jon was excluding the case of an odd factor of 200,
where his approach would not give new whole-number factors of 100.



general in the particular, or perhaps more accurately, treating the particu-
lar as the general (Mason, chap. 3, this volume).

Tyrone, who wrote about the observation, “300 has the most factors,”10

ended up working at a higher level of generality: “I don’t think 300 has
the most factors. Here’s my proof. Because 600 is a multiple of 300 it has
all the factors of 300 plus itself and 8.” 

An adult observer who came by as Tyrone was writing out his expla-
nation asked about the claim that 600 has all the factors of 300. Here is
Tyrone’s written response:

The reason for this is that any factor of a lower number will be a factor of
any given multiple of that number. This is because you simply multiply the
number the factor is being multiplied by as many times as the lower num-
ber goes into the multiple.

Based on their observations of lists of factors, the children in this class
explore particular cases of the proposition that a factor of a number is also
a factor of that number’s multiples. The general proposition is closely
associated with multiplicative associativity: x(yz) = (xy)z. At Tyrone’s
level of abstraction, he has articulated an idea that is close to the follow-
ing formal algebraic statement, where a, b, c, m and n are taken to be
whole numbers: If a is a factor of b (which can be written as ma = b) and c
is a multiple of b (which can be written as c = nb), then a is a factor of c
because c = n(ma) = (nm)a.

But Tyrone doesn’t think in terms of grouping and regrouping factors and
the sort of algebraic manipulation illustrated previously. “You simply mul-
tiply the number the factor is being multiplied by as many times as the
lower number goes into the multiple.” He is, instead, thinking about the
roles the different factors play in the relationships he is noticing. The chil-
dren in both these classrooms rely on various representations of multiplica-
tion to think about the generalizations they have articulated. They are not
thinking about grouping factors, but are thinking in terms of factors and
multiples and various visual representations of their relationships.
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FIGURE 16.7. 50 is a factor of 200, and half of 50 is a factor of 100.

10The class’ observations came from lists of the factors of 100, 200, 300, and 400.
Indeed, of those four lists, the one for 300 was longest. Tyrone set out to prove that
the claim was false once you consider multiples of 100 more generally.



The particular generalization these children are making—the factors of
a number are also factors of that number’s multiples—arises naturally in
the course of their work on multiplication. Its power stems from the fact
that it stimulates the curiosity of these children who are engaged in build-
ing their understanding of factors and multiples, multiplication and divi-
sion. By raising these observations for explicit consideration, the teachers
create opportunities for their students to learn that it is possible to make—
and prove—claims about infinite classes of numbers. There is no reason to
explore or articulate explicitly the associative property of multiplication
at this point, and when, in later grades, these children are introduced to
its formal algebraic expression, they will be able to attach meaning to it.
Nevertheless, they are connecting ideas about regularities of the opera-
tions to their underlying properties. As they investigate the generaliza-
tions that emerge from their work, they deepen their understanding of
multiplication and learn to more fluently use their representations to
show multiplicative relationships. The children’s proofs rely on their spe-
cific representations, for these are what are most accessible to them.

What’s the Same Generalization to Me May Not Be the Same
to You: What Does It Mean to “Understand” Distributivity?

When students begin their study of multiplication of whole numbers, they
think of the operation of multiplication as adding up the number of objects
in a set of groups of fixed size—repeated addition. And, as they figure out
how to calculate, implicit in their work is the idea of distributivity. For
example, in order to find the number of sodas in five 6-packs, they might
find the number in three 6-packs added to the number in two 6-packs. At a
later point, children may act with a generalized notion of how one factor
can be decomposed, each part multiplied by the other factor, and the sub-
products totaled to find the answer to the original problem. Yet when
children encounter what is—from a formal mathematical perspective—the
same idea, but is now placed in a different context, they fail to recognize it. 

To illustrate this point, consider two episodes, 6 weeks apart, from the
same third-grade classroom. 

Susan Smith’s Third-Grade Class, May: Regrouping and the Distributive
Property.11 In this lesson, Susan Smith posed the following problem:

On the weekend, I found many flowers in my garden. In the morning, I
picked 4 bunches of flowers to give to my family. That afternoon I picked 3
more bunches to give to some friends. Each bunch had 8 flowers. How
many flowers did I pick?
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After the children had a chance to solve the problem individually, they
spent the rest of the lesson sharing their solution methods. Later that day,
with the distributive property still on her mind, Smith met with some
students who had volunteered to spend recess thinking further about this
problem. She directed their attention to Laura’s solution strategy: 

Teacher: So I’ve got another problem for you to think about. It seems like
many people did what Laura did. She thought of the answer as
7 × 8, but she didn’t know how much that was. So she counted 2
eights and then 2 more eights, until she had 7 eights. 

Smith then asked the class to think about another problem: How might
they “pull apart” 12 × 6 to solve that multiplication?:

Linda: That means you have to have 12 six times. I’d take 2 of the 12s
and add them. So then I’d have 12 × 2 and I’d take that answer
and add it 2 more times.

Teacher: Could you do (12 × 2) + (12 × 2) + (12 × 2)? Can we write it this
way? Is this a true statement? 12 × 6 = (12 × 2) + (12 × 2) + (12 × 2).

Linda said yes, and the rest agreed:

Teacher: Why can we write it that way?
Louisa: Because it is still six 12s, just broken up into 2 at a time and added

together.
Teacher: Is there another way we could break it up?
Elizabeth: We can do (12 × 3) + (12 × 3).
Catherine: We could also do (12 × 4) + (12 × 2).
Laura: (12 × 5) + (12 × 1)
Teacher: Why can we do it all these ways?
Elizabeth: It’s like before, when we did (8 × 4) + (8 × 3). It’s still the same

answer.
Laura: It’s because they all equal the same number. They are all 12 × 6. 
Teacher: Are you saying all of these give you 12 six times?

They all nodded. Since they had been only breaking up the six, I wanted
to see if they also thought you could break up the 12:

Teacher: You’ve found lots of ways to break up the six. Can we break up . . .
Louisa: . . . break up the 12?
Teacher: Yes, can we break up the 12 so you would have six 12 times?
Louisa: (6 × 6) + (6 × 6).
Teacher: Does that work? How many groups of six do we have?
Elizabeth: It’s six groups of six and another six groups of six, so it’s still 12 sixes.
Teacher: Is there another way to break it up into sixes?

I (the teacher) decided to put up my own answer. I wrote (10 × 6) + (2 × 6).
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Teacher: What do you think of this?
Burt: It’s just another way to make 12. It doesn’t matter how we do it.

It’s still the same.
Louisa: It’s like all those other times, when we break numbers up and

switch them around. The answer doesn’t change because we did-
n’t change what we had.

When given multiplication problems to solve, these children, calling on
their sense of what it means to multiply, know that they can break the
problem apart and multiply in chunks, in effect, applying the distributive
property. Although they don’t have a name for the rule, they work with
the principle fluently and explain why it works: You can calculate 12 × 6
by solving (6 × 6) + (6 × 6) because “it’s six groups of six and another six
groups of six, so it’s still 12 sixes.” Their sense of the invariance of the
overall collection seems to be the basis of their certainty.

Burt and Louisa explain that it doesn’t matter “how we do it,” “the
answer doesn’t change because we didn’t change what we had.” Their
understanding that these multiplication problems entail counting the total
number in a given number of groups of a fixed size enables them to con-
clude that the groups can, themselves, be grouped in any way, without
changing that total. The children have articulated a general rule which,
written symbolically, is (x + y)z = (xz) + (yz). That is, they seem to be
close to articulating the distributive law for multiplication over addition.

From a mathematical perspective, one can consider a simple applica-
tion of this law: The sum of two even numbers is even. That is, represent-
ing an even number as any integer multiplied by 2: 2n + 2m = 2(n+m).
Dispensing with algebraic notation, we can say that when one number
represented as a “bunch of pairs,” and another number represented as a
“bunch of pairs,” are brought together, they make still another “bunch of
pairs.” However, returning to Susan Smith’s classroom in June (next sec-
tion), it appears that the children do not see this as the same generaliza-
tion they had hit upon in April.

Susan Smith’s Third-Grade Class, June: Sums of Evens—An Entirely
Different Experience of Distributivity.12 The class has spent time investigat-
ing even and odd numbers: defining terms, identifying particular num-
bers as even or odd, and predicting whether sums of given pairs of
numbers are even or odd. Based on this work, many of the students suggest
generalizations—the sum of two evens is even; the sum of two odds is
even—but none of the children offers a proof. That is, nobody offers a
proof until Amanda speaks up in whole group discussion:
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Amanda: Two evens, no matter what they are, have to equal an even.
Teacher: Why?
Amanda: Um. I just figured out something. . . . If you counted something by

2s, and 2s always work on an even number, they can’t work on an
odd number, and um every even number you count by 2s with it
and if you added the 2s of both even numbers on top of each other,
they both count by 2s, so they would have to equal an even.

Teacher: Somebody know what she’s talking about? Ellen?
Ellen: She’s kind of talking about—No, I’m confused.
Teacher: Somebody want to hear it again? Elizabeth wants to hear it

again, Amanda.
Amanda: Well, if you have 2 even numbers, 2s work on both of them, so if

you put them on top of each other. Umm. Can I have some cubes?

(The reader is invited to reread what Amanda said and try to deter-
mine her reasoning and then compare with what is revealed later.) As
Amanda builds two sticks of cubes representing even numbers, she
explains her idea again, showing the two sticks of cubes that can be
counted by 2s, and then joining them to make one stick:

Amanda: I have this, both of them [the two sticks] count by 2s, so if I put
them on top of each other, you keep counting by 2s, and then you
get to an even number.

Teacher: Ohhhh. That’s not what I thought you meant when you said you
put them on top of each other. Ohh. What do people think about
what she just said? Elizabeth?

Elizabeth: I think she said that if you have two even numbers and they’re
counting by 2s, then you put them on top of each other.

Teacher: You stick them together, I think that’s what she meant.
Elizabeth: Yeah. But then I don’t know what she said after that.
Teacher [Checking with Amanda to make sure she’s correctly paraphrasing]:

So you’ve got an even number over here, and an even number
over here, and you stick them together, it has to give you an even
number.

Amanda: Because you can count by 2s up to 6 and if I add the four on, you
can just keep counting up by 2s, and that would have to equal an
even number because 2s only get you to even numbers.

At this point, most of the children seem lost. Only Elizabeth is still
working to follow Amanda’s proof. At first, she seems to agree that the
generalization feels right. But then she reconsiders:

Elizabeth: Well, it just, well um because, it just, um, you just, well, I don’t
know, because in some cases, well, um, I can’t really think of it
now but like, if you had one that was an even plus an even, if
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like, I haven’t figured this out, but sometime maybe it could
equal an odd.

Teacher: And Amanda’s saying it couldn’t ever equal odd. Is that what
you’re saying Amanda? That an even plus an even could never
equal odd? And Elizabeth is wondering if it sometimes could be
an odd, but you’re saying it could never be an odd? Do you want
to say more about why that is?

Amanda: Because 2s don’t get to odds. And if they’re two even numbers,
they’re both counting by 2s, and if you put them on top of each
other you keep counting by 2s and that always equals an even
number.

Elizabeth: So she’s saying she already knows that it always equals it.
Teacher: She thinks she knows that it’s always going to be even. 

In whole-group discussion, Amanda says she can prove that the sum of
any two even numbers is even. Relying on a definition of even as a num-
ber you land on when counting by 2s, she builds two stacks of cubes, each
stack representing an even number. If she puts them together, that repre-
sents the sum. If you start counting by 2s, you get to the end of the first
number and start counting by 2s on the second number, and you have to
land on the last cube. Amanda says she knows it will work for any two
even numbers. However, the class has trouble following her. Elizabeth
tries, but as she works to paraphrase Amanda’s argument, she gets con-
fused and can’t follow through. After Amanda repeats it, Elizabeth can’t
take on the idea of “all” even numbers. “If you had one that was an even
plus an even . . . sometime maybe it could equal an odd.”

In discussion the previous May, a group of children, Elizabeth among
them, articulated what we would call distributivity and provided an
explanation for why it works. However, the discussion of the sum of
even numbers has a very different character. From the mathematician’s
perspective, it might seem strange that the children cannot see a direct
application of a property they seem to have clearly understood.
However, viewed from the child’s perspective, we might ask, why
should they see the two discussions as related? After all, the discussion
in May was about multiplying (with addition used as part of the calcula-
tion strategy); the discussion in June was about adding (with multiplica-
tion implied in the definition of even numbers). In the first discussion,
children were thinking in terms of multiple groups; in the second, they
were counting by 2s. In the first discussion, they were working on a strat-
egy for calculation; in the second, they were considering a general claim
for a class of numbers. 

How does one answer the question: Do these children understand dis-
tributivity? On the one hand, they do not see how to apply this principle to
prove that the sum of two even numbers is even. However, as children are
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working to develop their capacities to calculate and maneuver about the
number system, they are not thinking in terms of applying principles.
Rather, they are developing multifaceted “local” meanings for the opera-
tions, becoming fluent with a variety of representations, and learning
about how to make and justify general claims about the numbers and
operations (while, of course, enriching their familiarity with the charac-
teristics of specific numbers). In light of this, we might define “under-
standing distributivity” for a third grader to mean breaking apart one
factor to perform multiplication and successfully explaining why it
works.

Summary

If curriculum were to be determined exclusively through mathematical
analysis, an effort to bring algebra into the early grades would involve the
expectation that students be able to state and apply the commutative,
associative, and distributive laws. However, as we have seen, taking
account of how children learn to negotiate the number system leads to
different conclusions. 

Early in their mathematical learning, children notice regularities that
close in on the commutative law of addition. At first, however, they seem
to be thinking about numbers rather than operations. Thus, when they
notice that changing the order of numbers in some problems does not
change the result, they might miss the fact that the regularity applies to a
particular operation (or operations). Examination of the regularity, con-
sidering when it works and when it does not, can bring them to begin
thinking about the operations as entities, each with its own properties.

In contrast to additive commutativity, associativity does not arise nat-
urally as children explore number and operations. Grouping and
regrouping addends is simply a feature of the extension of the commuta-
tive law of addition—when given multiple addends, they can be added in
any order. And although children become interested in and prove gener-
alizations that can be seen as consequences of the associative law of mul-
tiplication, they rely on representations of the operation as the basis of
their justifications. Their insights do not derive from grouping and
regrouping factors (which describes the associative law of multiplication),
but to rearrangements of visual representations of quantities.

When working with whole-number multiplication (finding the total
number of elements in a set of equal-sized groups), children will employ,
articulate, and explain a strategy that approaches the distributive property
of multiplication over addition. In fact, the idea of additively decomposing
1 factor, multiplying each of the parts, and summing the subproducts is at
the basis of almost all children’s multidigit multiplication strategies. 
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IMPLICATIONS FOR CURRICULUM DESIGN
AND IMPLEMENTATION

The work the authors are pursuing with collaborating teachers is in the
service of revising a K–5 curriculum. In this section, we articulate some of
the conclusions we have drawn that inform our approach to curriculum
design.

The generalizations written into a curriculum cannot be determined
from mathematical analysis alone, but must be selected in conjunction
with systematic inquiry into the ideas most salient to children of different
ages. For example, from the standpoint of mathematical analysis, the
commutative and associative properties would be among the first to be
included in an elementary curriculum, and they would likely be given
equal weight. However, as we have shown, as children begin to explore
number and operations, additive commutativity and associativity fall
under the topic of order and are not necessarily distinguishable. 

Rather than investigate associativity in itself, it is more fruitful for
children to explore related ideas, ideas children pursue with energy (e.g.,
that the factors of a number are also factors of that number’s multiples).
And some generalizations that can seem powerful to young children—if
you add 1 to an addend, your total increases by 1, is an example that sec-
ond graders discuss—would appear, at best, uninteresting and trivial
from the standpoint of a purely mathematical analysis.

Among the generalizations we are introducing into the Investigations
curriculum are the following:13

• The order of addends does not affect the sum, but the order of the
terms in a subtraction problem does affect the difference.

• The order of factors does not affect the product.
• Subtraction “undoes” addition, as in 22 + 8 – 8 = 22.
• Any missing addend problem can be solved by subtraction and vice

versa.
• In an addition problem, if you subtract a certain amount from 1

addend and add it to the other, the sum remains constant.
• In a subtraction problem, if you subtract (add) the same amount

from (to) both numbers, the difference remains constant.
• The less you subtract, the larger the result.
• Adding or subtracting 0 does not change the amount you start with.
• Multiplying or dividing by 1 does not change the amount you start

with.
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• If you add 1 to an addend, the sum increases by 1. (And, for older
students, if you add [or subtract] any number to an addend, the
sum increases [or decreases] by that number.)

• If you double one factor and halve the other, the product remains
constant.

• The factor of a number is also a factor of that number’s multiples.
• In a multiplication problem, you can decompose one factor, multi-

ply the parts by the other factor, and add the subproducts.
• The more you divide by (the larger the divisor), the smaller the

result (the smaller the quotient).

These generalizations initially arise in the context of students’ work in
whole numbers. As the domain of number expands—to rational numbers
and integers—many of these generalizations must be revisited and argu-
ments must be developed with representations that apply to the larger
domain. In addition, students refer to these generalizations as new issues
arise, for example, determining which of two fractions is larger.

Although this chapter focuses on early algebra as generalization about
number systems, the habits of generalizing and justifying in mathematics
are not restricted to explorations of number and operations. Thus, in their
study of geometry, students apply the same habits of mind to find (e.g., to
find the formula for the area of a triangle). Similarly, in their study of
functions, function rules must be developed, an activity that involves
generalizations about situations in context.

Ideas about generalization are implicit in the current elementary cur-
riculum, but are not necessarily addressed either explicitly or in a sus-
tained manner. Our work does so. The tendency to generalize is a natural
human one (Mason, chap. 3, this volume), and young children do make
generalizations about the regularities they see in the number system. This
chapter has shown how first graders notice regularities that arise in the set
of problems called “How Many of Each?” and how second graders name
the pattern they see as turn arounds. Furthermore, as children devise pro-
cedures for calculation, they employ methods in which certain laws are
implicit. (Almost all strategies, including the standard algorithms, for
adding multidigit numbers involve decomposing addends and summing
the parts in a different order.) An early algebra curriculum can build on
children’s natural tendencies and draw from their work with calculation,
turning these observations and strategies into objects of study in them-
selves, encouraging children to articulate and prove generalizations.

For example, when Jan Szymaszek asked her students to consider their
question, “Is a factor of a factor of a number always a factor of that
number?” their discussion led to the development of a proof based on
representations of multiplication applicable to all whole numbers. In
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many of the examples in this chapter, students had noticed regularities for
numbers and operations, some of which are true for all numbers and
some of which are not. However, without the classroom work that raised
these ideas for collective reflection, extraordinary opportunities for learn-
ing would have gone unnoticed. 

Generalizations should be revisited throughout the grades, with each
encounter enriched by deepened understanding of number and opera-
tions and of the notion of proof. As the example of “How Many of Each?”
shows, before young children actually construct a notion of addition as an
operation, they can encounter an activity in which additive commutativ-
ity is foreshadowed. Later, as they work on addition of small numbers,
they notice an intriguing regularity and some, working with an image of
addition as joining two quantities, can explain why it works. But, as they
become aware of numbers larger than they can quantitatively imagine, or
when they consider adding multiple addends, students must revisit the
idea of switch-arounds. And, later, when confronted with positive and
negative integers, children need to think through the issue once more.

Inquiry into the properties of the other operations will prove to be
another avenue leading to revision of their ideas about order. Working on
order in addition, even in the early grades, children often raise questions
about subtraction. What happens when two numbers in a subtraction
problem are interchanged? Which regularities become apparent? In later
grades, students consider which representations can be used to demon-
strate that reordering factors in a multiplication problem does not affect
the product and examine the regularities that become apparent when the
order is changed for division.

Students’ understanding of commutativity grows in power as the
domain of number expands and as they consider all four operations. But
developing simultaneously is their understanding of what it means to
prove that something is always true. We find that young children, fre-
quently as early as in first grade, make general claims and speak with
assurance that something always works. However, in the middle elemen-
tary years (most frequently in third grade), students are more likely to
reject claims of always. No longer satisfied with testing several (or many)
examples, they explain that because numbers go on forever, you cannot
test all cases. There might be some number out there that doesn’t work the
same way—recall Elizabeth’s statement that sometime maybe the sum of
two even numbers could be odd.

Still later, students make general claims, but offer different kinds of
arguments to defend them. In Nancy Buell’s class, children made such
claims (e.g., that 25 is a factor of all multiples of 100, that all of the factors
of 100 are factors of all multiples of 100), relying on representations of
multiplication that can accommodate a class of numbers. Because any
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number of dollars can be converted to quarters, 25 is a factor of any multiple
of 100. Because counting by a factor of 100 lands you on 100, as you repeat
centuries, you land on all the multiples of 100.

This progression is not necessarily developmental. For example, first
and second graders can argue that whenever you add a certain number
and then subtract it, you get the number you started with, (algebraically,
x + a – a = x). Their justifications are not based on simply trying it lots of
times, but on what it means to add and subtract whole numbers. Certain
generalizations and the arguments to prove them may be accessible to
younger children, whereas others must be revisited and refined as knowl-
edge of the number system, of representations of operations, and of meth-
ods of justification deepens.

Justification in the elementary grades should be based in visual repre-
sentations (diagrams, manipulatives, etc.) of operations. We have offered
a number of examples to illustrate our view that for children in the ele-
mentary grades, it is the meaning of the operations, as represented visu-
ally in diagrams, manipulatives, and so on, that forms the basis of
justification of claims of generality. Thus, proofs involving addition or
subtraction might be demonstrated by joining or separating stacks of
cubes, comparing amounts, or tracking movement along a number line.
Arguments involving multiplication or division might rely on images of
groups of equal size, or on arrays, or counting by a fixed number. 

To be useful in validating a general claim, representations must accom-
modate a class of numbers. However, it is sometimes difficult to distin-
guish, from students’ words and actions, when a representation is being
used to argue for a particular instance rather than to defend a claim of
generality. In several examples in this chapter, the authors interpret
students’ use of particular quantities as placeholders for a general num-
ber (a variable). For example, when Amanda demonstrates her proof that
the sum of two even numbers is even, she holds up cube sticks that nec-
essarily contain a certain (small) number of cubes. To her, they stand for
any two even numbers, and she makes her argument for the general case.
Similarly, Allan seems to be making a general claim—that factors of a fac-
tor of a number are factors of that number—even though he is arguing the
case that factors of 8 are also factors of 120: “Well, every stick [of 8 cubes]
is the exact same thing, because it’s made with the same number of
cubes. . . .”

In these examples, the role of representation is central to the articula-
tion, investigation, justification, and communication of generalizations.
Allan’s explanation, based on his representation, gives his classmates
access to an understanding of why this general idea is true.

Given these four conclusions, we believe curricular activities must pro-
vide opportunities for children to puzzle over regularities of the number
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system. It is one thing for a teacher to pause for exploration when students
happen to notice a generalization in the course of their work with number.
It is another to write a curriculum that consistently draws students’ attention
to significant generalizations, to stimulate puzzlement and the desire to
explore. To do this, curriculum writers must identify which generalizations
catch the interest of children of different ages and then formulate questions
about those generalizations. For example, one might present two related
problems and ask: Can you use your answer from the previous problem to
help you think about this problem? Or, one might describe two fictional
characters presenting different, contradictory arguments and ask: Which
character do you think is right, and why? Or again, one might present two
different ways to solve the same problem and ask: If you apply these two
methods to other problems, will you always get the same answer?

We must emphasize, however, that curriculum alone cannot ensure
development of a strong early algebra strand in the elementary grades. As
other chapters of this volume attest (Bastable & Schifter, chap. 6, this volume;
Franke, Carpenter, & Battey, chap. 13, this volume), engaging students in the
formulation, testing, and justification of generalizations involves a teaching
practice based on inquiry, and doubly so—students inquiring into mathe-
matical ideas, their teachers into students’ thinking. The vignettes included
in this chapter were chosen to illustrate how children’s discoveries of the
behavior of the basic operations are related to the laws of arithmetic.
However, these same vignettes can be read as evidence of the classroom cul-
tures the teachers have established, the stances they take as their students
offer their own ideas, and the pedagogical moves they make in response to
those ideas. In these classrooms, students are encouraged to express their
thoughts for the class to reflect on and develop further. Teachers ask ques-
tions to elicit ideas or to move their students’ thinking in particular direc-
tions. For example, after her second graders coined the term turn arounds,
and after Carol Walker asked them to define or describe turn arounds for
her, the question naturally arose: Do turn arounds work for any pair of num-
bers? Similarly, Jan Szymaszek wrote out the rule for switch-arounds, which
she thought her students had articulated. But, only when they wrote it in
their own words did she realize that many of her students had a different
rule in mind. And as Susan Smith’s third graders discussed the equation
12 × 6 = (12 × 2) + (12 × 2) + (12 × 2), Smith asked “Why can we write [12 ×
6] that way?” “Is there another way we can break it up?” “You’ve found lots
of ways to break up the 6. Can we break up the 12?” The disposition to
inquiry illustrated by these teachers, norms of the kind they have estab-
lished for their classrooms, and the capacity for such minute-to-minute
responsiveness that they evidence are all requisite to the effective enactment
of curriculum. Indeed, enacted curriculum is only possible as a partnership
between the authors of curriculum and the teachers who employ them. 
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CONCLUSION

This chapter has argued that some distinctions and principles that follow
from mathematical analysis are meaningless to children; and some dis-
tinctions and principles significant to children seem trivial in the context
of formal mathematical analysis. For this reason, we argue, curriculum
designers must make decisions about content drawing both on mathe-
matical analysis and on systematic inquiry into how children’s mathemat-
ical thinking develops. 

Yet there is a fortunate irony here: By organizing lessons around ideas
most salient to children, we create a classroom environment in which
children are able to engage in activity that is much closer to the mathe-
matician’s own practice—formulating, testing, and proving claims of gen-
erality. As the Principles and Standards for School Mathematics (National
Council of Teachers of Mathematics, 2000) comments: 

Discussion about the properties [of operations] themselves, as well as how
they serve as tools for solving a range of problems, is important if students
are to add strength to their intuitive notions and advance their understand-
ing. . . . Analyzing the properties of the basic operations gives students
opportunities to extend their thinking and to build a foundation for apply-
ing these understandings to other situations. (p. 161) 

At the end of a year of work focusing on generalization, third-grade
teacher and project participant Jan Szymaszek wrote about its implica-
tions for her teaching practice.

One thing I learned about generalizations is how powerfully they can oper-
ate within a mathematics classroom community. They seem to help students
develop a habit of mind of looking beyond the activity to search for some-
thing more, some broader mathematical context to fit the experience into.
When students work with the generalizations that they have created, they
come to appreciate what feels to me (and them?) more like the real process of
doing mathematics. By explicitly stating the generalizations, and then finding
examples and counterexamples, they are thinking more about the principles
underlying their work with number and operation. Generalizations help
students see relationships among and between numbers, and among and
between operations. Generalizations keep expanding the confines and
broadening the ideas with which students are working.

When algebra is viewed in terms of what might take place in the ele-
mentary classroom, the possibility emerges of students making their own
generalizations based on their own actions and justifying them in terms
of their experience with numbers, physical materials, or visual displays.
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We have tried to suggest by our examples, that when children are
engaged in activities of this kind, they are in a position to develop, in
Szymaszek’s words, a “habit of mind of looking beyond the activity to
search for something more, some broader mathematical context to fit the
experience into.” It is our belief that such experiences and such habits of
mind are not only rewarding in themselves, but serve to prepare children
to encounter school algebra not as an impenetrable barrier, but as a height
from which realizable life chances can be surveyed. 
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Early Algebra: The Math Workshop1

Perspective

E. Paul Goldenberg 
Nina Shteingold

Education Development Center, Inc.

When talking about something as messy as teaching and learning, we—
the authors of this chapter—are always a bit uncomfortable presenting
theoretical frameworks. A theoretical framework, like any abstraction,
must simplify from the chaos of life, must ignore parts of the data in order
to be truly useful. In education, the almost inevitable danger is oversimpli-
fication. When we are being teachers, we find that theory helps us think
about the complex events of classrooms, and organize the jumble of facts
into a coherent story about learning. When we are being theoreticians, we
try to find more theory, or find (or do) other research, to clarify the story,
or perhaps to modify or even reject it for a better story. We don’t mean to
use story in any demeaning sense at all. A theory, in science, is a way to
organize and explain events in a way that allows us to predict new ones.
Unlike a mathematical theorem, whose truth rests on logic alone and is
absolute (modulo a set of assumptions that are already taken as “given”),
needing no connections with a physical world, a scientific theory is essen-
tially a story whose “truth” lies entirely in its usefulness in explaining the
reality we experience and in guiding our practical handling of that reality.
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1The original materials we describe were named Math Workshop (Wirtz et al.,
1964). With support form Harcourt School Publishers, the authors and their col-
leagues at EDC have since developed new materials, published by Harcourt as
Think Math!, based on that original design. Where we use Math Workshop in this
chapter, we are referring exclusively to the old materials. Where we use MW, we
refer to both the original work and to the Think Math! program.



Educational theory is therefore a tricky thing. When we are being teachers,
theory does guide us some, but not completely. We find ourselves quite often
doing things that don’t fully accord with what we believe, not just because
we’re human and can’t always act in accord with our theory, but because
sometimes the situation frankly doesn’t seem to fit the theory and yet we
must act anyway. In these latter cases, real science would deem the theory
inadequate—it failed to account for the events—but any clinical practice
(teaching and psychotherapy being two good examples) requires consider-
able art and craft skill along with scientific principles. Because we cannot
reject educational theories just for failure to accord with all the data—they
can’t accord with all the data—we live in a fuzzy world in which, depending
on which data we care to ignore, we have competing theories or, worse yet,
loose or inconsistent standards for judging even the theory we choose to
accept. Perhaps we (the authors of this chapter) are doing our own credibil-
ity as theoreticians damage by making such a claim, but it seems the only
responsible preamble to the presentation that follows, in which we will tell
a story (one that we completely believe) as if it is an established truth about
children’s algebraic thinking.2 Like its competitors, it is not, but it’s interest-
ing to see the practical consequences—in the form of instructional ideas and
materials—that follow from this theory and appear to be highly successful.

There are two more disclaimers we’d like to make:

1. While talking about ideas, we often do not cite research works
where an idea has been studied in depth as we feel that it would be
distracting, and would also “elevate” the claims in an inappropriate
way, making this chapter look like a research result though it is not.

2. We do not claim that all the features of the Math Workshop and the
MW that are described here are unique and never occur in other
curricula; it is the combination that we believe is unique.

HOW CHILDREN LEARN: AN UNORTHODOX
POINT OF VIEW

Sawyer (1964), in Vision in Elementary Mathematics, explains:

It is a defect of most algebra books that they begin by developing a lot of
machinery, and it is a long time before the learner sees what he can do with
all this machinery. For example, he may learn to simplify 5(x + 3) – 4(2 – x)
without seeing in just what circumstances he would feel a need to perform
this calculation.
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2According to the NCTM Standards (NCTM, 2000) major skills related to algebra are
“(1) understanding patterns, relations, and functions, (2) using algebraic symbols to
describe and analyze mathematical situations, (3) using mathematical models to repre-
sent and understand quantitative relationships, and (4) analyzing change in various
contexts.” The first two reflect the most everyday image of algebra; we focus on these.



It is quite possible to use simultaneous equations as an introduction to algebra.
Within a single lesson, pupils who previously did not know what x meant, can
come, not merely to see what simultaneous equations are, but to have some
competence in solving them. No rules need to be learnt; the work proceeds on
a basis of common sense. The problems the pupils solve in such a first lesson
will not be of any practical value. They will be in the nature of puzzles.
Fortunately, nature has so arranged things that until the age of twelve years or
so children are more interested in puzzles than in realistic problems. So the
puzzle flavor of the work is, if anything, an advantage. (p. 40)

Then follows a whimsical story about a father with same-height twin
boys (Fig. 17.1) (Sawyer, 1964).

The Math Workshop implementation of Sawyer’s idea in the fourth-grade
uses two more pictures, and very few words, to present a puzzle, leaving the
children to figure out how tall the three people are (Fig. 17.2) (Wirtz et al., 1964). 

Letters—like x, n, a, and b—have been used since first grade to stand
for numbers, but in this puzzle presentation “no symbols are used.” Of
course, that is not true at all. The pictures are symbols and, for this
purpose at this time, they are deemed the appropriate ones, but we will
say more later about the way the use of letters as symbols is developed
and why alternative choices are made even after that development is well
under way. What is important to note for now is that the children easily
figure out the heights, and love the puzzles. 

Two important assumptions buried in this statement are at significant
variance with some of the traditional thinking about early mathematical
learning:

1. The assumption that, in some ways, algebra is quite natural for
children—implied in Sawyer’s claim that algebra can start with
what is often deemed as an advanced topic (his example names
simultaneous equations) and that “no rules need to be learnt; the
work proceeds on a basis of common sense.”

2. The assumption that young children “are more interested in
puzzles than in realistic problems” (Sawyer, 1964).

This chapter explores the background and meaning of these two assump-
tions3 and, with concrete examples, their consequences for teaching. 
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3Both of these assumptions follow from the fact that children live in a messy
world and have less control of the environment around them than do adults.
Therefore, they need to be adapted to make sense of and learn in that messy world,
and to find pattern and order in whatever fragmentary and disorganized data they
get. Children are constantly solving puzzles in their attempt to makes sense of the
real world. This involves seeking structure, while ignoring some details. It is an act
of abstraction that children naturally start with (see e.g., chap. 3, this volume, or the
ideas described by Pinker, 1984, a body of ideas deriving principally from research
in cognitive science and interpreted in the light of evolutionary psychology).



CHILDREN START WITH ALGEBRAIC THINKING AND USE
IT TO ACQUIRE ARITHMETIC KNOWLEDGE

When children are very young, before they “conserve number,”4 formal
arithmetic cannot make much sense at all. For many 4-year-olds, even
those who can reliably count beyond seven, seven objects spread out

seem like “more” than the same objects bunched together
. Although that is still the way their logic works, we cannot

sensibly ask them to make sense out of the claim that 4 + 3 is the same
amount as 7. Until their logic develops further, one seven does not always
seem to be the same amount as another seven. Some children are really
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4Here, conservation of number refers to solidity of quantities greater than three
or four. For small enough numbers of objects, babies at 11 months seem to have
not only stability of number but essentially addition as well (see e.g., Feigenson,
Carey, & Spelke, 2002). But 11-month-olds’ abilities to do arithmetic are not so
readily observed by the casual onlooker and require advanced methods to be
detected. The algebraic ideas and learning described in this chapter are all based
on observations anyone can make, and reproduce, with school-age children.

FIGURE 17.2. A puzzle: How tall are the people?

FIGURE 17.1. A father and twins.



ready when they first encounter 4 + 3 = 7, but the nonconserving child,
faced with the requirement to assert that 4 + 3 = 7 has only two options:
either to play along and divorce common sense from mathematics—after
all, what the child sees5 is that the two quantities are not the same—or to
give up altogether and simply fail to “get it.” But here are two remarkable
phenomena. First, conservation of number will develop normally, regard-
less of school, and a brief delay in the requirement to “know that 4 + 3 =
7” would, therefore, put fewer children in this difficult position. Quite
possibly, the delay could be more than compensated6 by the advantages
of working with children who have not already suffered a pretty serious
assault to their logic, being forced, in effect, to abandon what makes sense
to them in favor of what the adult says is correct. One doesn’t sit by idly
in the meantime waiting for maturation, of course—it is always possible
to nourish the child’s intellect—but the best leverage point for intellectual
growth is the place where the child’s logic is. Second, the development of
what we call “conservation” is essentially an algebraic idea, arriving
without our intervention before the child has learned the arithmetic facts
(see also E. Smith, chap. 5, this volume).

Here is a concrete example. Shown two hands like this , a
conserving child may not know how many fingers there are without
counting. But if the hands are moved like this or in this , the

child will be sure that the number of fingers is
the same. Put another way, if the child is not yet sure, then the whole
notion of a “total” makes no sense: There is no stability to the quantity.
The conserving child knows that 3 + 5 is the same as 5 + 3, an algebraic
idea, before knowing what number 3 + 5 is, a fact of arithmetic.

We are inclined to extrapolate from this and raise a question about
development. Piaget’s theory included a kind of graduality—new forms
of logic (e.g., conservation) do not arrive suddenly, whole, and rock solid,
and may be seen, especially at first, to come and go depending on the con-
text or situation the child faces. But, we wonder if there are not some ideas
that do arrive in a nongradual way, and are fairly complete when one
first sees them. We’ll play this out by extending the 3 + 5 example to a
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5This is not evidence of children being enslaved by their senses. It is not that
appearance is winning out over counting; it is that counting isn’t yet logic. The
child is trying to make sense of the world and has not yet built the abstraction we
call number, at least not for such a high number. Logic requires that the child use
what is available.

6See, for example, the bold move of Benezet (1935), who, as superintendent of
schools in Manchester, New Hampshire, eliminated the teaching of mathematics
in the early years, with no untoward effects on student learning after it was later
introduced.



situation involving larger numbers. Bastable and Schifter (chap., 6, this
volume) describe a classroom event in which a teacher asked a group of
third graders if they thought that “the amount of money may be a differ-
ent amount” if they added some coins in a different order. Some students
seemed uncertain, and the interpretation was that they “hadn’t internal-
ized that you can add numbers in any order and maintain the same sum.”
In the spirit of the revisiting of Piaget’s experiments (see e.g., Donaldson,
1978), imagine a variant on the problem in which you draw a fistful of
change out of your pocket and, without showing any of the coins, ask
students how much money you have. Of course, they can’t know without
seeing the coins, and a suitable presentation of the question would have
to allow children to feel comfortable saying that, perhaps acknowledging
the joke of the situation, and not imagining that the adult thinks they
could know or, equally bad, is just asking them to guess. But, given such
a situation, doesn’t the question, itself, carry the assumption that there is
an amount—one fixed quantity—and that the only thing left to know is
what that amount is? It seems hard to believe that any children capable of
understanding the question would think that the amount, itself, could
change depending on how they looked at it. So, what could have been
behind the children’s uncertainty, reported in Bastable and Schifter, when
they were asked “Will you get the same answer [if you add the coins in a
different order]?” One possibility worth investigating, if a suitable method
can be devised, is that the very posing of the question by the teacher
implied to the children that their logic—their certainty of commutativity
and associativity with small numbers and their certainty that there is a
unique amount—is not shared by the adult teacher. If this is the case, then
rather than the discussion having revealed an unanticipated uncertainty, it
might well have created the uncertainty. Alternatively, it may seem that the
teacher is hinting that the procedure by which children find sums (the
process we call addition) might be unreliable. Any deliberate classroom
intervention (including deliberate inaction) has associated hopes and
risks. In this case, the hope in asking such a question was presumably to
nudge children into thinking more deeply about the underlying mathe-
matical issues; handled sensitively, that may indeed be the common out-
come. But a risk of questioning a child’s emerging logic in the context of
arithmetic is that the child learns (along with whatever else) that one’s
own way of seeing things is not necessarily to be trusted in this subject.7
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7As a side note, the common use of “can you be certain this will always be true” as
a nudge toward proof carries the same risk—it implies that what the child has arrived
at by whatever (even immature) logic the child used is not to be trusted without proof.
By contrast, proof that explains a mechanism (i.e., proof as answering “why does this
work” rather then “is it really true”) engages the child’s logic in taking a step further,
rather than questioning the validity of the results it has already produced.



We might go so far as to suggest that prior to the age at which the
question “How much money might I have” becomes reasonable, the
question “Will you get the same answer [if you add the coins in a differ-
ent order]?” is not reasonable and we should not ask it. After such an
age, we should not assault children’s logic by asking them to verify that
different ways of counting the money would give the same result. They
may need experiences of adding up coins in various orders in order to
learn that some orders make the addition more convenient than others,
but they cannot even understand the question “how much money” with-
out the full conviction that there is an amount.

Life, of course, is a bit more nuanced than we’ve just portrayed it,
especially when one is quite near the frontier of a child’s thinking. The
Math Workshop approach certainly did not avoid questions that pushed at
the edges of children’s thinking (nor does MW). It also greatly values
surprise: results that the child’s logic/intuition did not predict. But it
always aims to pose activities that use (and thereby affirm the usefulness
of) the logic a child already has in the development of new knowledge.
When that logic is genuinely inappropriate for a task that the child must
(eventually) learn to perform—as the nonconserving child’s logic is inap-
propriate for learning addition—we must be thoughtful about ways to
feed and exercise the growing edge of the child’s logic without risking
circumventing or ignoring it.

The point of this is that learning the arithmetic facts and the procedures
for adding both rely on some algebraic ideas (about the behavior of aggre-
gation and partition that we encode with the operation of addition and its
inverse subtraction) that must already be in place. A curriculum is rarely
in a good position to teach those ideas, but is excellently placed to use,
hone, and extend them. It can also give those ideas names, when children
are ready to take yet new steps of abstraction that require talking about
(and therefore having names for) the ideas, but early on, the use, not the
names, is generally most important.

MW’s approach makes great use of children’s natural and productive
ways of abstraction: principally their keenness at pattern finding, which
provides interesting ideas worth talking about, their eagerness to show
these patterns, and their facility at learning language (including some
work-saving mathematical shorthand) to describe what they’ve found.

YOUNG CHILDREN ARE MORE INTERESTED IN
PUZZLES THAN IN REALISTIC PROBLEMS

Judd (1928) explicitly questioned the assumptions being made about
so-called real-world contextualization. Nothing in the 1960s Math
Workshop materials explicitly raises this as an issue but, whereas MW does
help children learn to decode word problem formats, and does use some
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conventional application contexts, these are both done very sparingly
compared to most contemporary (or old) curricula. The effect, however, is
not at all a naked arithmetic approach. Everything needs a context to help
give it meaning, but, for Sawyer (1964), children’s enjoyment of puzzling
things out was seen as, itself, a context—a genuine and motivating one,
and one that is especially well suited to mathematical learning. Sawyer
was not egocentrically taking the mathematician’s love of mathematics
and assuming that everyone would put up with any kind of dry activity
just to learn the subject. In fact, his thought-experiment proposal for
teacher training suggests how strongly he valued watching what truly
grabbed students’ interest: “Go into a street or park or public place where
there are children over whom you have no disciplinary powers, and start
doing something to see how many children come round you, how long
they stay, and what questions they ask.”

The real world of the young child is play and fantasy; if connecting with
a child’s reality really does improve motivation,8 then children, especially
young ones, are likely to be best involved by puzzles, inherently mathemat-
ical games, and appeals to their imagination. Learning to apply logic, orga-
nization, and focused attention to the child’s own real world—a world of
pretend and make believe in which children suppose, much as we do in
mathematics, and then follow the consequences—might well have a better
chance of surviving the transition to adulthood than learning to apply math-
ematics in problems that derive from the real world of adults.

Children’s verbal tricks, riddles, and puzzles are not mathematics, but
have a character that is similar enough to be a good leverage point. As
they play their various games (e.g., sports or cards) they discuss the rules
(think postulates) and the consequences of the rules (think theorems) in
much the way we’d want to hear (and refine, of course) in a mathematics
class. The real world of children is, in this regard, more classically mathe-
matical than the (applied) real world of adults in which the pragmatic
utility of mathematical results may actually work against the develop-
ment of mathematical sensibility. (If the value of some mathematical
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8It seems hard to believe that connecting with a child’s out-of-school reality
does not improve motivation, but is there actual scientific research evidence for
this? Because this seems such an unquestionable theory, it may not need research,
but we should be asking what evidence shows that the real-world applications we
currently employ actually motivate students, or are responsible for any significant
component of the successes we see. New programs that excite teachers help to
excite the students, but it is hard to tease out what factors are responsible. Of
course, perhaps it is enough that these adult applications excite the teacher: We
may not care, then, whether they directly or only indirectly motivate the student.



result is only in its utility, one hardly needs to understand why it works
or go through the thinking required to prove that it works, as long as a
recognized authority has approved the result.) Being “more interested in
puzzles than in realistic problems” is an intellectual stance that fits well
with Sawyer’s assertion that algebra can start with advanced topics.
Why would anyone care about the heights of the father and his twin sons
in that silly story Math Workshop tells? The problem is completely silly,
but discovering the unknown, as long as it is not dreary, appeals to
people. 

THE CURRICULAR CONSEQUENCES

The word algebra does not appear anywhere in the tabular scope and
sequence of the Math Workshop curriculum, and no unit is devoted to a
focused development of algebraic ideas before Grade 4.9 As with all big
ideas in MW, algebraic thinking becomes a pervasive theme, rather than
a topic, and is brought in without fanfare and used everywhere, as befits
anything worthy of the name big idea. 

Fostering a Puzzling-Out Frame of Mind. MW does this in several ways.
An obvious way is to use puzzles explicitly and often, but there are other
ways as well. It provides a variety of clues instead of explicit instructions,
with sufficient redundancy of information to allow students to make con-
jectures about what to do, and to check those conjectures. This allows for
multiple strategies early on. In fact, this approach also helps students
learn to read mathematics. Unlike English text, mathematical information
on a page does not unfold left-to-right-and-top-to-bottom. An entry in a
table gets its meaning from the row and column in which it is found; the
vertical bar on a bar-graph has meaning only if both its vertical size and
horizontal placement are both understood; a point on a coordinate system
has a similar two-dimensional meaning; the meaning of an algebraic
statement that describes the pattern of growth shown in a sequence of pic-
tures is clear only when one looks both at the statement and at the pic-
tures; and so on. Figure 17.3 gives an example from the first day of Grade
2. Rather than telling students precisely what to do, they are asked to look
over the entire page. What do they see? There is a question, but where
should the answers go? How can they check?
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9In fact, unitlike structure hardly exists at all before the last third of second
grade of the original material, as the development of all mathematical ideas tends
to be so interconnected.



The page can be completed just by counting, but children are rewarded
for finding shortcuts, for noticing structure that helps them count, or
noticing that J and P and G are built of the same pieces, and so must have
the same number of dots. The page even provides gentle clues that these
shortcuts exist. There are ideas worth discussing even after students have
completed the page. To begin with, is there any significance to the way the
answer boxes are grouped?

Presenting Problems With Different Parts Missing. MW also generally
presents problems with missing results (e.g., 3 + 2 =  —) and problems
with missing parts (e.g., 3 + —   = 5) mixed together. Thus, students
develop a habit of paying more attention to the part–part–whole structure
of a problem, and not use appearance of the symbol “+” as a signal to add.
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FIGURE 17.3. The first day of second grade in MW.



(Students also encounter, very early, problems like 8 + 4 = — + 9.) Our
experience observing students is that when their experience is not one of
problems segregated by type, but encountered together in this fashion
from the start, students learn relatively quickly that the position of the
missing number is important. The result is that whatever differences in
difficulty the two forms present are essentially invisible in the classroom,
and students seem equally comfortable with all forms. In fact, we would
argue that difficulties are minimized because problems are not segregated
“by type,” thus subordinating form to structure. Rather than learning
addition and subtraction, each as a topic, students are learning the rela-
tionship between a whole and its parts.

A particularly interesting example of a problem with missing parts
shows up as students are learning to perform multidigit multiplication.
Consider the kind of thinking you must do—and how different your
thinking is in each case—in order to solve the problems in Figure 17.4.
When puzzles like this are presented in a considerate way, so that the very
first problems are not quite as challenging as these, children love them.
Each problem is just different enough to be fun and maintain children’s
interest while they are quite literally learning their multiplication inside
out and backward. The fact that the problems are different means that
students cannot mindlessly and repetitively use the same technique; their
attention is focused on choosing the technique, not applying it, and they
get their needed practice in the algorithm without monotony.

Even if one agrees that it is educationally valuable for children to puz-
zle things out, it is certainly reasonable to ask what connection it has to
algebra. The process of solving puzzles requires considering a variety of
different clues at the same time; it develops one’s ability to focus on con-
nections, relationships, and patterns—exactly the object of algebra. The
language of algebra might or might not be used, but the mental disposi-
tion is essentially equivalent to solving a system of equations. To develop
their algebra, students need both the set of mental tools and inclinations,
and the appropriate language(s) in which to express their thinking.

MW Treatment of Written Language. MW regularly presents a kind of
“word problem without the question,” a storylike format where students
are to fill in missing parts, or even invent the question, rather than answer
an explicit, single, closed question posed at the end of the problem. For
example: “We have 22 children in our class. There are not many more girls
than boys.” What questions come to mind? Learning what questions can
be asked and answered is part of learning the modeling part of mathe-
matics. Also, the enterprise of “solving for the unknown” seems more
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meaningful if one gets experience asking what is unknown and knowable.
To some children, this problem might suggest making a table. Over time,
children learn to ask many kinds of questions, like: Could there be one
more girl than boys? Alternatively, the situation might be presented this
way: “There are two more girls in our class than boys.” Again, the first
question is “What could we figure out about this situation?”

A feature of MW’s algebraic approach that requires a bit more explanation
is its specific treatment of using language.

It is clear enough why curriculum materials should sometimes present
mathematical problems verbally—as story problems, for example. The
most obvious, if least glamorous, is that tests do so and, because they do,
children need to be protected from them by being prepared. But there are
some solid educational reasons, too. Real life (except the real life of acad-
emia) does not present us with word problems; it presents us with situa-
tions in which we find problems, which we often express in words. To
focus the exercises used in teaching, educators simplify the situations,
narrow the choice of possible problems one might find in them, and write
up the verbal descriptions: Word problems are a printable substitute for
real-life problems, but only a very approximate, thin, and typically stilted
one. Calls for yet closer approximations date far back. In the long history
of education, Dewey10 is recent, but we tend, these days, not to look back
even that far. The various integrated math–science–technology programs
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FIGURE 17.4. Fourth grade: learning multiplication inside
out and backward.

10Dewey’s take on real-life problems talks about the real life of the child. “School
must represent present life—life as real and vital to the child as that which he car-
ries on in the home, in the neighborhood, or on the playground . . . much of pre-
sent education fails because it . . . conceives the school as a place where certain
information is to be given, where certain lessons are to be learned, or where cer-
tain habits are to be formed [the value of which] is conceived as lying largely in
the remote future” (Dewey, 1897, pp. 77–80).



and investigation-style curricula are modern efforts in a similar direc-
tion—to let mathematical problems arise for students in much the way
they do in real life, without being encountered only as canned word prob-
lems. And even the canned problems can muster some plausible defense.
Although they are their own genre of writing, the ones that are not for-
mulaic caricatures of the genre do present a kind of exercise in translating
between verbal symbols (words) and mathematical symbols (letters,
numbers, operations) that is plausibly of value in mathematical learning.

There are also many reasons why we might want to present a large part
of mathematics to children without embedding it in words, written or even
spoken. Perhaps the most obvious reason is that there are many children for
whom the written word is yet one more barrier to get through, a cognitive
load that takes attention away from the mathematics. These include, of
course, children for whom English, itself, is a challenge, but also those with
reading disabilities, those with learning disabilities arising in disordered
language processing, and those whose optimal learning mode is not verbal.

But there are also reasons that tie directly to the nature of the algebraic
process. At the surface level, algebraic symbolism is, itself, a language desi-
gned to convey certain essential mathematical ideas better than words do.

So, one message that students should receive is that information can be
obtained not only through the text. The puzzlelike presentation helps
here, too, allowing for an informal and natural introduction of new formats
and ideas. Unlike most classic puzzles, MW student pages typically provide
more information than is logically required; this redundancy of information
allows students to check their initial guesses to see if they are correct, and
it also allows some formats and ideas to appear as something of a cross
between additional clues and new objects to explore.

Consider the exercises in Figure 17.5, drawn from Grades 1 and 2.
Over time, algebraic notation gradually becomes a more and more valu-
able clue, but not yet the sole clue, required for completing a problem
successfully.

This way of introducing an algebraic notation has several additional
advantages: allowing different students to learn on different levels,
demonstrating the usefulness of algebraic notation while introducing it,
and saving time on teaching just the notation. 

So far, we’ve discussed only MW’s treatment of written words while
introducing a problem (using words as just one of possible clues, not even
the major one). MW also uses a pedagogical technique that does not use
even spoken words.11
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11This technique is supported by Hendrix (1961), who presented situations
where avoiding spoken words is beneficial for learning.



This first stage is a game whose rules do not allow speaking—either by
the teacher or by the students. For example, while the class watches, the
teacher silently writes on the board:

7 � 11
9 � 13

12 �

and then offers the marker to the class. A volunteer takes the marker,
silently records a number, and the teacher nods yes or no. The teacher
writes another number and again offers the marker to the class. This goes
on until many students have provided responses. The teacher can vary
the difficulty of entries to provide more support for some students or
more challenge for others, depending on where the students are. Then,
the game is declared to be over, and the students discuss the ways they
thought of responses. 

We have observed this technique in many classrooms where MW was
piloted, and the attitude to it of both teachers and students is unanimous:
They all love it. Students, we think, love it because of its gamelike appear-
ance, because the pressure of necessity to figure it out right away is lifted,
but the possibility to participate in the game remains. Teachers love it
because while playing the silent game students are highly interested and
attentive, because it is accessible for students of different levels, because
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FIGURE 17.5. Find-a-rule puzzles.



the game gives teachers a good chance to informally assess students’
understanding, and because it prepares students for a better, more
focused discussion afterward. One of the teachers said: “This class isn’t
usually quiet, and listening is hard for them. It’s great to see them all
captivated, paying attention, thinking hard [during a silent game.]” We
hear similar remarks from other teachers. 

We think (although it is only our opinion, supported by observing over
10 classrooms directly and getting feedback from over 60 classrooms that
pilot MW) that in addition to being highly motivating, silent games are
very effective in developing students’ thinking in general, and algebraic
thinking in particular. Initial absence of explanations by students or the
teacher allows the majority of students to find the rule all by themselves,
using their own methods. Students can take their time thinking; each new
entry in the table increases the data available to other students; the whole
class is involved in studying, analyzing, and applying a pattern, and all
students can participate.

Asking students to explain their thinking can serve several purposes:
to help the teacher understand a child’s correct (or incorrect) thinking; to
show the class that there are multiple ways to solve a problem; and to
sometimes help the student who explains the thinking to clarify that
thinking. Despite this, MW places less emphasis on having students
explain their thinking than is currently fashionable: Some of the goals of
having students explain their thinking can be achieved in other ways, and
having students explain their thinking is not entirely without risk. For
example, virtually all MW work invites multiple strategies (or, in the
silent teaching example, different inputs to find an output), affording the
teacher many opportunities other than a student’s explanation to “see”
and diagnose a student’s thinking. Moreover, the puzzlelike structure of
the material lets students self-correct without having to mediate the
analysis of their own thinking through words. (Of course, we do not suggest
abandoning language as a medium for self-correction, we merely suggest
that perhaps it should not be the only or the first way.) Articulate verbal-
ization, not to mention analyzing their own thinking well enough to know
what to say, is very hard for young children—often harder than having the
mathematical idea and just demonstrating understanding—and can some-
times get in the way of mathematical learning. Explanations that are not
articulate, even if they are correct, can increase confusion instead of reduc-
ing it, even for the child who is making the explanation, and certainly for
others whose understanding is shaky. Explanation, whether by the teacher
or by other children, steals the chance for others to make their own discov-
ery. A heavy reliance on words creates barriers for many children, clearly
for those whose English is limited, but for others as well. Learning to express
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mathematical ideas is worthwhile, but not if it competes with developing the
mathematical ideas; for young children it is best when their thinking is
already pretty clear, and the major purpose of trying to express their ideas
is learning to do so. One might argue that explanations could also facilitate
discovery; but much more effectively when the discussion takes place after
a silent game, when all students had enough time for independent thinking;
even incorrect ideas had time, if not to be self corrected, then to get con-
densed into a more accessible form. 

MW‘S APPROACH TO USING AND EXTENDING
ALGEBRAIC IDEAS

Building on logic already available to children, ideas of commutativity
and associativity are combined in the “any order, any grouping” principle.
Given a collection of small objects like these , young children spon-
taneously sort, making little piles by color or size or both, or perhaps
deliberately mixing large and small to make “families,” but the inclina-
tion and cognitive apparatus for finding pattern in (or ascribing meaning
to) the randomness is already natural. As mathematics teachers, we help
them extend the usefulness of the logic they already have by adding
organization and by appealing to their ability to shift flexibly from
one classification scheme (e.g., color) to another (e.g., size) and to sum-
marize, perhaps numerically, what they know about each (Fig. 17.6). 

Substituting numbers for the original objects doesn’t change the ulti-
mate logic. Adding either pair of subtotals in the white boxes—the ones
that had previously recorded the summary of small and large buttons, or
the ones that had recorded the numbers of blue and gray—must give the
same grand total (Fig. 17.7).

Nine numbers in this chart are connected by six addition sentences—
three vertical and three horizontal—and these sentences are also connected
among themselves. Later, students consider these sentences without the
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FIGURE 17.6. Buttons: data from a summary of the sorting.
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frame that used to surround all the numbers . For students who have
been sorting buttons and working with the chart format for a long time, the
idea that adding two addition sentences produces a new true sentence,
7 + 3 = 10, comes as a delightful surprise, but a surprise that they can
explain easily and naturally. A consequence of this presentation is that
when students later in their education encounter simultaneous equations,
they can add or subtract those just like they added simple addition sentences.
The idea comes equally naturally and with no surprise .

The point is not merely that the algebra is there, but that it is founded
directly in the children’s logic. As Sawyer wrote, “No rules need to be
learnt; the work proceeds on a basis of common sense.” 

From “Any Order, Any Grouping”
to the Distributive Law and Beyond 

By making a highly structured collection, and splitting the collection in a
way that preserves that structure, we can extend the notion that one may
safely split a collection into several smaller collections to help one number
the elements. For example, in trying to figure out how many items are in a
5 × 9 array, a child might split it into two arrays—5 × 4 and
5 × 5—whose counts are already known, and add the 20 + 25 to get the total:
5 × 9 = 45.

Extending that logic to a 16 × 27 array, we first partition the dots into
four regions to make the counting of each region easier (see Fig. 17.8). 

FIGURE 17.7. Recording the sorting with numbers only.



Rewriting the results—200, 70, 120, and 42—in the familiar format,
students can summarize the number of dots in the rows and columns, as
they summarized the numbers of buttons (Fig. 17.9). This pushes their
algebraic logic in a different direction. Instead of arriving at the reasoning
behind certain manipulations of equations, this route uses the child’s
algebraic reasoning—an intuitive understanding of the distributive law—
to build the standard American multiplication algorithm.

Children naturally apply the distributive law in concrete situations.
Given $36 in the form of three $10 bills and six $1 bills, and asked to share
the money equally among three people, most children will not simply
hand each person three bills regardless of their denomination: Without
hesitation, they will distribute the tens evenly and the ones evenly, and
conclude that each person gets $12. In other words, they already
intuitively feel, although cannot express it symbolically yet, that .
Building the symbolic from the intuitive takes work, but this intuitive use
of distributive law in another guise is the foundation both for division (we
divide a large number by dividing portions of it and then combining the
results) and for a sensible understanding of the addition of fractions with
like denominators. Many children, when faced with structures like ,
even when interpreting it as a sum of two quantities, are lured by
the plus sign to add everything in sight to make false statements like

. But children, in effect, already know that does not equal ,
and MW children have been taught to notice what they know, and use it.
Their ideas about fractions are not built on new rules that the children
might mix up or forget, but on old logic, their own understanding of
related situations, which they cannot forget or, at least, can easily re-
derive.12 As Sawyer wrote: “No rules need to be learnt; the work proceeds
on a basis of common sense.”

36
6

30
3

+ 6
3

1
3

+ 1
3

= 2
6

1
3

+ 1
3

36
3

= 30
3

+ 6
3
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FIGURE 17.8. Instead of a few buttons, many dots, arranged
to help us count them.

12This is a major point of situated cognition research.



Pattern-Seeking in Numerical Contexts 

If true mastery requires high-speed random-access to the facts, to borrow
a metaphor from computer science, that still does not mean the process of
learning the facts should be random. For example, even though we want
4 × 7 to be its own independently known fact, curricula often try to teach
children how to use the knowledge of 4 × 6 to compute 4 × 7 because the
same logic applies equally to deriving 41 × 25 mentally from easier prob-
lems like 40 × 25, which we want them to be able to derive from 4 × 25. Do
children need to perform such problems mentally? No, but the process is
an algebraic one that we want to be well rooted in familiar logic, and well
exercised by the time children encounter it in the form a(b + 1) = ab + a. In
the fourth grade, when a large part of children’s job is to master multipli-
cation facts, MW helps children see what is already familiar about a(b + 1)
and generalize it, record it with generic notation, connect it with prior
knowledge, and use it to aid computation. MW also makes use of other
patterns. Children who already know the facts for the perfect squares love
seeing that 6 × 8 is one less than 7 × 7, and that the pattern holds for any
square and the product of its nearest neighbors. While trying many cases
in order to find the pattern, students practice, but not mindlessly. After
becoming convinced that the pattern holds, students use the familiar
arrays of dots to show why it is so. And then they generalize the rule, see-
ing that the product of the next-nearest neighbors is always 4 less than the
perfect square, and, in general, (a + b)(a – b) = a2 – b2. Again, the discovery
entails considerable multiplication practice; the knowledge—apart from
the fluency it generates through practice—is itself a tool to make certain
new facts easier to remember; and the algebraic idea has a practical appli-
cation. For a child, practical means that it can be used for fun. “Mommy,
give me any two-digit number.” “OK, um, 53.” “Well, I can multiply that
by 47 before you can!” As mommy reaches for paper and pencil, the child
thinks: “Mommy’s number was 3 more than 50. I picked 47 because it is
3 less than 50. So 47 × 53 is 50 × 50 minus 3 × 3. That’s 2500 – 9, or 2491.”
Of course, the child already has the standard algorithm for doing
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FIGURE 17.9. The numbers in the summary of the array match those in the
algorithm.



completely random problems on paper, which pleases parents, but this
extra mental trick leaves children feeling brilliant. And the few who take
it a step further and combine it with the a(b + 1) = ab + a idea can then mul-
tiply 48 × 53 in their heads, too. It is, after all, 47 × 53 plus another 53.
Does this have any practical value? Absolutely. Not for getting the
answers, of course; for that purpose, the standard methods or a calculator
will do. But, for feeling smart, which in education is of real practical value.
MW also has students look for patterns in combinatorics. Young students
see how many ways they can arrange n objects in two boxes (there are n +
1 ways to make n as a + b) or three boxes (there are n (n + 1)/2 ways to
make n as a + b + c). The particular patterns are of some interest, but the
real value is in the structured searching, the systematic thinking that is
involved,13 and the way that the physical act of rearranging the objects
leads to an understanding of why the patterns are what they are. Imagine,
for example, placing all objects in one box, and then moving one object at
a time from that box to the other, each time recording the results. How
many moves can you make? Each move results in a new arrangement, but
the very first arrangement was recorded before you started moving: n + 1.
Now picture what you do with three boxes. Place all the objects in one
box. Each time, as you diminish that box’s contents by one, count and
record all the arrangements in the other two boxes. But that is just the pre-
vious problem all over again, summing the results of several investigations.
So, 1 + 2 + 3 + 4 + . . . . 

Function Composition 

Function machine imagery gives children a good notation for figuring
out the effects of combining operations. The assembly line diagram (see
Fig. 17.10) provides another useful image. Because the three paths in the fig-
ure (red, green, and blue) must all have the same result (adding 6), the two
operations along the green path (adding 1 and adding 5) must simplify to
just +6, as must the two operations along the blue path. If, in a new dia-
gram, the blue path is –3, –4, and the green path is + 3, –10, the seeds of a
new arithmetic on a new kind of (signed) number are being planted, but
children do not see new numbers here or think of themselves as performing
a new kind of arithmetic. They are still simply combining operations in a
familiar and fully understood way. “No rules need to be learnt.” The activ-
ity is algebraic in two aspects. First, it focuses on performing arithmetic on
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13English (2004) provides a strong modern case for combinatorics in elementary
school and the research background that supports it, and refers explicitly to the
value of the systematic thinking.



numbers you don’t know (those numbers even are not showing up in the
colored boxes). Second, it introduces a new kind of objects and invites
generalizations on how to work with them.

There is yet another way to introduce variables and algebraic expres-
sions. In fourth grade, children learn a number trick:

Think of a number.
Add 3.

Double the result.
Subtract 4.

Cut that in half.
Subtract the number you first thought of.

Your answer is 1!
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FIGURE 17.10. Function machines showing that (4 + 5) × 3 = 4 × 3 + 5 × 3.

FIGURE 17.11. Function machines showing that (4 + 5) × 3 = 4 × 3 + 5 × 3.



They love the trick, but there is more to do with it than merely memorize
it to play on friends. Students soon learn how a trick works, and make up
other tricks themselves. To do so, they have to use notation. At first
students use pictorial notation: a bag with an unshown number of mar-
bles in it represents the number “you thought of” (see Table 17.1).

The left-hand column shows the steps of a trick, the middle column
shows an image of the result of that step: the algebraic expression on the
right (children do not see this expression at first), records the history of
the steps taken so far. One cannot readily see from that “Your
answer is 1!”, but the bag notation, being an icon (see Kaput, Blanton, &
Moreno, chap. 2, this volume), naturally suggests simplifying on every step.
Children very readily learn this, and have no difficulty with the transition
from to x.

There are two things related to the use of algebraic notation that are
interesting to point out. First is the fact that it appears only when it is badly
needed, to simplify an activity, not as an additional thing to learn. To check
whether a trick works on all numbers, the child must keep in mind a
generic amount—the picture of a bag. When tricks become longer and
drawing bags becomes more of a nuisance, omitting the top and the bot-
tom of the bag while drawing it simplifies the drawing to look like an x.
Second, although students have been using variables and simple expres-
sions since the first grade (e.g., in tables as was shown earlier), they are
absolutely not expected to make use of that prior knowledge; they have a
fresh start. In addition to giving another chance to some students, this also
makes the use of notation simple and already familiar to most students,
letting them concentrate on thinking and having notation support think-
ing and communication, rather than being the centerpiece of learning. 

2(x + 3) − 4
2

− x
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TABLE 17.1
A Number Trick

Think of a number. x

Add 3. ••• x + 3

Double the result. ••• ••• 2(x + 3)

Subtract 4. • • 2(x + 3) − 4

Cut that in half. •
2(x + 3) − 4

2

Subtract the number 
•

2(x + 3) − 4  − x
you first thought of. 2



AN OVERVIEW OF MW’S APPROACH TO BUILDING
ALGEBRAIC LANGUAGE

Algebra uses letters to stand for numbers; it is remarkable how many
ideas are embodied in that notation. From first through fourth grade, MW
introduces these various ideas:

• Letters as labels for problems (beginning of Grade 1)
• Letters as labels for numbers (middle of Grade 1)
• Literal expressions to record or describe processes, patterns, or

properties (middle of Grade 1–4)
• Abstract arithmetic, summarized and encoded (Grade 4)
• Variables (late in Grade 4)
• Unknowns (late in Grade 4)
• Identities (late in Grade 4)
• Algebra as abstract arithmetic (late in Grade 4)

Letters as Labels for Problems 

This, of course, can happen in any text with problems. In MW, however,
these labels are used to pair problems with answers. Figure 17.8, which
shows the first worksheet of Grade 2, is an example of such pairing.
Numbers derived from the problem are written in the appropriate place
on the table, as indicated by the corresponding letter. This happens very
often starting with the first grade.

Letters as Labels for Numbers 

This step is not sharply distinct from the previous one, nor does it occur
at a different stage in the development of algebraic thinking in MW, but
there are subtle differences. Not only is there a labeled space in which to
write an answer, but that label is used again, to let that answer (output)
be the input to a new problem, as shown on Figure 17.12, a worksheet
from about the middle of second grade.

Literal Expressions to Record or Describe Processes,
Patterns, or Properties 

From first grade on, students will see function tables from which they are
to induce a simple rule. Most of the time, these also have a pattern indi-
cator—the n and n + 10 in the example on Figure 17.13—to which no atten-
tion is called. At this stage, students don’t need to decode these captions
in order to do the work. Students find the pattern exactly as one might
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imagine: They look at the numbers, figure out what’s going on, and fill in
the table. 

But they do decode them! Their natural inclination to learn language
in context causes many of them to invest meaning in the few marks that
have been given no meaning by the teacher or the instructions.
One little second grader blushed as if she wasn’t supposed to know what
those symbols meant—as if knowing was somehow cheating, because it
gave away the pattern—and said that she’d figured out the pattern from the
numbers “but, really, it even said the answer right there!” (pointing at the
column with pattern indicators). Notice, as always, that the table is filled in
so that the function must be computed both ways: sometimes we know n
and must figure out n + 10; at other times we must work from n + 10 back
to n. Other tables have three with captions like c, d, and c – d (see Fig. 17.10).
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FIGURE 17.12. Letters as labels for problems (upper part) and letters as
labels for numbers (lower part).

FIGURE 17.13. Children invest algebraic symbols with meaning derived from
context, just as they do with unfamiliar words in their native language.



Algebraic notation plays its usual role, but it is not the focus of the activ-
ity: the challenge of the activity is pattern finding, the drill is addition and
subtraction, the context and image is function, and the notation is the
algebra of structure. This use of symbols is also familiar from various
guess-my-number games, in which students ask questions like, “Is your
number greater than 4?”, and the teacher notates the question first with
all the words, and then, explicitly calling attention to the nuisance of writ-
ing it all out, as “number > 4?” and finally (all in one session) “n > 4?” fol-
lowed by the answer, which is always Y or N. Soon, children also need to
write their questions, and greatly appreciate the abbreviated forms.
Starting in Grade 2, children also play various clue games in which they
are trying to determine another player’s secret number from clues about
it. The secret keeper only writes clues (doesn’t speak them). The clues
may be fully spelled out in words (e.g., “My hundreds digit is greater
than my tens digit” or “the sum of my digits is less than 10”), but they are
strongly motivated to use shorter ways of writing. As a result, by Grade
3 they quickly pick up models provided by the puzzles in the curriculum
(and the recommendations to the teacher) that present the same informa-
tion in more abbreviated ways, including h > t and h + t + u < 10 (initially
with enough context to make the meanings clear). 

Abstract Arithmetic, Summarized and Encoded 

Experiments with magic squares allow students to look at properties of
operations without being “prejudiced” by their expectations about these
operations in standard arithmetic. Their results are “labeled” in ways sim-
ilar to the “pattern indicator” captions described earlier, but still without
fanfare. See a page from the beginning of Grade 4 on Figure 17.14 as an
example.

Variables 

The idea that a particular symbol may represent many values is intro-
duced before the idea that one can assign a single assured value (solve for
an unknown) to it. Interestingly, the notion of variables is first introduced
in a non-numeric context. In fourth grade, children play a word game in
which they are to find words that match a given pattern. The original
Math Workshop materials introduce this puzzle through a story about two
children who invented it. The girl, Numa, explains, “let’s hunt for pat-
terns in the letters of words. . . . I pick a Pattern Indicator abbc. That
means I want to find 4-letter words with the two middle letters alike.”
They list meet, room, and boot, and leave the students to list others. Then
Numo asks if he can use deed. “That’s all right, too!” says Numa, “Pattern

17. THE MATH WORKSHOP PERSPECTIVE 473



Indicators only tell you the number of letters and which ones must be
alike.” In a page full of puzzles with six different pattern indicators and
a small amount of additional dialogue, the whole mystery of a + a + b = 9
is solved. Yes, not only are (0, 9), (1, 7), (2, 5), and (4, 1) solutions,
but so is (3, 3). Something about this context makes the ideas quite
nonmysterious.

Unknowns

All of these uses of letters to stand for numbers (or other letters) treat
them as variables. The think-of-a-number tricks described earlier introduce
two other notions simultaneously. One is that we can “do arithmetic on
a number” without knowing what the number is. The other is that we
can figure out what a number must have been by looking at how the arith-
metic turned out.

Identities

Different structures can represent the same values. Think-of-a-number
tricks compose several arithmetic steps that might be recorded algebraically
as, say, . The four steps, recorded in terms of their results at each

2(x + 3) − 4
2
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FIGURE 17.14. A page from the beginning of grade 4: The sum of two magic
squares is also a magic square.



step, end with x + 1. So . Children in fourth grade are not in
any way thinking through the algebraic steps that convert one expression
to another, partly because they are never even faced with the more complex
of those expressions. But they do record their experiments with 7 × 7 and 6
× 8 by filling in tables that are captioned with n, n × n, n × n – 1, (n – 1), (n
+ 1), and (n – 1) × (n + 1), and they do conclude, experimentally, that (n – 1)
× (n + 1) = n × n – 1, and they do illustrate that geometrically (see Fig. 17.15)
(and many students see the proof in this illustration).

2(x + 3) − 4
2

= x + 1
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FIGURE 17.15. A page from the fourth grade of Wirtz et al. (1964).



Algebra as Abstract Arithmetic: Proof

In fact, in fourth grade, students generalize that result to (a + b)(a − b) =
a2 − b2 by examining a tabular evaluation of the several functions of a
and/or b that are combined in the expressions that make up that equation.
The geometric proof involves creating an a ⋅ a array of dots, shaving off
one column so that it becomes an a × (a – 1) array, and replacing that col-
umn as a bottom row of the resulting array. The column is too long, by one
dot, to fit the new array, but without that dot, the result is an (a + 1) × (a –
1) array. For all a, a2 – 1 = (a + 1) × (a – 1). The children cannot use algebra
to prove this syntactically—the algebra serves no function for them yet
except to record what they know—but for that limited purpose, it serves
well. Characteristic of this very integrated approach, the pattern also sup-
ports their learning of multiplication facts. Students who know 7 × 7 and
8 × 8 therefore know 6 × 8 and 7 × 9. 

CONCLUSIONS

The view that children’s acts of abstraction (including their play) and their
skill at pattern finding and natural language learning provide the ideal
foundation for algebra leads MW to a particular approach to the develop-
ment of algebraic ideas and algebraic language. It also leads to particular
pedagogical consequences: a generally less-is-more view of instructions and
explanations, in the print materials, by the teacher, and even by children,
prior to and during the first stages of activities; frequent use of puzzles;
simultaneous presentation of problems with different parts of information
missing (e.g., a sum, and then an addend; an output, and then an input);
early introduction of algebraic notation; and learning language (including
the symbolic written language of algebra) by encountering it in context. 
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18

Early Algebra as Mathematical
Sense Making

Alan H. Schoenfeld
University of California, Berkeley

The explorations of new intellectual territory in this book reminded me of
the evolution of cartography. Early maps, dating back to the 7th century,
divided the (flat) earth into three major parts corresponding to Asia,
Europe, and Africa. Such maps, which persisted through the 14th century,
served more as metaphorical depictions than as cartographic representa-
tions (see e.g., a version printed in 1472 at http://www.en.wikipedia.org/
wiki/Etymologiae).

As knowledge of the terrain increased, increasingly functionally repre-
sentational maps were produced. The navigational maps produced by the
mid-14th century provided reasonable guidance about known terrain.
However, the big picture left something to be desired: One could barely
recognize the earth as we know it from the maps of the 1400s (see
http://www.bl.uk/onlinegallery/features/ptolemylge.html). 

Once Mercator projection was introduced in the mid-1500s and its con-
ventions were understood, the maps that resulted were as good or bad as
the data that generated them. Mercator introduced a representational
framework that had its own systematic distortions, but which offered a uni-
fying big picture perspective. An interactive version of Mercator’s atlas of
Europe, compiled in the 1570s, can be accessed by clicking on the link “First
Atlas of Europe” that appears in the right-hand column of the online gallery
located at http://www.bl.uk/onlinegallery/ttp/ttpbooks.html. When
Mercator’s data were good, the maps in his atlas look very much like
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contemporary maps. When his data were not (as in the case of early maps
of the Americas), the maps left a great deal to be desired. Nonetheless, the
big picture he offered helped put things in relation to one another. Indeed,
by 1699, large parts of the known world were mapped with some accu-
racy and maps of the world looked very much like today’s maps (see e.g.,
http://www.library.yale.edu/MapColl/wrld1699.htm).

Fast-forward to the present, and maps are commonplace. Some maps
are interactive: On http://www.maps.google.com/ I was just able to
zoom in from a (Mercator’s) view of the earth to Europe, to England, and
all the way in to the street address of a colleague in Kegworth. If I wanted,
I could get driving directions online. Moreover, representations of maps
continue to evolve: On Google Earth one can now view maps, or pho-
tographs, or maps superimposed atop of photographs, of many parts of
the world. 

This book captures pioneering efforts to map the interior of early alge-
bra, much of which is unknown territory. Part I provides a structural
decomposition of algebra, descriptions of precursors to and pathways into
algebra, and elaborations of aspects of (pre)algebraic thinking. Parts II and
III provide essential existence proofs along multiple dimensions, showing
that some aspects of (pre)algebraic thinking are indeed accessible to
children in grades K–6. They also offer a clear and concise statement of
what early algebra is not (“Early Algebra Is Not the Same as Algebra
Early,” the title of chap. 10). Chapters in Part III discuss necessary condi-
tions for the successful implementation of early algebra instruction.
However, early algebra is not yet a coherent entity. The foci of different
chapters are, at times, so different that if one read them in isolation, one
might wonder whether they were leading into the same or different terrain.
The question, then, is whether there is a Mercatorlike perspective for early
algebra—one that, although undoubtedly introducing distortions of its
own, nonetheless allows one to see all of the parts as fitting into one coher-
ent whole. Is there an underlying coherence to the chapters in this book,
although different chapters deal with representational thinking, with
“making and expressing generalizations (about arithmetic patterns),” and
with “reasoning about situations of change over time using number patterns,
symbols, graphs and tables”? I believe the answer is yes. The balance of
this chapter is devoted to presenting and explicating that perspective.

ALGEBRAIC THINKING REVISITED

In chapter 1, Kaput stipulates the following: “We take the essence of alge-
braic reasoning to be symbolization activities that serve purposeful gen-
eralization and reasoning with symbolized generalizations.” I concur, but
to prevent a narrow reading of this sentence, I would like to expand on
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my understanding of purposeful symbolization activities. To do so I start
with a classic in cognitive science, Greeno’s (1983) piece entitled
“Conceptual Entities.” Greeno re-interpreted data from D. D. Simon and
H. A. Simon’s (1979) “A Tale of Two Protocols.” That paper compared the
physics problem solving of a novice physics problem solver with that of
an expert. The novice was a good problem solver, but relatively new to
the domain of physics being studied. 

D. D. Simon and H. A. Simon (1979) showed that both problem solvers
were effective at context-free symbol manipulation. To find the answer to a
kinematics problem, the novice determined the variable(s) she needed to
solve for, and then worked through the equations at hand to find the
value(s) she needed. In contrast, the expert was more structured in his
approach, using means–end analysis (a problem-solving heuristic) to struc-
ture his work with the equations. The expert’s and the novice’s approaches
were both consistent with one aspect of algebra: the manipulation of formal
symbols independent of their semantic referents. However, one (the
expert’s) was more purposeful and sophisticated than the other.

Greeno’s re-analysis of Simon and Simon reveals another dimension to
the expert’s competence. Yes, the expert is capable of operating on sym-
bols qua symbols. But, he also knows that in the case at hand, the symbols
have meanings (they refer to theoretical or conceptual entities in the sys-
tem being analyzed) and is comfortable using those meanings to guide
his symbolic operations when it is appropriate. Thus, for example, when
asked to find the total distance that an object under constant acceleration
has traveled, the expert can reason this way: “The distance traveled is
equal to the object’s average velocity multiplied by the amount of time
spent traveling. Because the change in velocity is linear, the average
velocity is 1/2 (vo + vf), which makes the total distance traveled equal to
D = 1/2 (vo + vf)(tf − to).” As Greeno noted, the term average velocity was a
conceptual entity for the problem solver: It was a functional object in the
problem solver’s mental model of the situation. Moreover, the expression
for average velocity, 1/2 (vo + vf), could be derived from an understand-
ing of the situation. In sum, the expert’s competence was derived both
from an understanding of the semantics of the symbols (what they meant
and how they related to each other) and the ability to operate on the sym-
bols in purely syntactic terms when such manipulation was called for. 

This example suffices to motivate the definitions of algebraic thinking
and the purpose of early algebra that follow. After the definitions, there is a
detailed discussion of two examples of early algebraic thinking in order
to illustrate what is intended by the definitions. Then the discussion
indicates that the apparently disparate approaches to early algebra in this
book are, in fact, entirely consistent with them—and the definitions can
serve as useful heuristic guides for future efforts in early algebra. 
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Definition: Algebraic Thinking

A core aspect of algebraic thinking consists of the ability to make effective
and purposeful use of symbols in ways that are inherently sensible and
meaningful. At times, this means operating on symbols in ways that are
purely syntactical. At times, this means making meaningful use of the
contexts and relations that gave rise to the symbols. The act of symboliz-
ing may itself serve purposes of generalization, classification, or abstrac-
tion. Thinking algebraically means having access to various forms of
representation, including symbolic representation; being able to move
flexibly from one representation to another when one representation or
another provides better affordances for the task at hand; being able to
operate on the symbols meaningfully in context when called for, and
according to the relevant syntactic rules when called for. One sees these
manifestations of algebraic thinking in the three strands identified by
Kaput in chapter 1: the study of structures and systems, often abstracted
from computations and relations; the study of functions, relations, and
joint variation; and in modeling. In sum, algebraic thinking is a particular
form of mathematical sense making related to symbolization. It involves
meaningful symbol use, whether the meaning is simply guided by the
syntactical rules of the symbol system being used or the meaning is
related to the properties of a situation that has been represented by those
symbols, or related to other representations of it. 

Definition: The Purpose of Early Algebra

The purpose of early algebra is to provide students with the kinds of
sense-making experiences that will enable then to engage appropriately
in algebraic thinking.

A First, Extended Example

In what follows, I explore aspects of sense making in a traditional (and
traditionally difficult) area of the upper elementary mathematics curricu-
lum. The topic came up as a group of sixth-grade teachers with whom I
was working were engaged in re-thinking their curricular program for the
following year. 

The issue at hand was fractions and rates. We had decided to create
assessment tasks that represented important ideas, and then to explore
both the mathematical thinking, and the student thinking, that such tasks
might entail. Here is the assessment item the teachers suggested.
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Problem 1: John can run 40 yards in 5 seconds. Mary can run 50 yards in 6
seconds. Who is faster, John or Mary?

What the teachers had in mind was that the students should ultimately be
able to see John’s rate as 8 yards per second and Mary’s rate as 8 1/3 yards
per second. Comparing the two rates indicates that Mary is faster. Having
established this as one plausible goal, we then decided to explore the ways
in which students might think about the mathematics, and about directions
in which the mathematics involved in this problem might lead. 

Students with different backgrounds or inclinations might approach
such a task in diverse ways. For example, I have seen students create a
“building block” representation, in which a block represents one unit of
John’s travel (Fig. 18.1). The students went on to build a train of such
blocks, representing travel over time (Fig. 18.2).

In this manner, they could see that (subject to the assumption that his
speed was constant, and that he could keep running at that spend for-
ever—a not-quite-legitimate assumption, but one commonly made in
such problems) John traveled 160 yards in 20 seconds, 200 yards in 25
seconds, 240 yards in 30 seconds, and so on. A similar train for Mary indi-
cates that she travels 150 yards in 18 seconds, 200 yards in 24 seconds, 250
yards in 30 seconds, and so on. 

This kind of chunking actually allows for two comparisons. Students
look for either common times or common distances. Some observe that
John covers 240 yards in 30 seconds, whereas Mary covers 250 yards in
the same time—hence Mary is faster, because she goes a greater distance
in the same time. Other students notice the common distance of 200
yards. Whereas John took 25 seconds to get that far, Mary took 24 seconds
to travel the same distance.
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FIGURE 18.1. A building block representing John’s rate of travel.

FIGURE 18.2. A train of building blocks representing John’s travel over time.



Other students build equally idiosyncratic—or conventional—
representations. I have seen arrow diagrams, starting with Figure 18.3, to
describe the first sentence in the problem statement, and others such as
Figure 18.4 for extensions; I have also seen students (with and without
encouragement) make tables that recorded the combined data for the two
racers (Table 18.1).

The teachers and I discussed ways to move forward from this. We
noted first that both kinds of comparisons, on the basis of distance
traveled per fixed time (how far away are the runners 30 seconds after they
start running?) and time to reach a fixed distance (who gets to the 200 yard
finish line first?), are legitimate ways to conceptualize the problem, and
students should come to understand both. We then looked for simplifica-
tions, and ways to standardize things. What if a third runner were intro-
duced? You could spend a long time looking for common times or
distances, and the numbers could get pretty messy. This ultimately led to
the idea that we could always (assuming proportionality) find out how far
each of John and Mary could run in 1 second, and simply compare those
distances. That comparison would tell us who was faster. And that compar-
ison could be arrived at sensibly for the children: “If John covers 40 yards
in 5 seconds, how far does he get in 1 second?” is a problem the students
can solve using knowledge they already have (and quite possibly the rep-
resentations they have just used). Given this, they can make sense of Mary’s
speed (stated as “how far she would get in 1 second”), and compare the
two. We seemed to have tied up the sense-making issue cleanly. 

At that point I asked, “What if we graphed the two students’ trajecto-
ries?” This suggestion was met with incredulity. In essence, the reaction
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was: “Why bother? We already have all the information we need.” The
teachers saw no need to pursue the issue, in terms of the sixth-grade cur-
riculum. From their perspective, the graph lacked the concreteness and the
affordances of the other representations, and it did not yield the practice
with fractions or the reduction to rates that the other representations did. 

Graphs are both an extension of the sense making that has been discussed
thus far and as a precursor of the algebraic work that sixth-grade students
would be undertaking in the next year or two. Questions of the type “You
know how far John runs in 1 second. How far does he run in 7 seconds? In
22 seconds? Can you give me instructions that tell me how to figure out
how far John has run, mo matter how many second he has run?” lay the
foundation for thinking about the distance John has run as a function of
time, and expressing it as a rule (“to get the distance John has traveled, mul-
tiply the number of seconds John has been running by 8”) and then as a
function (D = 8t). Plotting John’s distance-versus-time graph allows one to
see that it is linear; that he goes the same number of units vertically for
every horizontal unit; and that the line itself is an extension of the table and
the function (you can read off how far he has traveled after 15 or 12.5 sec-
onds), and of the inverse function (you can see graphically how long it
would take John to run 200 yards, by dropping vertically from where the
line D = 200 crosses the line representing John’s trajectory). The same
applies for the graph of Mary’s trajectory by itself. When both trajectories
are graphed on the same set of axes, there is yet more information. One can
learn to see how far along Mary and John are at any given time. Tracing dis-
tance as a function of time enables one to see that Mary will reach any given
distance (any hypothetical finish line) before John. This is related to the fact
that the line representing Mary’s trajectory is above the line representing
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Table 18.1

A List of Times and Distances for Mary and John

Time (seconds) John’s Distance (yds) Mary’s Distance (yds)

5 40
6 50

10 80
12 100
15 120
18 150
20 160
24 200
25 200
30 240 250



John’s trajectory—and this fact, in turn, raises questions about what is for-
mally known as the slopes of the two lines. 

Why do all this? Among other things, operating in the graphical
domain provides opportunities to reinforce the work on rate and ratio
that is considered core to sixth grade. It provides new ways to think about
the same content, introducing the ideas of functional relationships in con-
texts that are meaningful to the students. It introduces representations
they will have to be come fluent with, such as graphs, and ties the inter-
pretations to meaningful contexts. It also prepares the students for prob-
lems that they will encounter when they do study algebra, for example:

Problem 2: John can run 40 yards in 5 seconds. Mary can run 50 yards in 6
seconds. They are going to run a 200-yard race. How much of a head start
should John be given in order for them to tie at the finish line?

The point I want to stress in the extended discussion of this example is
that the more that students see mathematics as being coherent, the more
they see themselves as being able to make sense of it, and the more they
have multiple perspectives and representations of any mathematical idea,
then the more robust their understandings will be. Seeing mathematics as
a sense-making activity should be at the core of early algebra, because it
lays the foundation for the meaningful use of algebraic tools and tech-
niques when students encounter them. I return to this theme in discussing
the mathematics examples that appear throughout the book.

A Second (Set of) Example(s)

The preceding example focused on the use of symbols with meaningful
referents (specifically, time and distance). Sense making seems natural in
that context, and in the physics example discussed previously. After all,
the symbols refer to entities that have certain properties. Thus, the known
properties of, and relationships among, the objects represented might
well shape the way one chooses to operate on the symbols that represent
them. But what about situations when there are no such referents, that is,
when one is faced with what has been called naked symbol manipulation? It
is a grave mistake to think that meaning and sense making are not
involved in such situations. My intention here is to give a few quick exam-
ples to show that is the case.

Kaput (1979) pointed out that there often is a context-driven semantics
that belies the syntactics of algebraic symbolism. For example, the relation-
ship A = B is presumed, in formal terms, to be symmetric, transitive, and
reflective. The symmetry condition says that A = B implies B = A, and vice
versa. This is taken to mean that positioning on the left or right of the equals
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sign is irrelevant, and the two expressions A = B and B = A convey identi-
cal information. Drawing on Kaput’s work, I wrote the following in 1985:

Yet in practice [A = B and B = A] may carry radically (semantically) different
meanings, Consider, for example, the following two mathematical statements.

(Equation 1)

(Equation 2)

Despite the fact that they are formally equivalent, Equation 1 will generally
be interpreted as representing the simple addition of algebraic fractions,
while Equation 2 will be taken to represent the result of a complicated
process, the decomposition of a complex rational function by means of par-
tial fractions. In both cases the equals sign is read as yields and suggests the
operation that provides the result. At a more elementary level, 

2 × 3 = 6

represents a simple multiplication, 

6 = 3 × 2

a factorization into primes, and

2 × 3 = 3 × 2

an embodiment of commutativity—to the cognoscenti. All three equations are
formally equivalent, and students are generally presented solely with the for-
mal meanings of mathematical statements. Thus formal mathematics state-
ments carry, in context, semantic meanings that contradict (or at least qualify)
the formal meanings of the statements. Students are generally expected to pick
up this semantic meaning on their own. . . . It should not be surprising that
students have difficulty with the semantics of mathematics. (Schoenfeld, 1985)

Those difficulties are still prevalent today. As Kaput, Blanton, and
Armell write in chapter 2, syntax-driven actions on symbols:

. . . require attention to the form, the configuration, of the symbols—the
sense in Frege’s terms. It is here where adjustments to approaches to arith-
metic are especially important because, as pointed out by Carpenter and
Levi (2000), Fujii (2003), Livneh and Linchevski (1999), in our own work
(Blanton & Kaput, in press), and by Smith and Thompson (chap. 4, this vol-
ume), most arithmetic statements are read as instructions to compute and
are indeed executed as such, typically leading to a numerical result. . . . In
algebra they need to be thought about in a fundamentally different way. 

7x3 + 14x2 + 10x − 7
x4 + x3 − 5x2 + x − 6

= 2
x + 3

+ 5
x − 2

+ 3
x2 − 1

2
x + 3

+ 5
x − 2

+ 3
x2 − 1

= 7x3 + 14x2 + 10x − 7
x4 + x3 − 5x2 + x − 6
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Consider, for example, the example discussed by Franke, Carpenter,
and Battey: “When asked to solve a problem like 8 + 4 = � + 5 students
want to put 12 in the box. Some want to include the 5 in their total so they
put 17 in the box. Others create a running total by putting a 12 in the box
and an‘ = 17’ following the 5” (Franke et al., chap.13, this volume). That is
because, on the basis of their prior experience, students read the equal
sign as an instruction to compute. Such a reading is impossible, of course,
if one understands the formal meaning of equality—the syntactics of the
equation. But a solution is facilitated when one understands the semantics.
One possible approach to this problem is as follows:

What I face is an equation, with a number I don’t know. I am supposed to
find the number in the box. The two sides of the equation must be equal. I
do know how to find the sum on the left-hand-side of the equation: 8 + 4 = 12.
So, I can rewrite the equation as 

12 = � + 5,

or maybe more comfortably as 

� + 5 = 12.

So, now I’m looking for the number that has the property that when I add
five to it, I get 12. I know how to do that. The answer is 7, so 7 goes in the
box. And, I can check: 8 + 4 = 12 and 7 + 5 = 12, so 8 + 4 = 7 + 5.

What Franke et al. (chap. 13, this volume) call relational thinking is, in
essence, an understanding of the semantics underlying the equation. One
learns the semantics, I would argue, by treating actions on equations as
sense-making activities. That is, one respects the semantics of what are
ostensibly purely syntactic operations.1

The point is that meaning and sense making are central to all mathe-
matics learning. To the degree that they permeate the mathematics lead-
ing up to algebra, they prepare students for algebra. I now turn to the task
of showing that “early algebra as sense making” is indeed a theme that
permeates this volume, and can be seen as the theme that unifies it.
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be argued that even purely syntactic operations are meaningful in that sense. See
Lakoff and Nunez (2000) for the extreme version of this argument.



COMMENTS ON THE CHAPTERS COMPRISING PART I

Table 18.2 (Table 1.1), reproduced here, provides the taxonomy of algebra
that shapes the volume. In chapter 2, Kaput, Blanton, and Armella focus on
symbolization as a process. They rightly demonstrate its complexity, that is,
the kind of analytic detail in the chapter is necessary to develop a theoreti-
cal understanding of how people come to symbolize meaningfully. 

I agree with the broad characterization in Table 1.1, and with the need
to develop a deep understanding of the process of symbolization.
Although I might use somewhat different theoretical language to address
the issues addressed in those two chapters, our bottom lines are similar.
For example, Kaput, Blanton, and Armella focus on the transition from
arithmetic to algebra and the disruption that it can cause: “Most arithmetic
statements are read as instructions to compute and are indeed
executed as such, typically leading to a numerical result. Because in algebra
they need to be thought about in a fundamentally different way . . .
students have particular difficulty making the transition unless their work
with arithmetic treats arithmetic statements in a more algebraic way.”

I agree, and I would go further. I believe that “most arithmetic statements
are read as instructions to compute” because they are taught as such, with-
out an eye toward the future use of the symbols. On the basis of repeated
experience with arithmetic examples in which arithmetic statements are
treated as instructions to compute, it is only natural that students will come
to understand them that way. The issue here is one of beliefs and under-
standing. It is very much akin to cases where students come to believe
that “all problems can be solved in five minutes or less” because that has
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Table 18.2
Table 1.1 From Chapter 1

The Two Core Aspects

(A) Algebra as Systematically Symbolizing Generalizations of Regularities &
Constraints.

(B) Algebra as Syntactically-Guided Reasoning and Actions On
Generalizations Expressed in Conventional Symbol Systems.

Core Aspects A & B Are Embodied in Three Strands

1. Algebra as the Study of Structures and Systems Abstracted from
Computations and Relations, Including Those Arising in Arithmetic
(Algebra as Generalized Arithmetic) and in Quantitative Reasoning.

2. Algebra as the Study of Functions, Relations, and Joint Variation.
3. Algebra as the Application of a Cluster of Modeling Languages both Inside

and Outside of Mathematics.



been their experience, over and over, in classrooms (see e.g., Schoenfeld,
1992). If students are taught mathematics as a set of procedures, they are
likely to conceptualize it that way—and act accordingly. If they are taught
mathematics as a sense-making activity, then there is a chance that they will
engage in it that way. In this case, as Kaput and colleagues make clear,
understanding the broader set of meanings associated with arithmetic state-
ments is a precursor to—better, a foundation for—algebraic thinking. 

Mason (chap. 3, this volume) makes the case eloquently:

Th[is] chapter describes various powers such as imagining and expressing
(in various modes), focusing and de-focusing, specializing and generaliz-
ing, conjecturing and convincing, and classifying and characterizing. . . .
What is needed at school is not direct instruction in what to do but rather
the invocation of those powers through suitable challenges so that learners
experience the development and use of their own powers rather than hav-
ing texts and teachers try to do the work for them. 

In other words, students who experience arithmetic from the very
beginning as a mathematical domain in which they can perceive struc-
ture, make and test hypotheses, and operate meaningfully on (arithmetic)
symbols, will be prepared to do the same when they encounter algebra. 

In many ways, Smith and Thompson’s view (chap. 4, this volume) is
consistent with this. They argue that “for too many students and teachers,
mathematics bears little useful relationship to their world. It is first a
world of numbers and numerical procedures (arithmetic), and later a
world of symbols and symbolic procedures (algebra). What is often miss-
ing is any linkage between numbers and symbols and the situations,
problems, and ideas that they help us think about.” They argue—in con-
tradiction to much of common practice but with good reason—that it is a
mistake to accelerate through the curriculum, importing parts of an alge-
bra I course into the earlier grades. Rather, they say, preparation for alge-
bra “should involve changing elementary and middle school curricula
and teaching so that students come to use symbolic notation to represent,
communicate, and generalize their reasoning.” 

Smith and Thompson’s discussion of Krutetski’s problem—“I walk
from home to school in 30 minutes, and my brother takes 40 minutes. My
brother left 6 minutes before I did. In how many minutes will I overtake
him?” illustrates a number of important points. First, multiple solutions
are a “good thing”: People with flexible understandings of a domain
have various ways to think about a problem situation. Second, not all
solutions to algebraic problems are algebraic: Smith and Thompson offer
a nonalgebraic solution that depends on making sense of the relationships
between various real and imagined quantities in the problem. In this case,
Smith and Thompson reason about the hypothetical distance between the
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problem solver and his brother. In Greeno’s (1983) terms, Smith and
Thompson are working with a conceptual entity in precisely the way that
the expert problem solver in D. P. Simon and H. A. Simon (1979) did.
Third, understandings of the properties of that conceptual entity drive the
ways Smith and Thompson solve the problem. 

Let us pursue this line of reasoning a bit further, using the Krutetski
example. As it happens, I also solved the problem without using algebraic
formalism. I noted that it takes the problem poser’s brother 4 minutes to
cover the distance covered by the problem poser in 3 minutes. Thus, the
problem poser gains a minute on his brother every 3 minutes. Because the
brother had a 6-minute head start, it would take 18 minutes to catch up.
This checked: After 18 minutes, the poser would be 18/30 = 3/5 of the
way to school, and his brother, with a 6-minute head start, would be
24/40 = 3/5 of the way to school. 

Here is the connection I want to make. As Smith and Thompson note,
there are various ways to solve this problem algebraically. Indeed, this
problem—although stated in a slightly nonstandard way—is one of an
equivalence class of problems, in which two linear functions are given
and the task is to find out when they have the same value. (Recall
Problem 2 earlier.) These can be “head start” problems, as in Problem 2.
In similar fashion, students may be asked to compare of the costs of two
cell phone plans, automobile rentals, and so on. 

Typically, one function is expressed as y1 = mx + b, the second y2 = Mx +
B. Students will find out where the functions intersect by setting mx + b =
Mx + B and determining that they have the same y-value when (x + B − b/m
− M). But what does this mean? The way that I think of it is as follows. At
x = 0, the functions have values of b and B respectively—so (assuming B >
b), y2 has a “head start” of (B – b). But (assuming M > m), y1 “catches up” (m
– M) units each time x increases by 1. Hence it takes (B − b/m − M) units for
y1 to catch up with y2. I call this my catching up schema, and it is part of the
knowledge I bring to any problem that deals with the interpretation of
simultaneous linear equations. That knowledge is sometimes generative in
that it guides a solution; it sometimes serves as a constraint in that it helps
me to recognize that a potential solution violates a constraint it imposes and
must therefore be incorrect. It is one of many tightly connected pieces of
information I have regarding pairs of linear equations. All of this informa-
tion—about slope, about how changes in x relate to changes in y, about the
x- and y-intercepts of a line, and more—works in ways that guides my
thinking about problems and shapes what I do as I try to solve them
(Schoenfeld, Smith, & Arcavi, 1993). The richer the connections, the deeper
my understanding, and the more flexible I can be in approaching problems.
Smith and Thompson’s point is that the development of such understand-
ings can and should begin long before a formal algebra course. Smith
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argues, in chapter 5, that a form of mathematical certainty can emerge from
students’ working at making meaning, exploring connections, representing
them, and explaining them. The examples given in chapter 5 and the other
chapters differ to varying degrees, but the underlying concept is the same.

COMMENTS ON THE CHAPTERS COMPRISING PART II

I begin with comments about the chapters that focus significantly on
aspects of algebra as generalized arithmetic and the symbolic codification
of patterns (chaps. 6, 7, 8, and 12). I then turn to a discussion of represen-
tational issues, including functional notation and multiple representa-
tions of geometric and other objects.

Part II offers rich exemplifications of theme of early algebra as sense
making. Consider, for example, the discussion of the commutativity of
whole number multiplication discussed by Bastable and Schifter in
Episode 1 of chapter 6. Lauren creates a (7 × 3) array and a (3 × 7) array,
and superimposes one on the other to show that they yield the same prod-
uct; Jeremy rotates the (7 × 3) array by 90° to show that it is the (3 × 7)
array; Anna acknowledges the generality, because the demonstrations by
Lauren and Jeremy could be done for all numbers. This is a hands-on rep-
resentational practice attaching meaning to symbols—with significant
generality. 

The extra dimension here, and common to part II, is that there is a com-
munal dimension to the practice of sense making. Part of what makes the
instruction powerful is that the students, with careful orchestration by the
teacher, work together to explore the mathematical issues at hand. With
this kind of reasoned discourse one can see (or at least imagine) the devel-
opment of productive habits of mind—that students expect to reason
things through and to explain them; that explanations must take relevant
information into account; that explanations must stand up to scrutiny;
that there is more than one way to understand something (e.g., that a
problem can be conceived of as an addition problem and as a subtraction
problem); and more. 

Beyond that, a main focus of chapter 6 is generalization. I think the
chapter makes it clear that students in the elementary grades can and do
produce mathematical generalizations—perhaps not in the language of
algebra, but correct nonetheless. Bastable and Schifter note that “many
adults . . . who read Adam’s ‘amazing’ discovery—If you take two consec-
utive numbers, add the lower number and its square to the higher num-
ber, you get the higher number’s square’—feel the need to translate it into
terms more familiar to them: n + n2 + (n + 1) = (n + 1)2.”

Indeed, the algebraic notation is clean. It provides a clear proof, in a for-
mal language we have come to depend on. The proof is general. But I am
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willing to bet that students who have developed the kinds of habits of mind
discussed in this chapter will be ready for the algebraic symbolism when
they encounter it; and, if the symbolism comes as the codification of some-
thing they already understand, then it will have meaning and be seen as a
powerful tool. That is precisely the purpose of early algebra. I would also
note (cf. chap. 17, as well) nonverbal arguments can provide compelling
evidence that leads to proof. One of the proofs without words in Nelsen’s
(1993) book by the same name—on the cover, in fact!—is a pictorial argu-
ment that the sum of the first n odd numbers is n2. A slight variation on this
picture provides a proof without words of Adam’s claim (see Fig. 18.5).

One may still feel the need to symbolize algebraically—but there is no
question that even for those who already know the algebra, the pictures
can add an extra dimension to one’s understanding; and for those who
have not yet learned it, the picture(s) may serve as a means of bootstrap-
ping the desired algebraic understandings. 

One sees similar underpinnings for algebraic thinking in chapter 7. In
simplest terms, the backward problems in the elevator scenarios
described by Tierney and Monk provide a nonstandard model of number
sentences in which the first term is the unknown. For example, “This time
I don’t know the starting floor. I go on the elevator. I push the plus two
and the minus three and I end on floor one” can be expressed as:

� + 2 – 3 = 1.

There is more to the examples than this, however. Mathematically speak-
ing, each of the hypothetical buttons on the elevator represents a function.
The “plus two” button moves the elevator up two floors no matter where
it starts, the “minus three” moves it down three floors, and so on. Call the
first function f(x), the second function g(x). When Kadisha says, “We’re
supposed to end on floor 1. If I were to go +2 and –3, I would end up one
below where I started,” she is, in effect, computing the composite function
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h(x) = f(g(x)); when she reasons “so I must be one above the ending floor,
so that’s plus two” she is, in effect, arguing that one “reverses” the action
of the “minus one” function with the “plus one” function. When Sylvia
says “I just switched them around. I made the plus two a minus two and
the minus three a plus three and then I did it,” and generalizes by saying
“If I’m starting on floor one and I don’t know my ending place, I’d have to
switch the whole way,” she is, in essence, making a general claim about the
structure of inverse functions in this domain. I say “in essence” because the
students are not using that language; at this point they might well be con-
fused by it. Nonetheless, they are clearly showing evidence of thinking in
algebraic ways. One can argue similarly about Rose’s discussion of the
maximum value of a sequence of addition and subtraction functions on
p. She does not compute what happens to the value of 4, but rather discusses
the impact of the “+” and “–” functions, individually and collectively. In
Episode 3, one sees students grappling with fundamental issues of repre-
sentation, with tables and graphs. Episode 4 adds representational com-
plexity, with the students working to understand the properties of verbal
and tabular descriptions and to see if both tell the same story.

There are direct parallels to the stories of Kadisha, Sylvia, and Rose in
the examples discussed by Peled and Carraher in chapter 12. In the sec-
tion of chapter 12 entitled, “Equivalent Transformations: The Long Way
and Shortcuts,” Peled and Carraher introduced functions as transforma-
tions, independent of their origin: Carolina and James performed +2 and
–1 transformations on the number line. Peled and Carraher then posed
inverse questions: If Carolina and James ended at 3 and 5, respectively,
where did they start? The students, asked to think about “shortcuts” relat-
ing the +2 and –1 transformations, ultimately wound up producing com-
posite functions (which corresponded to the addition of the signed
numbers +2 and –1). Interestingly, as the authors note, taking a more
advanced (essentially algebraic) approach to displacement produces a
more robust understanding of the arithmetic topic of the addition of
signed numbers than traditional arithmetic approaches.

At the risk of flogging a dead horse, I want to be especially clear about
the claims I am making before moving on. I am not arguing that students
are doing algebra when they treat “+3” as a function and compute its
inverse as “–3,” or when they discuss the properties of graphs and tables.
I claim that they are engaging in sense-making activities that help them to
develop the habits of mind that will serve them well when they engage in
the formalization of similar kinds of ideas in an algebra course.

In chapter 8, Mark-Zigdon and Tirosh examine kindergarteners’ and first
graders’ capacity to handle the syntax of number sentences. The issue they
raise is: At what point will students be able to symbolically represent num-
bers and number sentences? There are, I think, at least three dimensions
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to this kind of question. One is, when will students master the
syntax involved—can they recognize the symbols for objects and operators
and combine them correctly? This is the issue examined in the current
study. A second is, under what conditions and at what age will such num-
ber sentences make sense semantically to young children? This depends
on experience, of course. For example, it is reasonable to conjecture that
young students who have experienced an instructional program such as
cognitively guided instruction (Carpenter, Fennema, & Franke, 1996;
Carpenter, Fennema, Franke, Levi, & Empson, 1999; Carpenter, Franke, &
Levi, 2003) would get the semantics—understanding how stories gener-
ated (or could be represented by) number sentences—whereas other
students who have not had the relevant symbolizing experience would
have a harder time with such sentences and the problem solving they
entail. A third question is, how are the answers to the first and second
related? Would there be an interaction between semantics and syntactics?
That is, do the students who have a meaningful understanding of the
ways in which number sentences represent concrete situations develop
increased mastery of, and fluency with, number sentences because the
referents are meaningful to them? These are interesting issues to be
explored as we map out the territory of early algebra.

I now turn to the issues of functional relationships and multiple repre-
sentations. In chapter 9, Boester and Lehrer explore relationships between
algebraic and geometric reasoning: “Rather than place these two strands
in competition for curricular space and time, we propose synergy:
Visualization bootstraps algebraic reasoning and algebraic generalization
promotes ‘seeing’ new spatial structure.” That sounds like sense making
to me! Think of the five process standards in NCTM’s (2000) Principles and
Standards: problem solving, reasoning and proof, communication, connec-
tions, representation. 

“Problem solving” is not immediately apparent in chapter 9, at least as
most people envision it. Indeed, the authors do not use the term. Yet con-
sider the task implicitly described in this sentence: “For example, when
students first attempted to determine a symbolic expression for rectangles
in the ratio of 1 to 4, they were stymied because it was one of the first
groups to contain a rectangle with non-whole number dimensions.” The
challenge to the students was to use what they knew to come up with a
meaningful representation of a new class of objects. Not only is that a
form of problem solving, it is a form of mathematical thinking in which
mathematicians often engage. (Its use in this case also illustrates an
important pedagogical principle: Problematic situations can be used as
the contexts within which students can develop mathematical under-
standings.) The unit has a major focus on reasoning and communication:
“The teacher always elicited students’ thinking, nearly always insisted on
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justifications for that thinking, and generally conducted a classroom
emphasizing mathematical conversations. She also promoted mathemat-
ics as a form of literacy.” Connections are what the unit is all about, and
the mechanism for making those connections is the development of
meaningful representations of the same objects. “The four different repre-
sentational forms explored were: rules in the form of verbal descriptions
(e.g., long side is twice short side), re-expressed and re-interpreted as
symbolic equations (e.g., LS = 2 × SS), Cartesian graphs, tables, and quo-
tients representing ratios.” In short, the content of the unit is material that
grows into the content of a standard algebra course, and the unit involves
varied processes called for by major reform documents. 

Although in a very different domain, similar themes are announced by
the authors of chapter 10. There is, from the beginning, a focus on mean-
ing (“If algebra is meaningless at adolescence, why should it be meaning-
ful several years earlier?”). Then there are assertions I take as being
axiomatic for the authors:

1. “Early algebra builds on background contexts of problems.” The
issue, in fact, is more general. Two paragraphs ago, I noted that
grappling with meaningful problems is often a powerful mecha-
nism for students’ development of mathematical ideas. More
important, powerful mathematical ideas are always grounded in
examples (see e.g., Rissland, 1978).

2. “In early algebra formal notation is introduced only gradually.”
Note the parallels between the introduction and use of letters in
this chapter (“Letters Can Name Indeterminate Amounts”) and the
ways that the authors of chapter 10 introduced mnemonic variable
names (“long side is twice short side” is reexpressed as the symbolic
equation “LS = 2 × SS.”)

3. “Early algebra tightly interweaves existing topics of early mathe-
matics.” It may be worth recalling that teaching algebra as a sepa-
rate course, divorced from the rest of mathematics, is an American
curricular anomaly: In much of the world (including nations that
have consistently trumped the United States on international com-
parison tests such as TIMSS), many of the ideas of algebra are
developed in the context of pure and applied mathematics in a
wide range of domains. Algebraic symbolism often serves to capture
patterns, whether those patterns are numerical, geometric, or
probabilistic; and, the “unreasonable effectiveness” of mathemat-
ics (Wigner, 1960) is due to the meaningful mathematical represen-
tation of objects and relations from outside of mathematics. Why
not start early? The key, as exemplified here, is that the processes
involved must be meaningful to the students.
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Sense making via the productive use of multiple representations comes
to the fore in the discussion of the “Best Deal” problem in chapter 11. As
in the case of chapter 9, linkages across representations are seen as a pow-
erful way of enhancing understanding: Different representations of the
same phenomenon can provide affordances for different kinds of insights
into that phenomenon. Let me address that issue in algebra, then return
to the early version.

Some years ago, my research group worked on the development of
curricular materials (including computer software and hands-on activi-
ties) designed to have students learn about the properties of linear func-
tions. Our explicit concern was that students be able to represent
functions in multiple ways, and think about them in multiple ways—
precisely because using one perspective,2 or one representation, might
make it much easier to solve a problem than any other. Moschkovich,
Arcavi, and I (1993) wrote the following: 

Our first major goal in writing this paper was to introduce and elaborate the
framework for understanding functions that was outlined in schematic
form in Table 1. There we pointed to two ways of viewing functions (the
process and object perspectives) and the three most prominent representa-
tions of functions (in tabular, graphical, and algebraic form) We hope to
have indicated that competence in the domain consists of being able to move
flexibly across representations and perspectives, where warranted: to be
able to see lines in the plane, in their algebraic form, or in tabular form, as
objects when any of those representations is useful, but also to switch to the
process perspective (in which an x-value of the function produces a y-
value), where that perspective is appropriate. . . . For us, now augmented by
columns representing real-world contexts and verbal representations, it
serves as both a heuristic guide to curriculum development (Does any cur-
riculum we propose make adequate connections across representations and
perspectives? If not, it had better be revised) and for assessment of student
learning (Can the student move flexibly across representations and perspec-
tives when the task warrants it?). (p. 97)

If early algebra is to have the meaning discussed in this book, then the
processes of developing such meanings and understandings should indeed
start early. Chapters 9 through 11 provide insights into how to do so.
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processes (instructions to compute) and as objects (e.g., the whole graph of f(x) is
raised by one unit when one graphs g(x) = 1 + f(x).) It is sometimes advantageous
to conceptualize a function using one perspective, sometimes the other (see e.g.,
Harel & Dubinsky, 1992.)



COMMENTS ON THE CHAPTERS COMPRISING PART III

Part III deals with issues of implementation. All told, chapters 13–17 raise
three sets of issues: the nature of the mathematics to be taught, the kinds
of mathematical knowledge it takes to teach early algebra effectively, and
systemic issues related to supporting the effective implementation. I deal
with each in turn, drawing from the body of chapters as I go.

The Mathematics of Early Algebra (Continued)

The arguments made in parts I and II apply here as well. In fundamental
terms, each of the chapters is concerned with having students encounter
early algebra as a sense-making activity. Earlier in this chapter, for exam-
ple, I discussed the semantics of the equation 

8 + 4 = � + 5,

which plays a central role in the narrative of chapter 13. Franke, Carpenter,
and Battey demonstrate clearly that being able to see that equation relation-
ally is a key pathway to learning to think about equations in algebraic
terms. The same is the case for being able to articulate the fundamental
properties of number and operations, and for being able to justify one’s
answers. And (see Issue 2, later) they note that thinking in such terms is
hardly natural for the teachers with which they have worked.

The same issue of semantics—of thinking about equations as capturing
relationships—comes front and center in chapter 15. Consider the following
classroom dialogue:

Mrs. M wrote F, A, A, F, F < A, and A > F on the board

“I see something,” said Justin.
“What do you see?” asked Mrs. M.
“Look,” said Justin. “Every time two things are equal we can only write two
statements. Like when mass K and mass B are equal. We can say mass K
equals mass B and mass B equals mass K. Mass K and mass B are the same
amount.” 
Mrs. M wrote K = B and B = K on the board. “That’s a good observation,
Justin,” said Mrs. M.
Wendy raised her hand and continued, “But if two things are unequal we
can write four statements.”
“Four statements?” said Mrs. M.
“I agree with Wendy,” said David. “There are four statements. See, volume
F is not equal to volume A and A is not equal to F. And F is less than A and
A is greater than F.”
Mrs. M wrote F ? A, A ? F, F < A, and A > F on the board. 
“Hey,” said Mia, “We can even write more because A = A.”
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It provides powerful evidence that first graders can think in relational
terms. Likewise, the fact that young students can work in ways that depend
on the symmetric and transitive properties of equality, and can express
multiplicative relationships in proto-symbolic ways (see the discussion of
the problem “Jessica has 7 oranges. Raul has 4 times as many oranges as
Jessica. How many oranges do they have altogether?”) provides an impor-
tant existence proof. With the right kinds of support, young students can
learn to think about the relationships embodied in ostensibly concrete situ-
ations, and thus be prepared for the use of such relationships when they
encounter them in more formal terms in an algebra course. 

One sees the same theme in chapter 16, with an additional emphasis on
the kinds of reasoning that provide the underpinnings of mathematical
generalization. Not only are students encouraged to explore turnarounds
(4 + 6 = 10 = 6 + 4), but they are encouraged to think about whether
turnarounds always work: 

Turnarounds always work. I just know they do.

Me: How do you know?
Natalie: Well, look. 27 + 4 = 31 and 4 + 27 = 31.
Me: But does this always work, for any number, no matter how big it gets?
Natalie: Well, let me try it.

So Natalie tried numbers in the hundreds and added them together both
ways and felt convinced that it always worked. Her reasoning seemed to be
based on her having done many of them and having had them always work
out to be the same answer.

I did ask her if something like 13 + 23 = 23 + 13 is true. Her immediate
response was that, no, it didn’t work. Several other children confirmed that
it didn’t work either, saying, “There’s no answer here.” Even after they felt
sure that 13 + 23 = 36 and that 23 + 13 = 36, no one felt like the original state-
ment could be true. . . .

Other children spent their time making up additional problems and solv-
ing them both ways. Ingrid’s [written] work [which starts with single- and
two-digit numbers, extending into hundreds, thousands, and ten thou-
sands] is an example. She was using a calculator and expressed real satisfac-
tion with this work. 

Generalization is a natural process but, as we know, one that does not
always produce correct results. For example, all too many students gen-
eralize the distributive law (a + b)(c) = ac + bc to the case of exponents, dis-
tributing the exponent 2 in the expression (a + b)2 to obtain the incorrect
expression a2 + b2 (see e.g., Matz, 1982). The question is, how does one deal
with such things? In the excerpt provided, students are encouraged to
observe patterns and then challenge them. That strikes me as exactly
right. In particular, the following comment by the authors resonated with
me completely:
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Now, in our current project, a group of teachers has been collaborating with
us, bringing examples of early algebra from their classrooms and helping us
understand what happens when they structure their lessons in particular
ways or include certain questions as part of their classroom routine. For
example, what happens when children build the habit of addressing such
questions as, Why does it work out that way? Will it always work that way?
How do you know? A teacher might say, I’m not convinced; prove it to me.
Can you convince your classmates? Can you convince a younger child? 

This set of questions bears a remarkably close resemblance to the three
stages of making compelling arguments (i.e., proofs) suggested by Mason,
Burton, and Stacey (1982):

Convince yourself;
Convince a friend;
Convince an enemy.

As Tall (1991) indicated:

The idea is first to get a good idea how and why the result works, sufficient
to believe its truth. Convincing oneself is, regrettably, all too easy. So pleased
is the average mortal when the “Aha!” strikes that, even if shouting
“Eureka” and running down the street in a bath towel is de rigeur, it is very
difficult to believe that the blinding stroke of insight might be wrong. So the
next stage is to convince a friend—another student, perhaps—which has the
advantage that, to explain something to someone else at least makes one
sort out the ideas into some kind of coherent argument. The final stage in
preparing a convincing argument, according to “Thinking Mathematically”
is to convince an enemy—a mythical arbiter of good logic who subjects
every stage of an argument with a fine toothcomb to seek out weak links. (p. 24)

This sequence of arguments is, I believe, a habit of mind possessed by
mathematicians, who will trust their insights to a degree, but also under-
stand that a general claim must withstand any and all counterargu-
ments—attacks by an “enemy.” It seems exactly right to begin to develop
this and related habits of mind in meaningful contexts, early in students’
school careers. Of course, one does not expect formal reasoning or formal
proof; but, the general enterprise of mathematical sense making can be
made accessible. Schifter, Monk, Russell, and Bastable offer a set of guide-
lines, grounded in their empirical experience, for doing so. 

Chapter 17 is a fitting end, in two ways. First, the approach covers a huge
amount of territory: The K–6 curriculum entitled Math Workshop (Wirtz,
Botel, Beberman, & Sawyer, 1965) is pretty much an entire early algebra cur-
riculum. In it we see a version of relational thinking as discussed in previous
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chapters (“presenting problems with different parts missing,” such as 3 + _
= 5). What the authors call “puzzle solving” with regard to the multiplica-
tion problem in Figure 18.6 (Fig. 17.9, reproduced here) is very much an
exercise in working through base 10 structure.

In this chapter, as in some of the others, we see discussions of arith-
metic foundations for the distributive law, find a rule (i.e., function)
problems, the use of icons to represent what will be identities (the expla-
nations for numerical magic tricks), what is essentially matrix addition
(the sum of magic squares), and the geometric representations of alge-
braic proofs. The very scope of the approach shows that it is possible to
unify the various strands of early algebra over the years. The curriculum
appears to include (to at least some degree) antecedents for all of the alge-
braic activities described in Figure 1.1.

Second, Sawyer’s (1964) description of his intentions anticipates this
commentary in remarkable ways:

It is quite possible to use simultaneous equations as an introduction to alge-
bra. Within a single lesson, pupils who previously did not know what x
meant, can come, not merely to see what simultaneous equations are, but to
have some competence in solving them. No rules need to be learnt; the
work proceeds on a basis of common sense. The problems the pupils solve
in such a first lesson will not be of any practical value. They will be in the
nature of puzzles. Fortunately, nature has so arranged things that until the
age of twelve years or so children are more interested in puzzles than in
realistic problems. So the puzzle flavour of the work is, if anything, an
advantage. (p. 30)

To paraphrase using my language, Sawyer is arguing that mathematics can
and should be a sense-making activity. Moreover, he argues (and I agree)
that students are naturally curious, and that if one can harness the energy
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unleashed by their curiosity, one can begin to do some real mathematics.
Here, as in the other chapters, the idea is to foster the development of
productive habits of mind consistent with the formalization that, when it
comes, will officially label what the students are doing as the study of alge-
bra. The hope and expectation of all the chapters in this volume is that
when such formalization comes it will serve as the codification of coherent
understandings, a natural evolution of the students’ earlier experiences in
mathematics. That would stand in stark (and welcome) contrast to most
students’ current experience.

Issues of Teacher Knowledge

Teaching early algebra effectively will, at minimum, demand the following
from teachers: a solid understanding of whichever aspects of early algebra
are to be taught, and a comparably solid command of the relevant pedagog-
ical techniques. The challenges with regard to both are substantial. 

In recent years, various such programs of research on teacher knowl-
edge (e.g., Ball & Bass, 2000, 2003; Lampert, 2001; Ma, 1999; Sherin, 2001)
have begun to unravel the kinds of mathematical and other knowledge
that are necessary to provide the support structure for rich mathematics
instruction. Such research suggests that there is little likelihood that even
a significant proportion of the current K–6 teaching force has anywhere
near the mathematical or the pedagogical knowledge required. This is for
two reasons. First, teachers who are asked to teach early algebra are being
asked to teach unfamiliar content. The content of early algebra as envi-
sioned in this volume is conceptually challenging, because it is focused on
the semantics of the mathematics at hand—and few students of mathe-
matics (current teachers included) have ever been taught to grapple with
such issues. Discussions of relational thinking with regard to number sen-
tences, or of the power and use of multiple representations, are not exactly
common. Thus, teachers will have to learn the new content. 

Second, one cannot conceptualize early algebra in meaningful ways
unless one has a reasonable grasp of the semantics of algebra. There is not
much reason to believe that many K–6 teachers have such knowledge. In
most states, elementary school teachers earn a multiple subject credential,
which certifies them to teach all elementary school subjects. Teaching the
whole child is critically important in elementary school. Thus, credential
programs are often strong on developmental issues. 

But, because such programs have to prepare teachers to teach every-
thing, they are necessarily thin on any particular subject matter. There is
often a focus on literacy, which is typically high priority. There is not, in
general, that much of a priority on mathematics in elementary teacher
preparation programs. Mathophiles (and mathematics majors) tend to go
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into single-subject credential programs, and to teach middle and sec-
ondary school mathematics. In some states, it is possible for elementary
school teachers to be credentialed after having studied only one or two
postsecondary courses in mathematics. 

The sixth-grade teachers in the first extended example discussed in this
chapter illustrate the issues to be confronted. These are good teachers
who care about their students, know a lot about developmental issues,
and work hard to implement carefully chosen reform curricula as best
they can. But, these teachers were not at all sure about the value of explor-
ing multiple connections to the simple rates involved in the straightfor-
ward solution to Problem 1 (“John can run 40 yards in 5 seconds. Mary
can run 50 yards in 6 seconds. Who is faster, John or Mary?”). They did
not see the value of graphing the trajectories of the two students, because
they did not know that their students would be expected to make use of
such ideas the following year. To put things simply, it is hard to prepare
one’s students for what is to come when one does not know what is com-
ing! Moreover, it is nearly impossible for someone who does not under-
stand algebra to grasp the semantics of early algebra in meaningful ways.
I would like to believe that the story described in the first extended exam-
ple is anomalous, but the fact is that the teachers I was working with are
comparatively well-prepared. The evidence of teachers’ mathematical
knowledge in the books by Ma (1999) and Cohen (2004) does not provide
grounds for optimism. 

The situation with regard to pedagogy is similar. As Part II of this book
makes clear, the success of early algebra instruction will depend in large
measure on the implementation of a discourse-oriented pedagogy, in
which students and teacher grapple with issues of sense making, and in
which attempts to understand the mathematics are made public and
reflected on. Unfortunately, most of the current generation of teachers
was taught via the traditional didactic model of instruction. Hence, they
do not have models of the appropriate pedagogy to implement; so, what
they do implement can be far from what one would like. This was made
clear in chapter 13:

After leaving the professional development, teachers relied on existing
practices to help them. They created worksheets of true/false and open
number sentences so they could practice getting the correct answers to
problems like 8 + 4 = _ + 5. The teachers used the worksheets for continued
practice. They were collected, graded and returned to the students. The
worksheets were not used to promote discussion, to challenge existing
ideas, or to figure out why 12 would not go in the box. The worksheet
was an artifact of existing practice. The teachers used the sequences we
discussed in class in the context of an existing practice and changed the
purpose of the number sentences themselves. Here the teachers appropriated
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a practice that was not helpful in relation to developing algebraic thinking,
particularly relational thinking. 

In short, to learn to teach early algebra effectively will require unlearning,
as well as learning: Many teachers will have to divest themselves of estab-
lished habits and to learn both new content and pedagogy. This is a decid-
edly nontrivial matter, and it takes time. One might well ask where the
time for this will come from (see the discussion of systemic issues later).

For early algebra to become a reality on a large scale, the content and
pedagogy in teacher preparation programs must ultimately change, to
increase the likelihood that prospective teachers will experience mathe-
matics in a manner more consistent with the ways we hope they will teach
it. And, professional development must be sufficiently intensive, over
extended enough periods of time, to allow teachers to develop both the
content knowledge and the pedagogical orientation and skills to be able to
carry out the kinds of early algebra instruction discussed in this volume.
The chapters in Part III of this volume offer existence proofs. They show
that, under certain circumstances, teachers can learn the requisite skills;
they show that skilled teachers can make early algebra happen in class-
rooms. The challenge is to move from existence proofs to large-scale reality.
When one tries to do that, one confronts issues at the systemic level. 

Systemic Issues

The knowledge and inclinations of individual teachers will only account
for part of the story of the implementation of early algebra over the years
to come. Even though teachers often have some degree of autonomy in
the isolation of their “egg crate” classrooms (Lortie, 2002), the embedded
contexts of their departments, school sites, districts, and professional affil-
iations will support and constrain what is possible for them to do within
those classrooms (McLaughlin & Talbert, 2001; McLaughlin, Talbert, &
Bascia, 1990). As a framework for what follows, I point to a set of condi-
tions (Table 18.3) that are catalytic for the implementation of successful
mathematics instruction.

There is evidence that when all of these conditions are met, there can be
steady improvement in a system—including the reduction of racial perfor-
mance gaps (see e.g., Schoenfeld, 2002, in press). There is also, alas, evi-
dence that when one or more of the five conditions listed in Table 18.3 are
missing, attempts at the implementation of novel instruction can be under-
mined to the point where they are ineffective. This is not the place for an
extended discussion, but here are some of the reasons, numbered to
correspond to the conditions mentioned previously: (a) The need for well
thought out curricular goals (a.k.a. standards) is obvious. (b) Research dating
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back more than a quarter century (e.g., Stake & Easley, 1978) documents
the dependence of teachers on textbooks as sources of authority regarding
mathematics and the appropriate sequence of learning activities.
“Ownership of mathematics rests with the textbook authors and not with
the classroom teacher. Departures are rarely made” (Romberg & Carpenter,
1986, pp. 867–868). (c) Pressures to “teach to the test” are well known;
when tests focus on skills to the exclusion of conceptual understanding,
instruction suffers (see e.g., Shepard, 2001). (d) Effective professional
development, like all effective instruction, must be well designed. (e)
Mixed and conflicting messages leave teachers unsure about where to
focus their efforts, and undermine the coherence of instruction. (Borko
et al., 1992). If a district does not deliver a consistent message over a long
enough time period for it to take effect, then the impact of short-term
professional development efforts are likely to wash out.

This broad frame helps to situate the attempts at professional develop-
ment discussed in this volume, and the challenges the field faces if it wants
to see larger impact. These issues lurk beneath the surface in chapter 13.
The professional development discussed there has as its goal significant
changes in both the beliefs and practices of the teachers involved. Such
change takes time (see e.g., Cooney, 2001), and few districts make much
time available for professional development. (For example, the Diversity
in Mathematics Education project negotiated a monthly 2-hour profes-
sional development session with middle school teachers with one of its
partner districts. When I mentioned to one of our cooperating principals
that the 16 hours we met over the course of the year was equivalent to just
one third of a one semester course at the university, she pointed out how
serious conditions really are: The 16 hours of DiME time represented half
of the professional development time those teachers had that year.) 

Systemic issues are the central focus of chapter 14. In describing their
professional development work, Blanton and Kaput write:
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Table 18.3
Systemic Conditions That Support Improved Student Performance and a

Reduction of Racial Performance Gaps

1. A well-designed, mathematically rich set of standards for instruction
2. A well-designed curriculum aligned with the standards
3. Well-designed assessments aligned with the standards
4. Well-designed professional development aligned with the standards
5. Enough time and stability in the system for all of the above to take hold

Note: Reproduced with permission from Schoenfeld (in press).



The chapter is organized around five areas that we came to view as essen-
tial in supporting teachers as they incorporated algebraic thinking into their
classrooms: (1) the development of a professional community network; (2) a dis-
tributed approach to district leadership practice; (3) the development of a
school mathematics culture; (4) the integration of district professional devel-
opment initiatives; and (5) the development of teachers’ capacity to alge-
brafy their own instructional resource base. 

Research shows that to survive in the long run, teachers need the support
of peers engaging in similar activities; the efforts of teachers working in
isolation tend to falter (McLaughlin & Talbert, 2001; McLaughlin et al.,
1990). Thus, one sees the necessity of Blanton and Kaput’s focus on the
development of a professional community network. Because so much of
the context of a teacher’s professional work is at the school or department
level, the development of a school mathematics culture is also essential.
Because district mandates (and skill) can come and go, there is a need for
distributed commitment to professional development. Moreover, distrib-
uted expertise both reduces the risk of having reform dependent on just
one person, and “spreads the wealth” in obvious ways. And, teachers are
often bombarded with multiple and conflicting messages about what is
important; hence the integration of district professional development ini-
tiatives is a mechanism for coherence and focus. In sum, the field will face
significant systemic challenges in taking the ideas of early algebra to
scale.

CONCLUSIONS

When done properly (i.e., with understanding), engaging in mathematics
is a coherent, sense-making activity. Actions are not arbitrary; one does
what one does for good reason. If one understands those reasons, then
everything fits together. 

Algebra represents one of humankind’s great intellectual achieve-
ments—the use of symbols to capture abstractions and generalizations,
and to provide analytic power over a wide range of situations, both pure
and applied. 

The fundamental purpose of early algebra should be to provide
students with a set of experiences that enables them to see mathematics—
sometimes called the science of patterns—as something they can make
sense of, and to provide them with the habits of mind that will support
the use of the specific mathematical tools they will encounter when they
study algebra. With the right kinds of experiences in early algebra,
students will no longer find algebra to be a new and alien body of subject
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matter. Rather, they will find it to be the extension and codification of
powerful modes of sense making that they have already encountered in
their study of mathematics.

The efforts in this volume are all of a piece in that regard. All ask
students to see how and why the mathematics fits together. In doing so,
they help to lay a foundation for the experience of mathematics as a
sense-making activity. As the preceding section indicates, one should not
underestimate the work that it will take to make this vision a reality. At
the same time, there is reason for guarded optimism. The current political
context, with an emphasis on high-stakes testing (often of basic skills) is
not an easy one to work with, but such things come and go. (I have been
around long enough to see President Reagan “zero out” the education
budget at NSF, and the subsequent recovery of the field.) Real change
takes time. For example, the research on mathematical thinking and prob-
lem solving done in the 1970s and 1980s, including a number of small-
scale existence proofs, provided the intellectual underpinnings of the
1989 NCTM Standards. Twenty-five years after the original research, stan-
dards-based curricula occupy a nontrivial segment of the marketplace,
and what evidence there is (e.g., Senk & Thompson, 2003) indicates that
students using such curricula tend to outperform those who do not. Early
algebra is at the conceptualization, beginning research, and existence
proof stage. This volume represents some important first steps. It will be
interesting to see where the next steps take the field. 
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emphasis on literal symbols,

letters 10
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longitudinal view of, 6
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student difficulties, 7
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problem types, 335
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Professional development)

Commutativity
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of multiplication, 167–168, 494
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Constraints
Content knowledge, 345–347
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social and political, 351–352
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Curriculum
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laws for curriculum design,
440–444

implications for implementing
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Investigations, 417
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Davydov, 78, 389, 390–391
Developmental readiness,

xv-xvi, 268
see also Thinking, algebraic,

prerequisites to
Diagrams, see Representations
Differences, see Quantities,
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Distributed leadership, 363,

369–370, 371–373
Distributivity, 45

E

Early algebra, see Algebra
Equal(s), 321–323, 393, 488–489

equals sign, 7, 420–423
Equality, 337

properties of, 393–394
teacher practice, 341

Equations, 10, 71
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Field axioms, see Commutativity,
Associativity, Distributivity,
Identity, Inverse

Formalism,
premature formalism, 11
Forms
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Function(s), 13, 133, 143–144, 251,

316–319, 495–496
as transformations, 319–325,

495–496
comparison of, see Activity,

comparison of functions
composition of, 468–470
covariational versus correspondence

approaches, 146–147
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266
function table, 269
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G
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40–41
see also Modeling
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deliberate, 49
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see also Certainty, mathematical

reason with versus reason about, 21
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and algebra, 211
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Graphs, see Representations
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History of mathematics, 47–48

I

Identity, see Equivalence
Indeterminate, 240–241, 244
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Mathematical object, 212
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Mathematics
definition(s) of, 60
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Modeling, see Activity 
Models, see Representations
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signed, 303–325, 470
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see also Reasoning, numerical

Number line, see Representations
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unexecuted, 45

Numerals, see Symbols, numerical
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Operation(s), 339
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versus concatenation, 175, see also
Field axioms

algebraic operations, 24–25
exploring properties of, 418–439

commutative law of addition,
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426–434
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implicit operations, 250
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multiplication, 24, 179–181,

see also Field axioms
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Problems, see Tasks
Problem-solving methods
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guess and test, 85
trial and error, 188–189

Process, see Activity
Professional community network, see
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Professional development 

algebrafication approach,
see Activity, algebrafication
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appropriation of practices, 349–351
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communities of practice, 342, 365,

366–367
conceptions of, 342
contrasting approach to, 343
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design, 365
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teacher learning, 347–349
tools to support practice, 353–354

Puzzles, see Tasks

Q
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elevation, 187–188, 308
height, 119
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ratio of, 109
relationships between (among),

110–111

R

Ratio, 109, 212
Reasoning, see also Thinking

algebraic, 99–101, 337
arithmetic, 107
numerical, 100
quasi-algebraic, 50–51
quantitative, 38, 99–106, 112,
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in different base systems, 405
Reference, see Referent, Symbol
Referent, 26, 33
Relational thinking, see Thinking
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Representation(s), 237, 279, 443
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316–319

ground, 212
iconic, 149, 249
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interpretant, 212
meta-representation, 214–216, 227
models, 14
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mathematical, 304–305

multiple, 276–278
and robust understanding,

485–488

natural language representations,
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notations, 274–275, 279–280
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399–400
numerical, see Numbers,

Representations, tables
representamen, 212
representational forms, 213, 237
sign, 212
symbolic, xviii, 398
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tables, 141–142, 195–198,
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see also Symbols
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S

Scaffolding, 88
Signified, see Symbols
Signifier, see Symbols
Similarity, 214–216, 231
Situation(s) see also Contexts

additive situations, 113
functional, 144–145

Skills 
computational, 305
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Sorting, see Activities
Specializing, see Activity
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Structures
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Commutativity
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signified, 141
symbol manipulation, see Activity,

symbol manipulation
symbol system, 279
see also Representations,

Arithmetic, symbolic
Symbolic representations, see

Representation(s) 
Symbolism
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Symbolization, 10, 21–23, 491 

physical, 29
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symbols, see Symbol(s), symbol
manipulation

Syntax
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understanding of, 7

T

Tables, see Representations
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finding the missing beginning

number, 186–188, see also
Missing addend

handshake problem, 41
puzzles, children’s interest in,

455–457
curricular consequences of, see

Curriculum
similarity of rectangles,

214–215
think of a number, 73–74, 83

wallet problem, 247–251, 256–261
Teacher knowledge, 504–506
Teachers, 347–351
Theorem-in-action, 42
Thinking, see also Reasoning

algebraic, 58, 77–80, 161, 345, 484,
482–490

definition, 484
measurement as a way to develop,

see Measurement
precursor to arithmetic knowledge,

452–455
prerequisites to, 182–183, see also

Developmental readiness
teacher content for, 341
arithmetical, 68–77
functional, 143–144, 150
novice versus expert, 483
pre-algebraic, 58
relational, 338–339, 490
representational, 133
symbolic, 133–136, 203
with versus across the grain, 81

Transformations, 320, 323–325
Transparency, 48

U

Turnarounds, see Commutativity
Units

conceptual, 150–153, 157–158
Unknown(s), see Algebraic language,

unknowns
as constrained variables, 257
as-yet-unknown, 82–83
finding, 402

V

Variable(s), 238, 243
constrained variable, 243, see also

Algebraic language, variables
Variation, see Variables, Co-variation,

Functions
Visualization, see Representations
Vygotsky, 28, 390, 410
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