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Principles and Standards for School Mathematics is intended to be a re-
source and guide for all who make decisions that affect the mathematics
education of students in prekindergarten through grade 12. The rec-
ommendations in it are grounded in the belief that all students should
learn important mathematical concepts and processes with understand-
ing. Principles and Standards makes an argument for the importance of
such understanding and describes ways students can attain it. Its audi-
ence includes mathematics teachers; teacher-leaders in schools and dis-
tricts; developers of instructional materials and frameworks; district-
level curriculum directors and professional development leaders; those
responsible for educating mathematics teachers; preservice teachers;
school, state, and provincial administrators; and policymakers. In addi-
tion, the document can serve as a resource for researchers, mathemati-
cians, and others with an interest in school mathematics. Principles and
Standards has been produced by the National Council of Teachers of
Mathematics (NCTM), an international professional organization
committed to excellence in mathematics teaching and learning for all
students.

The NCTM had previously produced a landmark trio of Standards
documents—Curriculum and Evaluation Standards for School Mathematics
(1989), Professional Standards for Teaching Mathematics (1991), and Assess-
ment Standards for School Mathematics (1995). These three documents
represented a historically important first attempt by a professional orga-
nization to develop and articulate explicit and extensive goals for teach-
ers and policymakers. Since their release, they have given focus, coher-
ence, and new ideas to efforts to improve mathematics education.



From the beginning of its involvement in proposing education stan-
dards, NCTM has viewed its efforts as part of an ongoing process of
improving mathematics education. For standards to remain viable, the
goals and visions they embody must periodically be examined, evalu-
ated, tested by practitioners, and revised. In the early 1990s, the Coun-
cil began discussing the need for monitoring and updating the existing
NCTM Standards. These discussions culminated in the appointment of
the Commission on the Future of the Standards in 1995. In April 1996,
the NCTM Board of Directors approved a process for revising and up-
dating the original Standards documents. This project, which was
dubbed “Standards 2000,” illustrates how the setting of standards can
serve as a reflective and consensus-building mechanism for all those in-
terested in mathematics education.

A number of structures were established within NCTM to initiate
Standards 2000. First, the Commission on the Future of the Standards
was appointed in 1995 and charged to—

¢ oversee the Standards 2000 project and related projects;

* collect and synthesize information and advice from within and out-
side NCTM throughout the development of the project;

* develop a plan for the dissemination, interpretation, implementation,
evaluation, and subsequent revision of future Standards documents.

The Standards 2000 Writing Group and the Standards 2000 Elec-
tronic Format Group were appointed by spring 1997. Each included
individuals—teachers, teacher educators, administrators, researchers,
and mathematicians—with a wide range of expertise. The Writing
Group was charged to establish standards that—

® build on the foundation of the original Standards documents;

* integrate the classroom-related portions of Curriculum and Evalua-
tion Standards for School Mathematics, Professional Standards for Teach-
ing Mathematics, and Assessment Standards for School Mathematics;

* are organized into four grade bands: prekindergarten through
grade 2, grades 3-5, grades 6-8, and grades 9-12.

The Electronic Format Group was charged to—

¢ think of alternative ways to present and distribute the document
that would result;

* envision ways in which technology-based materials could be incor-
porated in the Standards,

* keep the Standards 2000 Writing Group up-to-date on uses of
technology;

® assist in the work of the Standards 2000 Writing Group by finding
examples of appropriate uses of technology.

The primary work of the Writing Group was carried out in sessions
during the summers of 1997, 1998, and 1999. Extensive efforts were
undertaken to ensure that the Writing Group was informed by the best
of research and current practice. The writers had access to collections
of instructional materials, state and province curriculum documents, re-
search publications, policy documents, and international frameworks
and curriculum materials.

Principles and Standards for School Mathematics



Additional input was sought for the Writing Group through a series
of activities orchestrated by the Commission on the Future of the Stan-
dards. In February 1997, invitations were extended by the NCTM pres-
ident to all the member societies of the Conference Board of the Math-
ematical Sciences to form Association Review Groups (ARGs) that
would “provide sustained advice and information as it reflects on K-12
mathematics from the perspective of your organization.” Over the
course of the project, fourteen Association Review Groups were
formed, and five sets of questions were formulated and submitted to
these groups for their responses. (A list of the Association Review
Groups, as well as a complete set of questions and publicly released re-
sponses from the ARGs, is available at www.nctm.org/standards/.)

NCTM’s Research Advisory Committee commissioned a set of
“white papers” summarizing the current state of education research in
eight areas of mathematics teaching and learning to serve as back-
ground for the Writing Group. In addition, the Conference on Foun-
dations for School Mathematics, held in Atlanta in March 1999 with
support from the National Science Foundation, provided background
to the writers concerning theoretical perspectives about teaching and
learning. The papers written for this conference, along with the “white
papers,” are being published by NCTM as A Research Companion to the
NCTM Standards. Two conferences, supported in part by the Eisen-
hower National Clearinghouse, also were held to inform the Writing
Group about technology and advise it on the development of the elec-
tronic version of Principles and Standards.

A draft version of the Standards, entitled Principles and Standards for
School Mathematics: Discussion Draft, was produced in October 1998 and
circulated widely for reaction and discussion. Nearly 30 000 copies of
the draft were furnished to persons interested in reading it, and many
tens of thousands more accessed it from NCTM’s Web site. Presenta-
tions and discussion sessions were held at all NCTM regional confer-
ences in 1998-99, presentations were held at the conferences of many
other organizations, and articles inviting feedback appeared in NCTM
publications. In addition, 25 people were commissioned to review the
draft from the perspective of their particular areas of interest. In total,
reactions were submitted by more than 650 individuals and more than
70 groups (ranging from school study groups to graduate seminars to
sessions held by NCTM Affiliates). The reactions were coded and en-
tered into a qualitative database, resulting in the identification of a se-
ries of major issues for consideration. A synthesis of the issues and sam-
ple responses, as well as printouts of detailed feedback, was made
available to the Writing Group for its work during summer 1999. Argu-
ments on all sides of the issues were examined in the feedback. In light
of the feedback, using the writers’ best judgment, the Writing Group
made careful decisions about the stance that Principles and Standards
would take on each of the issues.

In response to a request from the NCTM Board of Directors and
with funding from the National Science Foundation, the National Re-
search Council formed a committee of experts from diverse back-
grounds to review the process of gathering and analyzing reactions to
the discussion draft, the plan to respond to the issues raised in the reac-
tions, and the work of the Writing Group in carrying out that plan in
the final document. The Writing Group was able to benefit greatly
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Xii

from the committee’s guidance on responding to the comments and
suggestions from reviewers and the field, and the document was im-
proved as a result.

Principles and Standards reflects input and influence from many differ-
ent sources. Educational research serves as a basis for many of the pro-
posals and claims made throughout this document about what it is pos-
sible for students to learn about certain content areas at certain levels
and under certain pedagogical conditions. The content and processes
emphasized in Principles and Standards also reflect society’s needs for
mathematical literacy, past practice in mathematics education, and the
values and expectations held by teachers, mathematics educators, math-
ematicians, and the general public. Finally, much of the content in-
cluded here is based on the experiences and observations of the class-
room teachers, teacher educators, educational researchers, and
mathematicians in the Writing Group and on the input the Writing
Group received throughout the drafting of the document.

Principles and Standards includes a number of classroom examples, in-
stances of student work, and episodes that illustrate points made in the
text. If drawn from another published source, the example or episode
includes a citation to that source. If an episode does not have a citation
and is written in the past tense, it is drawn from the experiences of a
Writing Group member or a teacher colleague, with an indication of its
source (such as unpublished observation notes) where appropriate.
Episodes written in the present tense are hypothetical examples based
on the experiences of the writers and are identified as such.

"This document presents a vision of school mathematics—a set of
goals toward which to strive. Throughout the document, this vision for
mathematics education is expressed using words like “should, will, can,
and must” to convey to readers the kind of mathematics teaching and
learning that NCTM proposes. In no sense is this language meant to
convey an assurance of some predetermined outcome; it is, rather, a
means of describing the vision NCTM has constructed.

Principles and Standards is available in both print and electronic hy-
pertext formats. Principles and Standards for School Mathematics (Hyper-
text Edition) includes tools to enhance navigation of the document, as
well as a more extensive set of electronic examples (e-examples) to illu-
minate and enlarge the ideas in the text. It has also made possible the
inclusion of links to resource and background material to enhance the
messages of Principles and Standards. The e-examples are keyed to par-
ticular passages in the text and are signaled by an icon in the margin.
The electronic version is available both on CD-ROM and on the
World Wide Web at standards.nctm.org.

In the coming years, Principles and Standards for School Mathematics will
provide focus and direction to the work of the Council. A number of ini-
tiatives related to Principles and Standards have already begun. The Coun-
cil has established a task force to develop a series of materials, both print
and electronic, with the working title of Navigations to assist and support
teachers as they work in realizing the Principles and Standards in their
classrooms, much as the Addenda series did following the release of the
Curriculum and Evaluation Standards for School Mathematics. A series of in-
stitutes, organized by NCTM’s new Academy for Professional Develop-
ment, will give leaders a concentrated introduction to Principles and Stan-
dards and explore in depth various Standards or themes in the document.

Principles and Standards for School Mathematics



Yet another task force is developing a plan and materials to help the
Council effectively reach out to education administrators. The Standards
Impact Research Group has been established to consider how the overall
process of Standards-based education improvement set forth in the docu-
ment can be better understood and subsequently refined in order to meet
the goal of improving student learning. The E-Standards Task Force is
considering ways to expand and improve future electronic versions (both
Web and CD) of the Principles and Standards, and the Illuminations pro-
ject is providing Web-based resources to “illuminate” the messages of the
document, with funding provided by MCI WorldCom. These activities
(and many others that will inevitably emerge in the coming years) build
on the solid foundation of Principles and Standards, ensuring that the Na-
tional Council of Teachers of Mathematics will continue to provide lead-
ership toward its goal of improving the mathematics education of all stu-
dents. For current information on these and other efforts and for other
information surrounding about the document, visit www.nctm.org.
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LETTER OF APPRECIATION
to the National Council of "leachers of Mathematics

Starting in 1989, the National Council of Teachers of
Mathematics (NCTM) has developed and disseminated standards
for curriculum, teaching, and assessment. These documents have
guided many subsequent efforts to improve mathematics instruction
in the U.S. While these first efforts predictably met with mixed
interpretations and reactions, they have stimulated broad public and
professional interest in the nature and formation of such standards.

As the NCTM has undertaken to update and refine the standards,
producing the new Principles and Standards for School Mathematics, it
recognized the necessity to enlist the broad critical participation of the
diverse expert communities that bear some responsibility for mathe-
matics education. In order to provide for this complex advisory func-
tion, the NCTM petitioned each of the professional organizations of
the Conference Board of the Mathematical Sciences (CBMS) to form
an Association Review Group (ARG) that would respond, in stages, to
a series of substantial and focused questions framed by the Principles
and Standards writing group in the course of its work.

This formidable undertaking has been, in the view of the partici-
pating organizations, dramatically successful, to the profit of both
NCTM and the contributing organizations. It was a remarkable and
unprecedented process that produced some of the most thoughtful
and disciplined discussions of mathematics curriculum and instruc-
tion that we have seen in these professional communities. It contrast-
ed with what was felt by some to be the inadequate participation by
mathematics professionals in the formation of the original standards.

Of course, Principles and Standards addresses matters of education-
al goals and policies for which there is no simple right answer or
formulation, and no clear or stable consensus. It represents the views
of a team of writers assembled by the national professional organiza-
tion of mathematics teachers, views deeply informed by the knowl-
edge and dispositions of diverse professional communities. What can
be objectively said is that the process of construction of the Principles
and Standards has been open, rigorous, and well informed by the
views of all professionals concerned with mathematics education,
and that this has been achieved, in part, thanks to the innovative
design of the ARG process. Indeed, the quality of that development
process, including the ARGs, has been independently reviewed, at
the invitation of NCTM itself, in a study by the National Research
Council.

With this letter, representatives of the following member organi-
zations of CBMS wish to register their appreciation to the NCTM
for the design, and implementation with integrity, of this process.
With this, the NCTM has established a model, heretofore all too
rare, of how to stage civil, disciplined and probing discourse among
diverse professionals on matters of mathematics education.
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CHAPTER

A Vision
for School
Mathematics

Imagine a classroom, a school, or a school district where all students have access
to high-quality, engaging mathematics instruction. There are ambitious ex-
pectations for all, with accommodation for those who need it. Knowledgeable
teachers have adequate resources to support their work and are continually
growing as professionals. The curviculum is mathematically rich, offering stu-
dents opportunities to learn important mathematical concepts and procedures
with understanding. Technology is an essential component of the environment.
Students confidently engage in complex mathematical tasks chosen carefully by
teachers. They draw on knowledge from a wide variety of mathematical topics,
sometimes approaching the same problem from different mathematical per-
spectives or representing the mathematics in different ways until they find
methods that enable them to make progress. leachers belp students make,
refine, and explore conjectures on the basis of evidence and use a variety of
reasoning and proof techniques to confirm or disprove those conjectures. Stu-
dents are flexible and resourceful problem solvers. Alone or in groups and with
access to technology, they work productively and reflectively, with the skilled
guidance of their teachers. Orally and in writing, students communicate their
ideas and results effectively. They value mathematics and engage actively in
learning it.

The vision for mathematics education described in Principles and Stan-
dards for School Mathematics is highly ambitious. Achieving it requires solid
mathematics curricula, competent and knowledgeable teachers who can in-
tegrate instruction with assessment, education policies that enhance and
support learning, classrooms with ready access to technology, and a com-
mitment to both equity and excellence. The challenge is enormous and
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The need to
understand and be able
to use mathematics in
everyday life and in the
workplace has never

been greater.

meeting it is essential. Our students deserve and need the best mathe-
matics education possible, one that enables them to fulfill personal am-
bitions and career goals in an ever-changing world.

Since the release in 1989 of the Curriculum and Evaluation Standards
for School Mathematics—ftollowed in 1991 by the Professional Teaching
Standards for School Mathematics and in 1995 by the Assessment Standards
for School Mathematics— the National Council of Teachers of Mathe-
matics (NCTM) has remained committed to the view that standards
can play a leading role in guiding the improvement of mathematics ed-
ucation. As an organization representing teachers of mathematics,
NCTM shares with students, school leaders, and parents and other
caregivers the responsibility to ensure that all students receive a high-
quality mathematics education. All interested parties must work to-
gether to create mathematics classrooms where students of varied back-
grounds and abilities work with expert teachers, learning important
mathematical ideas with understanding, in environments that are equi-
table, challenging, supportive, and technologically equipped for the
twenty-first century.

The Need for Mathematics in a Changing World

We live in a time of extraordinary and accelerating change. New
knowledge, tools, and ways of doing and communicating mathematics
continue to emerge and evolve. Calculators, too expensive for common
use in the early eighties, now are not only commonplace and inexpen-
sive but vastly more powerful. Quantitative information available to
limited numbers of people a few years ago is now widely disseminated
through popular media outlets.

The need to understand and be able to use mathematics in everyday
life and in the workplace has never been greater and will continue to in-
crease. For example:

* Mathematics for life. Knowing mathematics can be personally
satisfying and empowering. The underpinnings of everyday
life are increasingly mathematical and technological. For in-
stance, making purchasing decisions, choosing insurance or
health plans, and voting knowledgeably all call for quantitative
sophistication.

* Mathematics as a part of cultural heritage. Mathematics is one of
the greatest cultural and intellectual achievements of human-
kind, and citizens should develop an appreciation and under-
standing of that achievement, including its aesthetic and even
recreational aspects.

* Mathematics for the workplace. Just as the level of mathematics
needed for intelligent citizenship has increased dramatically, so
too has the level of mathematical thinking and problem solv-
ing needed in the workplace, in professional areas ranging
from health care to graphic design.

® Mathematics for the scientific and technical community. Although
all careers require a foundation of mathematical knowledge,
some are mathematics intensive. More students must pursue
an educational path that will prepare them for lifelong work as
mathematicians, statisticians, engineers, and scientists.
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In this changing world, those who understand and can do mathe-
matics will have significantly enhanced opportunities and options for
shaping their futures. Mathematical competence opens doors to pro-
ductive futures. A lack of mathematical competence keeps those doors
closed. NCTM challenges the assumption that mathematics is only for
the select few. On the contrary, everyone needs to understand mathe-
matics. All students should have the opportunity and the support neces-
sary to learn significant mathematics with depth and understanding.
There is no conflict between equity and excellence.

Principles and Standards calls for a common foundation of mathe-
matics to be learned by all students. This approach, however, does not
imply that all students are alike. Students exhibit different talents, abili-
ties, achievements, needs, and interests in mathematics. Nevertheless,
all students must have access to the highest-quality mathematics in-
structional programs. Students with a deep interest in pursuing mathe-
matical and scientific careers must have their talents and interests en-
gaged. Likewise, students with special educational needs must have the
opportunities and support they require to attain a substantial under-
standing of important mathematics. A society in which only a few have
the mathematical knowledge needed to fill crucial economic, political,
and scientific roles is not consistent with the values of a just democratic
system or its economic needs.

The Need for Continued Improvement of
Mathematics Education

The vision described at the beginning of this chapter is idealized.
Despite the concerted efforts of many classroom teachers, administra-
tors, teacher-leaders, curriculum developers, teacher educators, mathe-
maticians, and policymakers, the portrayal of mathematics teaching and
learning in Principles and Standards is not the reality in the vast majority
of classrooms, schools, and districts. Evidence from a variety of sources
makes it clear that many students are not learning the mathematics they
need or are expected to learn (Kenney and Silver 1997; Mullis et al.
1997, 1998; Beaton et al. 1996). The reasons for this deficiency are
many: In some instances, students have not had the opportunity to
learn important mathematics. In other instances, the curriculum offered
to students does not engage them. Sometimes students lack a commit-
ment to learning. The quality of mathematics teaching is highly vari-
able. There is no question that the effectiveness of mathematics educa-
tion in the United States and Canada can be improved substantially.

Standards can play a central role in the process of improvement. The
previously released NCTM Standards (NCTM 1989, 1991, 1995) have
influenced state standards and curriculum frameworks (Council of Chief
State School Officers 1995; Raimi and Braden 1998), instructional mate-
rials (U.S. Department of Education 1999), teacher education (Mathe-
matical Association of America 1991), and classroom practice (Ferrini-
Mundy and Schram 1997). As with any educational innovation, however,
the ideas of the Standards have been interpreted in many different ways
and have been implemented with varying degrees of fidelity. Sometimes
the changes made in the name of standards have been superficial or in-
complete. For example, some of the pedagogical ideas from the NCTM
Standards—such as the emphases on discourse, worthwhile mathematical
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tasks, or learning through problem solving—have been enacted without
sufficient attention to students’ understanding of mathematics content.
Efforts to move in the directions of the original NCTM Standards are by
no means fully developed or firmly in place.

The Role and Purpose of Standards

The introduction to the 1989 Curriculum and Evaluation Standards
noted three reasons for a professional organization to formally adopt
standards: to ensure quality, to indicate goals, and to promote change.
One way in which standards documents help meet these goals is by
shaping conversations about mathematics education. As with the previ-
ous NCTM Standards, Principles and Standards offers common language,
examples, and recommendations to engage many groups of people in
productive dialogue. Although there will never be complete consensus
within the mathematics education profession or among the general
public about the ideas advanced in any standards document, the Stan-
dards provide a guide for focused, sustained efforts to improve students’
school mathematics education. Principles and Standards supplies guid-
ance and vision while leaving specific curriculum decisions to the local
level. This document is intended to—

* set forth a comprehensive and coherent set of goals for mathe-
matics for all students from prekindergarten through grade 12
that will orient curricular, teaching, and assessment efforts
during the next decades;

® serve as a resource for teachers, education leaders, and policy-
makers to use in examining and improving the quality of
mathematics instructional programs;

¢ guide the development of curriculum frameworks, assess-
ments, and instructional materials;

¢ stimulate ideas and ongoing conversations at the national,
provincial or state, and local levels about how best to help stu-
dents gain a deep understanding of important mathematics.

An Overview of Principles and Standards

Principles and Standards for School Mathematics builds on and consoli-
dates messages from the previous Standards documents. The document
is organized into four main parts:

* Principles for school mathematics (chapter 2)

® An overview of the Standards for mathematics education in
prekindergarten through grade 12 (chapter 3)

¢ Standards for four separate grade bands: prekindergarten
through grade 2 (chapter 4), grades 3-5 (chapter 5), grades
6-8 (chapter 6), and grades 9-12 (chapter 7)

* A discussion of the steps needed to move toward the vision
embodied in Principles and Standards (chapter 8)

The principles are statements reflecting basic precepts that are funda-
mental to a high-quality mathematics education. The discussions in
chapter 2 elaborate on the underlying assumptions, values, and evidence
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on which these Principles are founded. The Principles should be
useful as perspectives on which educators can base decisions that af-
fect school mathematics. NCTM'’s commitment to mathematics for
all is reaffirmed in the Equity Principle. In the Curriculum Principle,
a focused curriculum is shown to be an important aspect of what is
needed to improve school mathematics. The Teaching Principle makes
the case that students must have opportunities to learn important
mathematics under the guidance of competent and committed teachers.
The view of learning that is the basis for the document is taken up in
the Learning Principle. The important roles of assessment and technol-
ogy in school mathematics programs are discussed in the Assessment
and Technology Principles.

Chapters 3-7 outline an ambitious and comprehensive set of curricu-
lum standards for all students. Standards are descriptions of what
mathematics instruction should enable students to know and do—
statements of what is valued for school mathematics education. Each of
the ten curriculum standards proposed in this document spans the en-
tire range from prekindergarten through grade 12. Chapter 3 discusses
each Standard in turn to convey its main ideas. In addition, these dis-
cussions give a sense of how the ideas encompassed in a Standard de-
velop over all four grade bands, highlighting points at which certain
levels of mastery or closure are appropriate. Chapters 4—7 present the
Standards in detail for each grade band.

The first five Standards describe mathematical content goals in the
areas of number and operations, algebra, geometry, measurement, and
data analysis and probability. The next five Standards address the
processes of problem solving, reasoning and proof, connections, com-
munication, and representation. In each grade-band chapter, a set of
“expectations” is identified and discussed for each Content Standard.
The appendix displays the Content Standards and expectations in a
chart that highlights the increasing sophistication of ideas across the
grades. Each grade-band chapter discusses what each Process Standard
should “look like” in that grade band and what the teacher’ role is in
supporting the development of that process.

The mathematical Content and Process Standards discussed in chap-
ters 3—7 are inextricably linked. One cannot solve problems without un-
derstanding and using mathematical content. Establishing geometric
knowledge calls for reasoning. The concepts of algebra can be exam-
ined and communicated through representations.

One purpose of this document is to offer teachers, curriculum de-
velopers, and those responsible for establishing curriculum frame-
works a way to focus curricula. Focus is promoted through attention
to the idea of “moving on.” School mathematics programs should not
address every topic every year. Instead, students will reach certain lev-
els of conceptual understanding and procedural fluency by certain
points in the curriculum. Teachers should be able to assume that stu-
dents possess these understandings and levels of fluency when they
plan their mathematics instruction. Teachers and policymakers can
then fashion instructional programs and curricular frameworks that
develop progressively over the grades and that focus on important
mathematical areas.

Chapter 8 discusses what it will take to move toward the vision de-
scribed in the previous chapters. In particular, it discusses critical issues
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related to putting the Principles into action and outlines the key roles
played by various groups and communities in realizing the vision of the
Principles and Standards.

As We Move Forward

Attaining the vision described at the beginning of this chapter will
) require the talents, energy, and attention of many individuals, including
The task is enormous students, teachers, school administrators, teacher-leaders, policymakers,
. parents and other caregivers, mathematicians, mathematics educators,
and essential. and the local community. It will require that the vision of this docu-
ment be shared and understood and that all concerned be committed to
improving the futures of our children. The task is enormous and essen-
tial. All students need an education in mathematics that will prepare
them for a future of great and continual change.

8 Principles and Standards for School Mathematics




Blank Page



The Principles describe particular features

of high-quality mathematics education.

The power of these Principles as guides and tools

for decision making derives from their interaction.



CHAPTER

Principles for
School Mathematics

Decisions made by teachers, school administrators, and other education
professionals about the content and character of school mathematics have
important consequences both for students and for society. These decisions
should be based on sound professional guidance. Principles and Standards for
School Mathematics is intended to provide such guidance. The Principles
describe particular features of high-quality mathematics education. The
Standards describe the mathematical content and processes that students
should learn. Together, the Principles and Standards constitute a vision to
guide educators as they strive for the continual improvement of mathe-
matics education in classrooms, schools, and educational systems.

The six principles for school mathematics address overarching themes:

* Equity. Excellence in mathematics education requires equity—
high expectations and strong support for all students.

* Curriculum. A curriculum is more than a collection of activities:
it must be coherent, focused on important mathematics, and well
articulated across the grades.

* Teaching. Effective mathematics teaching requires
understanding what students know and need to learn and then
challenging and supporting them to learn it well.

* Learning. Students must learn mathematics with
understanding, actively building new knowledge from experience
and prior knowledge.

* Assessment. Assessment should support the learning of important
mathematics and furnish useful information to both teachers and
students.

* Technology. Technology is essential in teaching and learning
mathematics; it influences the mathematics that is taught and
enhances students’ learning.
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These six Principles, which are discussed in depth below, do not refer
to specific mathematics content or processes and thus are quite differ-
ent from the Standards. They describe crucial issues that, although not
unique to school mathematics, are deeply intertwined with school
mathematics programs. They can influence the development of curricu-
lum frameworks, the selection of curriculum materials, the planning of
instructional units or lessons, the design of assessments, the assignment
of teachers and students to classes, instructional decisions in the class-
room, and the establishment of supportive professional development
programs for teachers. The perspectives and assumptions underlying
the Principles are compatible with, and foundational to, the Standards
and expectations presented in chapters 3-7.

Each Principle is discussed separately, but the power of these Princi-
ples as guides and tools for decision making derives from their interaction
in the thinking of educators. The Principles will come fully alive as they
are used together to develop high-quality school mathematics programs.

The vision of equity in
mathematics education
challenges a pervasive
societal belief in North
America that only some
students are capable of

learning mathematics.

12

'The Equity Principle

Excellence in mathematics education requires equity—high
expectations and strong support for all students.

Making the vision of the Principles and Standards for School Mathe-
muatics a reality for all students, prekindergarten through grade 12, is
both an essential goal and a significant challenge. Achieving this goal
requires raising expectations for students’ learning, developing effective
methods of supporting the learning of mathematics by all students, and
providing students and teachers with the resources they need.

Educational equity is a core element of this vision. All students, re-
gardless of their personal characteristics, backgrounds, or physical chal-
lenges, must have opportunities to study—and support to learn—
mathematics. Equity does not mean that every student should receive
identical instruction; instead, it demands that reasonable and appropri-
ate accommodations be made as needed to promote access and attain-
ment for all students.

Equity is interwoven with the other Principles. All students need ac-
cess each year to a coherent, challenging mathematics curriculum taught
by competent and well-supported mathematics teachers. Moreover, stu-
dents’ learning and achievement should be assessed and reported in ways
that point to areas requiring prompt additional attention. Technology
can assist in achieving equity and must be accessible to all students.

Equity requires high expectations and worthwhile

opportunities for all.
"The vision of equity in mathematics education challenges a pervasive
societal belief in North America that only some students are capable of

learning mathematics. This belief, in contrast to the equally pervasive
view that all students can and should learn to read and write in English,
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leads to low expectations for too many students. Low expectations

are especially problematic because students who live in poverty, stu-
dents who are not native speakers of English, students with disabilities,
females, and many nonwhite students have traditionally been far more
likely than their counterparts in other demographic groups to be the
victims of low expectations. Expectations must be raised—mathematics
can and must be learned by #// students.

The Equity Principle demands that high expectations for mathe-
matics learning be communicated in words and deeds to all students.
Teachers communicate expectations in their interactions with students
during classroom instruction, through their comments on students’ pa-
pers, when assigning students to instructional groups, through the pres-
ence or absence of consistent support for students who are striving for
high levels of attainment, and in their contacts with significant adults in
a student’s life. These actions, along with decisions and actions taken
outside the classroom to assign students to different classes or curricula,
also determine students’ opportunities to learn and influence students’
beliefs about their own abilities to succeed in mathematics. Schools
have an obligation to ensure that all students participate in a strong in-
structional program that supports their mathematics learning. High ex-
pectations can be achieved in part with instructional programs that are
interesting for students and help them see the importance and utility of
continued mathematical study for their own futures.

Equity requires accommodating differences to help
everyone learn mathematics.

Higher expectations are necessary, but they are not sufficient to ac-
complish the goal of an equitable school mathematics education for all
students. All students should have access to an excellent and equitable
mathematics program that provides solid support for their learning and
is responsive to their prior knowledge, intellectual strengths, and per-
sonal interests.

Some students may need further assistance to meet high mathematics
expectations. Students who are not native speakers of English, for in-
stance, may need special attention to allow them to participate fully in
classroom discussions. Some of these students may also need assessment
accommodations. If their understanding is assessed only in English,
their mathematical proficiency may not be accurately evaluated.

Students with disabilities may need increased time to complete as-
signments, or they may benefit from the use of oral rather than written
assessments. Students who have difficulty in mathematics may need ad-
ditional resources, such as after-school programs, peer mentoring, or
cross-age tutoring. Likewise, students with special interests or excep-
tional talent in mathematics may need enrichment programs or addi-
tional resources to challenge and engage them. The talent and interest
of these students must be nurtured and supported so that they have the
opportunity and guidance to excel. Schools and school systems must
take care to accommodate the special needs of some students without
inhibiting the learning of others.

"Technology can help achieve equity in the classroom. For example,
technological tools and environments can give all students opportunities
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to explore complex problems and mathematical ideas, can furnish struc-
tured tutorials to students needing additional instruction and practice on
skills, or can link students in rural communities to instructional opportu-
nities or intellectual resources not readily available in their locales.
Computers with voice-recognition or voice-creation software can offer
teachers and peers access to the mathematical ideas and arguments de-
veloped by students with disabilities who would otherwise be unable to
share their thinking. Moreover, technology can be effective in attracting
students who disengage from nontechnological approaches to mathe-
matics. It is important that all students have opportunities to use tech-
nology in appropriate ways so that they have access to interesting and
important mathematical ideas. Access to technology must not become
yet another dimension of educational inequity.

Equity requires resources and support for all
classrooms and all students.

Well-documented examples demonstrate that all children, including
those who have been traditionally underserved, can learn mathematics
when they have access to high-quality instructional programs that
support their learning (Campbell 1995; Griffin, Case, and Siegler 1994;
Knapp et al. 1995; Silver and Stein 1996). These examples should
become the norm rather than the exception in school mathematics
education.

Achieving equity requires a significant allocation of human and ma-
terial resources in schools and classrooms. Instructional tools, curricu-
lum materials, special supplemental programs, and the skillful use of
community resources undoubtedly play important roles. An even more
important component is the professional development of teachers.
Teachers need help to understand the strengths and needs of students
who come from diverse linguistic and cultural backgrounds, who have
specific disabilities, or who possess a special talent and interest in
mathematics. To accommodate differences among students effectively
and sensitively, teachers also need to understand and confront their own
beliefs and biases.
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The Curriculum Principle

A curriculum is more than a collection of activities: it must be
coberent, focused on important mathematics, and well
articulated across the grades.

A school mathematics curriculum is a strong determinant of what
students have an opportunity to learn and what they do learn. In a co-
herent curriculum, mathematical ideas are linked to and build on one
another so that students’ understanding and knowledge deepens and
their ability to apply mathematics expands. An effective mathematics
curriculum focuses on important mathematics—mathematics that will
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prepare students for continued study and for solving problems in a vari-
ety of school, home, and work settings. A well-articulated curriculum
challenges students to learn increasingly more sophisticated mathemati-
cal ideas as they continue their studies.

A mathematics curriculum should be coherent.

Mathematics comprises different topical strands, such as algebra and
geometry, but the strands are highly interconnected. The interconnec-
tions should be displayed prominently in the curriculum and in instruc-
tional materials and lessons. A coherent curriculum effectively orga-
nizes and integrates important mathematical ideas so that students can
see how the ideas build on, or connect with, other ideas, thus enabling
them to develop new understandings and skills.

Curricular coherence is also important at the classroom level. Re-
searchers have analyzed lessons in the videotape study of eighth-grade
mathematics classrooms that was part of the Third International Mathe-
matics and Science Study (Stigler and Hiebert 1999). One important
characteristic of the lessons had to do with the internal coherence of the
mathematics. The researchers found that typical Japanese lessons were
designed around one central idea, which was carefully developed and ex-
tended; in contrast, typical American lessons included several ideas or
topics that were not closely related and not well developed.

In planning individual lessons, teachers should strive to organize the
mathematics so that fundamental ideas form an integrated whole. Big
ideas encountered in a variety of contexts should be established care-
fully, with important elements such as terminology, definitions, nota-
tion, concepts, and skills emerging in the process. Sequencing lessons
coherently across units and school years is challenging. And teachers
also need to be able to adjust and take advantage of opportunities to
move lessons in unanticipated directions.

A mathematics curriculum should focus on important
mathematics.

School mathematics curricula should focus on mathematics content
and processes that are worth the time and attention of students. Mathe-
matics topics can be considered important for different reasons, such as
their utility in developing other mathematical ideas, in linking different
areas of mathematics, or in deepening students’ appreciation of mathe-
matics as a discipline and as a human creation. Ideas may also merit
curricular focus because they are useful in representing and solving
problems within or outside mathematics.

Foundational ideas like place value, equivalence, proportionality, func-
tion, and rate of change should have a prominent place in the mathe-
matics curriculum because they enable students to understand other
mathematical ideas and connect ideas across different areas of mathe-
matics. Mathematical thinking and reasoning skills, including making
conjectures and developing sound deductive arguments, are important
because they serve as a basis for developing new insights and promoting
further study. Many concepts and processes, such as symmetry and gener-
alization, can help students gain insights into the nature and beauty of
mathematics. In addition, the curriculum should offer experiences that
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allow students to see that mathematics has powerful uses in modeling and
predicting real-world phenomena. The curriculum also should emphasize
the mathematics processes and skills that support the quantitative literacy
of students. Members of an intelligent citizenry should be able to judge
claims, find fallacies, evaluate risks, and weigh evidence (Price 1997).

Although any curriculum document is fixed at a point in time, the
curriculum itself need not be fixed. Different configurations of impor-
tant mathematical ideas are possible and to some extent inevitable. The
relative importance of particular mathematics topics is likely to change
over time in response to changing perceptions of their utility and to
new demands and possibilities. For example, mathematics topics such as
recursion, iteration, and the comparison of algorithms are receiving
more attention in school mathematics because of their increasing rele-
vance and utility in a technological world.

A mathematics curriculum should be well articulated
across the grades.

Learning mathematics involves accumulating ideas and building suc-
cessively deeper and more refined understanding. A school mathematics
curriculum should provide a road map that helps teachers guide students
to increasing levels of sophistication and depths of knowledge. Such
guidance requires a well-articulated curriculum so that teachers at each
level understand the mathematics that has been studied by students at
the previous level and what is to be the focus at successive levels. For ex-
ample, in grades K-2 students typically explore similarities and differ-
ences among two-dimensional shapes. In grades 3-5 they can identify
characteristics of various quadrilaterals. In grades 6-8 they may examine
and make generalizations about properties of particular quadrilaterals. In
grades 9-12 they may develop logical arguments to justify conjectures
about particular polygons. As they reach higher levels, students should
engage more deeply with mathematical ideas and their understanding
and ability to use the knowledge is expected to grow.

Without a clear articulation of the curriculum across all grades, dupli-
cation of effort and unnecessary review are inevitable. A well-articulated
curriculum gives teachers guidance regarding important ideas or major
themes, which receive special attention at different points in time. It also
gives guidance about the depth of study warranted at particular times
and when closure is expected for particular skills or concepts.
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The Teaching Principle

Effective mathematics teaching requires understanding what
students know and need to learn and then challenging and
supporting them to learn it well.

Students learn mathematics through the experiences that teachers
provide. Thus, students’ understanding of mathematics, their ability to
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use it to solve problems, and their confidence in, and disposition to-
ward, mathematics are all shaped by the teaching they encounter in
school. The improvement of mathematics education for all students re-
quires effective mathematics teaching in all classrooms.

"Teaching mathematics well is a complex endeavor, and there are no
easy recipes for helping all students learn or for helping all teachers be-
come effective. Nevertheless, much is known about effective mathe-
matics teaching, and this knowledge should guide professional judg-
ment and activity. To be effective, teachers must know and understand
deeply the mathematics they are teaching and be able to draw on that
knowledge with flexibility in their teaching tasks. They need to under-
stand and be committed to their students as learners of mathematics
and as human beings and be skillful in choosing from and using a vari-
ety of pedagogical and assessment strategies (National Commission on
Teaching and America’s Future 1996). In addition, effective teaching re-
quires reflection and continual efforts to seek improvement. Teachers
must have frequent and ample opportunities and resources to enhance

and refresh their knowledge.

Effective teaching requires knowing and understanding
mathematics, students as learners, and pedagogical
strategies.

Teachers need several different kinds of mathematical knowledge—
knowledge about the whole domain; deep, flexible knowledge about
curriculum goals and about the important ideas that are central to their
grade level; knowledge about the challenges students are likely to en-
counter in learning these ideas; knowledge about how the ideas can be
represented to teach them effectively; and knowledge about how stu-
dents’ understanding can be assessed. This knowledge helps teachers
make curricular judgments, respond to students’ questions, and look
ahead to where concepts are leading and plan accordingly. Pedagogical
knowledge, much of which is acquired and shaped through the practice
of teaching, helps teachers understand how students learn mathematics,
become facile with a range of different teaching techniques and instruc-
tional materials, and organize and manage the classroom. Teachers need
to understand the big ideas of mathematics and be able to represent
mathematics as a coherent and connected enterprise (Schifter 1999; Ma
1999). Their decisions and their actions in the classroom—all of which
affect how well their students learn mathematics—should be based on
this knowledge.

This kind of knowledge is beyond what most teachers experience in
standard preservice mathematics courses in the United States. For exam-
ple, that fractions can be understood as parts of a whole, the quotient of
two integers, or a number on a line is important for mathematics teach-
ers (Ball and Bass forthcoming). Such understanding might be charac-
terized as “profound understanding of fundamental mathematics” (Ma
1999). Teachers also need to understand the different representations of
an idea, the relative strengths and weaknesses of each, and how they are
related to one another (Wilson, Shulman, and Richert 1987). They need
to know the ideas with which students often have difficulty and ways to
help bridge common misunderstandings.

Principles for School Mathematics

The Professional Standards for
Teaching Mathematics (NCTM
1991) presented six standards
for the teaching of mathematics.
They address—
¢ worthwhile mathematical tasks;
¢ the teacher's role in discourse;
¢ the student’s role in discourse;
* tools for enhancing discourse;
* the learning environment;

* the analysis of teaching and
learning.

Teaching mathematics
well is a complex
endeavor, and there are

10 easy recipes.
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There is no one “right

way” to teach.

Effective mathematics teaching requires a serious commitment to the
development of students’ understanding of mathematics. Because stu-
dents learn by connecting new ideas to prior knowledge, teachers must
understand what their students already know. Effective teachers know
how to ask questions and plan lessons that reveal students’ prior knowl-
edge; they can then design experiences and lessons that respond to, and
build on, this knowledge.

"Teachers have different styles and strategies for helping students
learn particular mathematical ideas, and there is no one “right way” to
teach. However, effective teachers recognize that the decisions they
make shape students’ mathematical dispositions and can create rich set-
tings for learning. Selecting and using suitable curricular materials,
using appropriate instructional tools and techniques, and engaging in
reflective practice and continuous self-improvement are actions good
teachers take every day.

One of the complexities of mathematics teaching is that it must bal-
ance purposeful, planned classroom lessons with the ongoing decision
making that inevitably occurs as teachers and students encounter unan-
ticipated discoveries or difficulties that lead them into uncharted terri-
tory. Teaching mathematics well involves creating, enriching, maintain-
ing, and adapting instruction to move toward mathematical goals,
capture and sustain interest, and engage students in building mathemat-
ical understanding.

Effective teaching requires a challenging and supportive
classroom learning environment.

"Teachers make many choices each day about how the learning envi-
ronment will be structured and what mathematics will be emphasized.
These decisions determine, to a large extent, what students learn. Ef-
fective teaching conveys a belief that each student can and is expected
to understand mathematics and that each will be supported in his or her
efforts to accomplish this goal.

Teachers establish and nurture an environment conducive to learn-
ing mathematics through the decisions they make, the conversations
they orchestrate, and the physical setting they create. Teachers’ actions
are what encourage students to think, question, solve problems, and
discuss their ideas, strategies, and solutions. The teacher is responsible
for creating an intellectual environment where serious mathematical
thinking is the norm. More than just a physical setting with desks, bul-
letin boards, and posters, the classroom environment communicates
subtle messages about what is valued in learning and doing mathe-
matics. Are students’ discussion and collaboration encouraged? Are
students expected to justify their thinking? If students are to learn to
make conjectures, experiment with various approaches to solving prob-
lems, construct mathematical arguments and respond to others’ argu-
ments, then creating an environment that fosters these kinds of activi-
ties is essential.

In effective teaching, worthwhile mathematical tasks are used to in-
troduce important mathematical ideas and to engage and challenge
students intellectually. Well-chosen tasks can pique students’ curiosity
and draw them into mathematics. The tasks may be connected to the
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real-world experiences of students, or they may arise in contexts that
are purely mathematical. Regardless of the context, worthwhile tasks
should be intriguing, with a level of challenge that invites speculation
and hard work. Such tasks often can be approached in more than one
way, such as using an arithmetic counting approach, drawing a geomet-
ric diagram and enumerating possibilities, or using algebraic equations,
which makes the tasks accessible to students with varied prior knowl-
edge and experience.

Worthwhile tasks alone are not sufficient for effective teaching.
Teachers must also decide what aspects of a task to highlight, how to
organize and orchestrate the work of the students, what questions to
ask to challenge those with varied levels of expertise, and how to sup-
port students without taking over the process of thinking for them and
thus eliminating the challenge.

Effective teaching requires continually seeking
improvement.

Effective teaching involves observing students, listening carefully to
their ideas and explanations, having mathematical goals, and using the
information to make instructional decisions. Teachers who employ
such practices motivate students to engage in mathematical thinking
and reasoning and provide learning opportunities that challenge stu-
dents at all levels of understanding. Effective teaching requires contin-
uing efforts to learn and improve. These efforts include learning about
mathematics and pedagogy, benefiting from interactions with students
and colleagues, and engaging in ongoing professional development and
self-reflection.

Opportunities to reflect on and refine instructional practice—
during class and outside class, alone and with others—are crucial in
the vision of school mathematics outlined in Principles and Standards.
"To improve their mathematics instruction, teachers must be able to
analyze what they and their students are doing and consider how
those actions are affecting students’ learning. Using a variety of
strategies, teachers should monitor students’ capacity and inclination
to analyze situations, frame and solve problems, and make sense of
mathematical concepts and procedures. They can use this information
to assess their students’ progress and to appraise how well the mathe-
matical tasks, student discourse, and classroom environment are inter-
acting to foster students’ learning. They then use these appraisals to
adapt their instruction.

Reflection and analysis are often individual activities, but they can be
greatly enhanced by teaming with an experienced and respected col-
league, a new teacher, or a community of teachers. Collaborating with
colleagues regularly to observe, analyze, and discuss teaching and stu-
dents’ thinking or to do “lesson study” is a powerful, yet neglected,
form of professional development in American schools (Stigler and
Hiebert 1999). The work and time of teachers must be structured to
allow and support professional development that will benefit them and
their students.
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The Learning Principle

Students must learn mathematics with understanding,
actively building new knowledge from experience and prior
knowledge.

"The vision of school mathematics in Principles and Standards is based
on students’ learning mathematics with understanding. Unfortunately,
learning mathematics without understanding has long been a common
outcome of school mathematics instruction. In fact, learning without
understanding has been a persistent problem since at least the 1930s,
and it has been the subject of much discussion and research by psycholo-
gists and educators over the years (e.g., Brownell [1947]; Skemp [1976];
Hiebert and Carpenter [1992]). Learning the mathematics outlined in
chapters 3—7 requires understanding and being able to apply procedures,
concepts, and processes. In the twenty-first century, all students should
be expected to understand and be able to apply mathematics.

Learning mathematics with understanding is essential.

In recent decades, psychological and educational research on the
learning of complex subjects such as mathematics has solidly established
the important role of conceptual understanding in the knowledge and
activity of persons who are proficient. Being proficient in a complex do-
main such as mathematics entails the ability to use knowledge flexibly,
applying what is learned in one setting appropriately in another. One of
the most robust findings of research is that conceptual understanding is
an important component of proficiency, along with factual knowledge
and procedural facility (Bransford, Brown, and Cocking 1999).

The alliance of factual knowledge, procedural proficiency, and con-
ceptual understanding makes all three components usable in powerful
ways. Students who memorize facts or procedures without understand-
ing often are not sure when or how to use what they know, and such
learning is often quite fragile (Bransford, Brown, and Cocking 1999).
Learning with understanding also makes subsequent learning easier.
Mathematics makes more sense and is easier to remember and to apply
when students connect new knowledge to existing knowledge in mean-
ingful ways (Schoenfeld 1988). Well-connected, conceptually grounded
ideas are more readily accessed for use in new situations (Skemp 1976).

"The requirements for the workplace and for civic participation in the
contemporary world include flexibility in reasoning about and using quan-
titative information. Conceptual understanding is an essential component
of the knowledge needed to deal with novel problems and settings. More-
over, as judgments change about the facts or procedures that are essential
in an increasingly technological world, conceptual understanding becomes
even more important. For example, most of the arithmetic and algebraic
procedures long viewed as the heart of the school mathematics curriculum
can now be performed with handheld calculators. Thus, more attention
can be given to understanding the number concepts and the modeling
procedures used in solving problems. Change is a ubiquitous feature of
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contemporary life, so learning with understanding is essential to enable
students to use what they learn to solve the new kinds of problems they
will inevitably face in the future.

A major goal of school mathematics programs is to create auton-
omous learners, and learning with understanding supports this goal.
Students learn more and learn better when they can take control of
their learning by defining their goals and monitoring their progress.
When challenged with appropriately chosen tasks, students become
confident in their ability to tackle difficult problems, eager to figure
things out on their own, flexible in exploring mathematical ideas and
trying alternative solution paths, and willing to persevere. Effective
learners recognize the importance of reflecting on their thinking and
learning from their mistakes. Students should view the difficulty of
complex mathematical investigations as a worthwhile challenge rather
than as an excuse to give up. Even when a mathematical task is difficult,
it can be engaging and rewarding. When students work hard to solve a
difficult problem or to understand a complex idea, they experience a
very special feeling of accomplishment, which in turn leads to a willing-
ness to continue and extend their engagement with mathematics.

Students can learn mathematics with understanding.

Students will be served well by school mathematics programs that
enhance their natural desire to understand what they are asked to learn.
From a young age, children are interested in mathematical ideas.
Through their experiences in everyday life, they gradually develop a
rather complex set of informal ideas about numbers, patterns, shapes,
quantities, data, and size, and many of these ideas are correct and ro-
bust. Thus children learn many mathematical ideas quite naturally even
before they enter school (Gelman and Gallistel 1978; Resnick 1987). A
pattern of building new learning on prior learning and experience is es-
tablished early and repeated, albeit often in less obvious ways, through-
out the school years (see, e.g., Steffe [1994]). Students of all ages have a
considerable knowledge base on which to build, including ideas devel-
oped in prior school instruction and those acquired through everyday
experience (Bransford, Brown, and Cocking 1999).

The kinds of experiences teachers provide clearly play a major role in
determining the extent and quality of students’ learning. Students’ un-
derstanding of mathematical ideas can be built throughout their school
years if they actively engage in tasks and experiences designed to
deepen and connect their knowledge. Learning with understanding can
be further enhanced by classroom interactions, as students propose
mathematical ideas and conjectures, learn to evaluate their own think-
ing and that of others, and develop mathematical reasoning skills
(Hanna and Yackel forthcoming). Classroom discourse and social inter-
action can be used to promote the recognition of connections among
ideas and the reorganization of knowledge (Lampert 1986). By having
students talk about their informal strategies, teachers can help them be-
come aware of, and build on, their implicit informal knowledge (Lam-
pert 1989; Mack 1990). Moreover, in such settings, procedural fluency
and conceptual understanding can be developed through problem solv-
ing, reasoning, and argumentation.
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Assessment should not
merely be done to
students; rather, it

should also be done for

students.

The Assessment Principle

Assessment should support the learning of important mathe-
matics and furnish useful information to both teachers and
students.

The Assessment Standards for

When assessment is an integral part of mathematics instruction, it
contributes significantly to all students’ mathematics learning. When
assessment is discussed in connection with standards, the focus is some-
times on using tests to certify students’ attainment, but there are other
important purposes of assessment. Assessment should be more than
merely a test at the end of instruction to see how students perform
under special conditions; rather, it should be an integral part of instruc-
tion that informs and guides teachers as they make instructional deci-
sions. Assessment should not merely be done #o students; rather, it
should also be done for students, to guide and enhance their learning.

Assessment should enhance students’ learning.

The assertion that assessment should enhance students’ learning may
be surprising. After all, if assessment ascertains what students have
learned and are able to do, how can it also have positive consequences
for learning? Research indicates that making assessment an integral part
of classroom practice is associated with improved student learning.
Black and Wiliam (1998) reviewed about 250 research studies and con-
cluded that the learning of students, including low achievers, is gener-
ally enhanced in classrooms where teachers include attention to forma-
tive assessment in making judgments about teaching and learning.

Good assessment can enhance students’ learning in several ways.
First, the tasks used in an assessment can convey a message to students
about what kinds of mathematical knowledge and performance are val-
ued. That message can in turn influence the decisions students make—
for example, whether or where to apply effort in studying. Thus, it is
important that assessment tasks be worthy of students’ time and atten-
tion. Activities that are consistent with (and sometimes the same as) the

School Mathematics (NCTM
1995) presented six standards
about exemplary mathematics

activities used in instruction should be included. When teachers use as-
sessment techniques such as observations, conversations and interviews

assessment. They address how
assessment should—

reflect the mathematics that
students should know and be
able to do;

enhance mathematics learning;
promote equity;

be an open process;
promote valid inference;

be a coherent process.
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with students, or interactive journals, students are likely to learn
through the process of articulating their ideas and answering the
teacher’s questions.

Feedback from assessment tasks can also help students in setting
goals, assuming responsibility for their own learning, and becoming
more independent learners. For example, scoring guides, or rubrics, can
help teachers analyze and describe students’ responses to complex tasks
and determine students’ levels of proficiency. They can also help stu-
dents understand the characteristics of a complete and correct response.
Similarly, classroom discussions in which students present and evaluate
different approaches to solving complex problems can hone their sense
of the difference between an excellent response and one that is
mediocre. Through the use of good tasks and the public discussion of
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criteria for good responses, teachers can cultivate in their students both
the disposition and the capacity to engage in self-assessment and reflec-
tion on their own work and on ideas put forth by others. Such a focus
on self-assessment and peer assessment has been found to have a posi-
tive impact on students’ learning (Wilson and Kenney forthcoming).

Assessment is a valuable tool for making instructional
decisions.

"To ensure deep, high-quality learning for all students, assessment and
instruction must be integrated so that assessment becomes a routine
part of the ongoing classroom activity rather than an interruption. Such
assessment also provides the information teachers need to make appro-
priate instructional decisions. In addition to formal assessments, such as
tests and quizzes, teachers should be continually gathering information
about their students’ progress through informal means, such as asking
questions during the course of a lesson, conducting interviews with in-
dividual students, and giving writing prompts.

When teachers have useful information about what students are
learning, they can support their students’ progress toward significant
mathematical goals. The instructional decisions made by teachers—
such as how and when to review prerequisite material, how to revisit a
difficult concept, or how to adapt tasks for students who are struggling
or for those who need enrichment—are based on inferences about what
students know and what they need to learn. Assessment is a primary
source of the evidence on which these inferences are based, and the de-
cisions that teachers make will be only as good as that evidence.

Assessment should reflect the mathematics that all students need
to know and be able to do, and it should focus on students’ under-
standing as well as their procedural skills. Teachers need to have a
clear sense of what is to be taught and learned, and assessment
should be aligned with their instructional goals. By providing infor-
mation about students’ individual and collective progress toward the
goals, assessment can help ensure that everyone moves productively
in the right direction.

"To make effective decisions, teachers should look for convergence of
evidence from different sources. Formal assessments provide only one
viewpoint on what students can do in a very particular situation—often
working individually on paper-and-pencil tasks, with limited time to
complete the tasks. Overreliance on such assessments may give an in-
complete and perhaps distorted picture of students’ performance. Be-
cause different students show what they know and can do in different
ways, assessments should allow for multiple approaches, thus giving a
well-rounded picture and allowing each student to show his or her best
strengths.

Many assessment techniques can be used by mathematics teachers,
including open-ended questions, constructed-response tasks, selected-
response items, performance tasks, observations, conversations, jour-
nals, and portfolios. These methods can all be appropriate for class-
room assessment, but some may apply more readily to particular goals.
For example, quizzes using simple constructed-response or selected-
response items may indicate whether students can apply procedures.
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Constructed-response or performance tasks may better illuminate stu-
dents’ capacity to apply mathematics in complex or new situations. Ob-
servations and conversations in the classroom can provide insights into
students’ thinking, and teachers can monitor changes in students’
thinking and reasoning over time with reflective journals and portfolios.

When teachers are selecting assessment methods, the age, experi-
ence, and special needs of students should be considered. Teachers must
ensure that all students have an opportunity to demonstrate clearly and
completely what they know and can do. For example, teachers should
use English-enhancing and bilingual techniques to support students
who are learning English.

When done well, assessment that helps teachers make decisions about
the content or form of instruction (often called formative assessment)
can also be used to judge students’ attainment (summative assessment).

) ) The same sources of evidence can be assembled to build a picture of in-
Assemblin g evidence dividual students’ progress toward the goals of instruction. To maximize
. the instructional value of assessment, teachers need to move beyond a
f rom a variery Of sources superficial “right or wrong” analysis of tasks to a focus on how students
are thinking about the tasks. Efforts should be made to identify valuable
student insights on which further progress can be based rather than to
concentrate solely on errors or misconceptions. Although less straight-
forward than averaging scores on quizzes, assembling evidence from a
variety of sources is more likely to yield an accurate picture of what each
student knows and is able to do.

Whether the focus is on formative assessment aimed at guiding in-
struction or on summative assessment of students’ progress, teachers’
knowledge is paramount in collecting useful information and drawing
valid inferences. Teachers must understand their mathematical goals
deeply, they must understand how their students may be thinking about
mathematics, they must have a good grasp of possible means of assess-
ing students’ knowledge, and they must be skilled in interpreting assess-
ment information from multiple sources. For teachers to attain the nec-
essary knowledge, assessment must become a major focus in teacher
preparation and professional development.

is more likely to yield an

accurate picture.

The "Technology Principle

Technology is essential in teaching and learning mathematics;
it influences the mathematics that is taught and
enbances students’ learning.

Electronic technologies—calculators and computers—are essential
tools for teaching, learning, and doing mathematics. They furnish vi-
sual images of mathematical ideas, they facilitate organizing and analyz-
ing data, and they compute efficiently and accurately. They can support
investigation by students in every area of mathematics, including geom-
etry, statistics, algebra, measurement, and number. When technological
tools are available, students can focus on decision making, reflection,
reasoning, and problem solving.
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Students can learn more mathematics more deeply with the appro-
priate use of technology (Dunham and Dick 1994; Sheets 1993; Boers-
van Oosterum 1990; Rojano 1996; Groves 1994). Technology should
not be used as a replacement for basic understandings and intuitions;
rather, it can and should be used to foster those understandings and in-
tuitions. In mathematics-instruction programs, technology should be
used widely and responsibly, with the goal of enriching students’ learn-
ing of mathematics.

The existence, versatility, and power of technology make it possible
and necessary to reexamine what mathematics students should learn as
well as how they can best learn it. In the mathematics classrooms envi-
sioned in Principles and Standards, every student has access to technol-
ogy to facilitate his or her mathematics learning under the guidance of

a skillful teacher.

Technology enhances mathematics learning.

Technology can help students learn mathematics. For example, with
calculators and computers students can examine more examples or rep-
resentational forms than are feasible by hand, so they can make and ex-
plore conjectures easily. The graphic power of technological tools af-
fords access to visual models that are powerful but that many students
are unable or unwilling to generate independently. The computational
capacity of technological tools extends the range of problems accessi-
ble to students and also enables them to execute routine procedures
quickly and accurately, thus allowing more time for conceptualizing
and modeling.

Students’ engagement with, and ownership of, abstract mathemati-
cal ideas can be fostered through technology. Technology enriches the
range and quality of investigations by providing a means of viewing
mathematical ideas from multiple perspectives. Students’ learning is
assisted by feedback, which technology can supply: drag a node in a
Dynamic Geometry" environment, and the shape on the screen
changes; change the defining rules for a spreadsheet, and watch as de-
pendent values are modified. Technology also provides a focus as stu-
dents discuss with one another and with their teacher the objects on
the screen and the effects of the various dynamic transformations that
technology allows.

Technology offers teachers options for adapting instruction to special
student needs. Students who are easily distracted may focus more in-
tently on computer tasks, and those who have organizational difficulties
may benefit from the constraints imposed by a computer environment.
Students who have trouble with basic procedures can develop and
demonstrate other mathematical understandings, which in turn can
eventually help them learn the procedures. The possibilities for engag-
ing students with physical challenges in mathematics are dramatically
increased with special technologies.

Technology supports effective mathematics teaching.

The effective use of technology in the mathematics classroom de-
pends on the teacher. Technology is not a panacea. As with any teaching
tool, it can be used well or poorly. Teachers should use technology to
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enhance their students’ learning opportunities by selecting or creating
mathematical tasks that take advantage of what technology can do effi-
ciently and well—graphing, visualizing, and computing. For example,
teachers can use simulations to give students experience with problem
situations that are difficult to create without technology, or they can use
data and resources from the Internet and the World Wide Web to de-
sign student tasks. Spreadsheets, dynamic geometry software, and com-
puter microworlds are also useful tools for posing worthwhile problems.

Technology does not replace the mathematics teacher. When stu-
dents are using technological tools, they often spend time working in
ways that appear somewhat independent of the teacher, but this im-
pression is misleading. The teacher plays several important roles in a
technology-rich classroom, making decisions that affect students’
learning in important ways. Initially, the teacher must decide if, when,
and how technology will be used. As students use calculators or com-
puters in the classroom, the teacher has an opportunity to observe the
students and to focus on their thinking. As students work with tech-
nology, they may show ways of thinking about mathematics that are
otherwise often difficult to observe. Thus, technology aids in assess-
ment, allowing teachers to examine the processes used by students in
their mathematical investigations as well as the results, thus enriching
the information available for teachers to use in making instructional
decisions.

Technology influences what mathematics is taught.

"Technology not only influences how mathematics is taught and
learned but also affects what is taught and when a topic appears in the
curriculum. With technology at hand, young children can explore and
solve problems involving large numbers, or they can investigate charac-
teristics of shapes using dynamic geometry software. Elementary school
students can organize and analyze large sets of data. Middle-grades stu-
dents can study linear relationships and the ideas of slope and uniform
change with computer representations and by performing physical ex-
periments with calculator-based-laboratory systems. High school stu-
dents can use simulations to study sample distributions, and they can
work with computer algebra systems that efficiently perform most of
the symbolic manipulation that was the focus of traditional high school
mathematics programs. The study of algebra need not be limited to
simple situations in which symbolic manipulation is relatively straight-
forward. Using technological tools, students can reason about more-
general issues, such as parameter changes, and they can model and solve
complex problems that were heretofore inaccessible to them. Technol-
ogy also blurs some of the artificial separations among topics in algebra,
geometry, and data analysis by allowing students to use ideas from one
area of mathematics to better understand another area of mathematics.

Technology can help teachers connect the development of skills and
procedures to the more general development of mathematical under-
standing. As some skills that were once considered essential are ren-
dered less necessary by technological tools, students can be asked to
work at higher levels of generalization or abstraction. Work with vir-
tual manipulatives (computer simulations of physical manipulatives) or
with Logo can allow young children to extend physical experience and
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to develop an initial understanding of sophisticated ideas like the use
of algorithms. Dynamic geometry software can allow experimentation
with families of geometric objects, with an explicit focus on geometric
transformations. Similarly, graphing utilities facilitate the exploration
of characteristics of classes of functions. Because of technology, many
topics in discrete mathematics take on new importance in the contem-
porary mathematics classroom; the boundaries of the mathematical
landscape are being transformed.
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What mathematical content and processes should students know and be
able to use as they progress through school? Principles and Standards for
School Mathematics presents NCTM'’s proposal for what should be valued in
school mathematics education. Ambitious standards are required to achieve
a society that has the capability to think and reason mathematically and a
useful base of mathematical knowledge and skills.

The ten Standards presented in this chapter describe a connected body
of mathematical understandings and competencies—a comprehensive
foundation recommended for all students, rather than a menu from which
to make curricular choices. Standards are descriptions of what mathematics
instruction should enable students to know and do. They specify the un-
derstanding, knowledge, and skills that students should acquire from
prekindergarten through grade 12. The Content Standards—Number and
Operations, Algebra, Geometry, Measurement, and Data Analysis and
Probability—explicitly describe the content that students should learn.
The Process Standards—Problem Solving, Reasoning and Proof, Commu-
nication, Connections, and Representation—highlight ways of acquiring
and using content knowledge.
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The Content Standards should
receive different emphases across the
grade bands.
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Growth across the Grades: Aiming for Focus and
Coherence

Each of these ten Standards applies across all grades, prekindergarten
through grade 12. The set of Standards, which are discussed in detail in
chapters 4 through 7, proposes the mathematics that all students should
have the opportunity to learn. Each Standard comprises a small number
of goals that apply across all grades—a commonality that promotes a
focus on the growth in students’ knowledge and sophistication as they
progress through the curriculum. For each of the Content Standards,
chapters 4 through 7 offer an additional set of expectations specific to
each grade band.

The Table of Standards and expectations in the appendix highlights
the growth of expectations across the grades. It is not expected that
every topic will be addressed each year. Rather, students will reach a
certain depth of understanding of the concepts and acquire certain lev-
els of fluency with the procedures by prescribed points in the curricu-
lum, so further instruction can assume and build on this understanding
and fluency.

Even though each of these ten Standards applies to all grades, em-
phases will vary both within and between the grade bands. For instance,
the emphasis on number is greatest in prekindergarten through grade 2,
and by grades 9-12, number receives less instructional attention. And
the total time for mathematical instruction will be divided differently
according to particular needs in each grade band—for example, in the
middle grades, the majority of instructional time would address algebra
and geometry. Figure 3.1 shows roughly how the Content Standards
might receive different emphases across the grade bands.

Pre-K-2 3-5 6-8 9-12

Number

Algebra

Geometry

Measurement

Data Analysis
and Probability

"This set of ten Standards does not neatly separate the school mathe-
matics curriculum into nonintersecting subsets. Because mathematics as
a discipline is highly interconnected, the areas described by the Stan-
dards overlap and are integrated. Processes can be learned within the
Content Standards, and content can be learned within the Process

Principles and Standards for School Mathematics



Standards. Rich connections and intersections abound. Number, for ex-
ample, pervades all areas of mathematics. Some topics in data analysis
could be characterized as part of measurement. Patterns and functions
appear throughout geometry. The processes of reasoning, proving,
problem solving, and representing are used in all content areas.

The arrangement of the curriculum into these Standards is proposed
as one coherent organization of significant mathematical content and
processes. Those who design curriculum frameworks, assessments, in-
structional materials, and classroom instruction based on Principles and
Standards will need to make their own decisions about emphasis and
order; other labels and arrangements are certainly possible.

Where Is Discrete Mathematics?

The 1989 Curriculum and Evaluation Standards for School Mathematics
introduced a Discrete Mathematics Standard in grades 9-12. In Princi-
ples and Standards, the main topics of discrete mathematics are included,
but they are distributed across the Standards, instead of receiving sepa-
rate treatment, and they span the years from prekindergarten through
grade 12. As an active branch of contemporary mathematics that is
widely used in business and industry, discrete mathematics should be an
integral part of the school mathematics curriculum, and these topics
naturally occur throughout the other strands of mathematics.

Three important areas of discrete mathematics are integrated
within these Standards: combinatorics, iteration and recursion, and
vertex-edge graphs. These ideas can be systematically developed from
prekindergarten through grade 12. In addition, matrices should be ad-
dressed in grades 9-12. Combinatorics is the mathematics of system-
atic counting. Iteration and recursion are used to model sequential,
step-by-step change. Vertex-edge graphs are used to model and solve
problems involving paths, networks, and relationships among a finite
number of objects.
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The Number and Operations Standard describes deep and funda-
mental understanding of, and proficiency with, counting, numbers, and
arithmetic, as well as an understanding of number systems and their
structures. The concepts and algorithms of elementary arithmetic are
part of number and operations, as are the properties and characteristics
of the classes of numbers that form the beginnings of number theory.
Central to this Standard is the development of number sense—the abil-
ity to decompose numbers naturally, use particular numbers like 100 or
1/2 as referents, use the relationships among arithmetic operations to
solve problems, understand the base-ten number system, estimate,
make sense of numbers, and recognize the relative and absolute magni-
tude of numbers (Sowder 1992).

Historically, number has been a cornerstone of the entire mathe-
matics curriculum internationally as well as in the United States and
Canada (Reys and Nohda 1994). All the mathematics proposed for
prekindergarten through grade 12 is strongly grounded in number. The
principles that govern equation solving in algebra are the same as the
structural properties of systems of numbers. In geometry and measure-
ment, attributes are described with numbers. The entire area of data
analysis involves making sense of numbers. Through problem solving,
students can explore and solidify their understandings of number.
Young children’s earliest mathematical reasoning is likely to be about
number situations, and their first mathematical representations will
probably be of numbers. Research has shown that learning about num-
ber and operations is a complex process for children (e.g., Fuson [1992]).

In these Standards, understanding number and operations, developing
number sense, and gaining fluency in arithmetic computation form the
core of mathematics education for the elementary grades. As they
progress from prekindergarten through grade 12, students should attain a
rich understanding of numbers—what they are; how they are represented
with objects, numerals, or on number lines; how they are related to one
another; how numbers are embedded in systems that have structures and
properties; and how to use numbers and operations to solve problems.

Knowing basic number combinations—the single-digit addition
and multiplication pairs and their counterparts for subtraction and
division—is essential. Equally essential is computational fluency—
having and using efficient and accurate methods for computing. Flu-
ency might be manifested in using a combination of mental strategies
and jottings on paper or using an algorithm with paper and pencil,
particularly when the numbers are large, to produce accurate results
quickly. Regardless of the particular method used, students should be
able to explain their method, understand that many methods exist,
and see the usefulness of methods that are efficient, accurate, and
general. Students also need to be able to estimate and judge the rea-
sonableness of results. Computational fluency should develop in tan-
dem with understanding of the role and meaning of arithmetic oper-
ations in number systems (Hiebert et.al., 1997; Thornton 1990).

Calculators should be available at appropriate times as computational
tools, particularly when many or cumbersome computations are needed
to solve problems. However, when teachers are working with students
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on developing computational algorithms, the calculator should be set
aside to allow this focus. Today, the calculator is a commonly used com-
putational tool outside the classroom, and the environment inside the
classroom should reflect this reality.

Understand numbers, ways of representing numbers,
relationships among numbers, and number systems

Understanding of number develops in prekindergarten through
grade 2 as children count and learn to recognize “how many” in sets of
objects. A key idea is that a number can be decomposed and thought
about in many ways. For instance, 24 is 2 tens and 4 ones and also 2 sets
of twelve. Making a transition from viewing “ten” as simply the accu-
mulation of 10 ones to seeing it both as 10 ones #zd as 1 ten is an im-
portant first step for students toward understanding the structure of the
base-ten number system (Cobb and Wheatley 1988). Throughout the
elementary grades, students can learn about classes of numbers and
their characteristics, such as which numbers are odd, even, prime, com-
posite, or square.

Beyond understanding whole numbers, young children can be en-
couraged to understand and represent commonly used fractions in con-
text, such as 1/2 of a cookie or 1/8 of a pizza, and to see fractions as part
of a unit whole or of a collection. Teachers should help students de-
velop an understanding of fractions as division of numbers. And in the
middle grades, in part as a basis for their work with proportionality, stu-
dents need to solidify their understanding of fractions as numbers. Stu-
dents’ knowledge about, and use of, decimals in the base-ten system
should be very secure before high school. With a solid understanding of
number, high school students can use variables that represent numbers
to do meaningful symbolic manipulation.

Representing numbers with various physical materials should be a
major part of mathematics instruction in the elementary school grades.
By the middle grades, students should understand that numbers can be
represented in various ways, so that they see that 1/4, 25%, and 0.25 are
all different names for the same number. Students’ understanding and
ability to reason will grow as they represent fractions and decimals with
physical materials and on number lines and as they learn to generate
equivalent representations of fractions and decimals.

As students gain understanding of numbers and how to represent
them, they have a foundation for understanding relationships among
numbers. In grades 3 through 5, students can learn to compare fractions
to familiar benchmarks such as 1/2. And, as their number sense devel-
ops, students should be able to reason about numbers by, for instance,
explaining that 1/2 + 3/8 must be less than 1 because each addend is less
than or equal to 1/2. In grades 6-8, it is important for students to be
able to move flexibly among equivalent fractions, decimals, and percents
and to order and compare rational numbers using a range of strategies.
By extending from whole numbers to integers, middle-grades students’
intuitions about order and magnitude will be more reliable, and they
have a glimpse into the way that systems of numbers work. High school
students can use variables and functions to represent relationships
among sets of numbers, and to look at properties of classes of numbers.
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Although other curricular areas are emphasized more than number
in grades 9-12, in these grades students should see number systems
from a more global perspective. They should learn about differences
among number systems and about what properties are preserved and
lost in moving from one system to another.

Understand meanings of operations and how they
relate to one another

During the primary grades, students should encounter a variety of
meanings for addition and subtraction of whole numbers. Researchers
and teachers have learned about how children understand operations
through their approaches to simple arithmetic problems like this:

Bob got 2 cookies. Now he has 5 cookies. How many cookies did Bob have
in the beginning?

"To solve this problem, young children might use addition and count
on from 2, keeping track with their fingers, to get to 5. Or they might
recognize this problem as a subtraction situation and use the fact that
5 -2 =3. Exploring thinking strategies like these or realizing that 7 + 8
is the same as 7 + 7 + 1 will help students see the meaning of the opera-
tions. Such explorations also help teachers learn what students are
thinking. Multiplication and division can begin to have meaning for
students in prekindergarten through grade 2 as they solve problems
that arise in their environment, such as how to share a bag of raisins
tairly among four people.

In grades 3-5, helping students develop meaning for whole-number
multiplication and division should become a central focus. By creating
and working with representations (such as diagrams or concrete objects)
of multiplication and division situations, students can gain a sense of
the relationships among the operations. Students should be able to de-
cide whether to add, subtract, multiply, or divide for a particular prob-
lem. To do so, they must recognize that the same operation can be ap-
plied in problem situations that on the surface seem quite different
from one another, know how operations relate to one another, and have
an idea about what kind of result to expect.

In grades 6-8, operations with rational numbers should be empha-
sized. Students’ intuitions about operations should be adapted as they
work with an expanded system of numbers (Graeber and Campbell
1993). For example, multiplying a whole number by a fraction between
0 and 1 (e.g., 8 X 1/2) produces a result less than the whole number.
This is counter to students’ prior experience (with whole numbers) that
multiplication always results in a greater number.

Working with proportions is a major focus proposed in these Stan-
dards for the middle grades. Students should become proficient in cre-
ating ratios to make comparisons in situations that involve pairs of
numbers, as in the following problem:

If three packages of cocoa make fifteen cups of hot chocolate, how many
packages are needed to make sixty cups?

Students at this level also need to learn operations with integers. In
grades 9-12, as students learn how to combine vectors and matrices
arithmetically, they will experience other kinds of systems involving
numbers in which new properties and patterns emerge.
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Compute fluently and make reasonable estimates

Developing fluency requires a balance and connection between con-
ceptual understanding and computational proficiency. On the one hand,
computational methods that are over-practiced without understanding
are often forgotten or remembered incorrectly (Hiebert 1999; Kamii,
Lewis, and Livingston, 1993; Hiebert and Lindquist 1990). On the
other hand, understanding without fluency can inhibit the problem-
solving process (Thornton 1990). As children in prekindergarten
through grade 2 develop an understanding of whole numbers and the
operations of addition and subtraction, instructional attention should
focus on strategies for computing with whole numbers so that students
develop flexibility and computational fluency. Students will generate a
range of interesting and useful strategies for solving computational
problems, which should be shared and discussed. By the end of grade 2,
students should know the basic addition and subtraction combinations,
should be fluent in adding two-digit numbers, and should have methods
for subtracting two-digit numbers. At the grades 3-5 level, as students
develop the basic number combinations for multiplication and division,
they should also develop reliable algorithms to solve arithmetic prob-
lems efficiently and accurately. These methods should be applied to
larger numbers and practiced for fluency.

Researchers and experienced teachers alike have found that when
children in the elementary grades are encouraged to develop, record,
explain, and critique one another’s strategies for solving computational
problems, a number of important kinds of learning can occur (see, e.g.,
Hiebert [1999]; Kamii, Lewis, and Livingston [1993]; Hiebert et al.
[1997]). The efficiency of various strategies can be discussed. So can
their generalizability: Will this work for any numbers or only the two
involved here? And experience suggests that in classes focused on the
development and discussion of strategies, various “standard” algorithms
either arise naturally or can be introduced by the teacher as appropri-
ate. The point is that students must become fluent in arithmetic com-
putation—they must have efficient and accurate methods that are sup-
ported by an understanding of numbers and operations. “Standard”
algorithms for arithmetic computation are one means of achieving this
fluency.

The development of rational-number concepts is a major goal for
grades 3-5, which should lead to informal methods for calculating with
fractions. For example, a problem such as 1/4 + 1/2 should be solved
mentally with ease because students can picture 1/2 and 1/4 or can use
decomposition strategies, such as 1/4 + 1/2 = 1/4 + (1/4 + 1/4). In these
grades, methods for computing with decimals should be developed and
applied, and by grades 6-8, students should become fluent in computing
with rational numbers in fraction and decimal form. When asked to esti-
mate 12/13 + 7/8, only 24 percent of thirteen-year-old students in a na-
tional assessment said the answer was close to 2 (Carpenter et al. 1981).
Most said it was close to 1, 19, or 21, all of which reflect common com-
putational errors in adding fractions and suggest a lack of understanding
of the operation being carried out. If students understand addition of
fractions and have developed number sense, these errors should not
occur. As they develop an understanding of the meaning and representa-
tion of integers, they should also develop methods for computing with
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integers. In grades 9-12, students should compute fluently with real
numbers and have some basic proficiency with vectors and matrices in
solving problems, using technology as appropriate.

Part of being able to compute fluently means making smart choices
about which tools to use and when. Students should have experiences
that help them learn to choose among mental computation, paper-and-
pencil strategies, estimation, and calculator use. The particular context,
the question, and the numbers involved all play roles in those choices.
Do the numbers allow a mental strategy? Does the context call for an
estimate? Does the problem require repeated and tedious computa-
tions? Students should evaluate problem situations to determine
whether an estimate or an exact answer is needed, using their number
sense to advantage, and be able to give a rationale for their decision.
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Algebra has its historical roots in the study of general methods for
solving equations. The Algebra Standard emphasizes relationships
among quantities, including functions, ways of representing mathemati-
cal relationships, and the analysis of change. Functional relationships
can be expressed by using symbolic notation, which allows complex
mathematical ideas to be expressed succinctly and change to be ana-
lyzed efficiently. Today, the methods and ideas of algebra support math-
ematical work in many areas. For example, distribution and communi-
cation networks, laws of physics, population models, and statistical
results can all be represented in the symbolic language of algebra. In
addition, algebra is about abstract structures and about using the princi-
ples of those structures in solving problems expressed with symbols.

Much of the symbolic and structural emphasis in algebra can build
on students’ extensive experiences with number. Algebra is also closely
linked to geometry and to data analysis. The ideas included in the Alge-
bra Standard constitute a major component of the school mathematics
curriculum and help to unify it. Algebraic competence is important in
adult life, both on the job and as preparation for postsecondary educa-
tion. All students should learn algebra.

By viewing algebra as a strand in the curriculum from prekinder-
garten on, teachers can help students build a solid foundation of under-
standing and experience as a preparation for more-sophisticated work
in algebra in the middle grades and high school. For example, system-
atic experience with patterns can build up to an understanding of the
idea of function (Erick Smith forthcoming), and experience with num-
bers and their properties lays a foundation for later work with symbols
and algebraic expressions. By learning that situations often can be de-
scribed using mathematics, students can begin to form elementary no-
tions of mathematical modeling.

Many adults equate school algebra with symbol manipulation—
solving complicated equations and simplifying algebraic expressions.
Indeed, the algebraic symbols and the procedures for working with
them are a towering, historic mathematical accomplishment and are
critical in mathematical work. But algebra is more than moving symbols
around. Students need to understand the concepts of algebra, the struc-
tures and principles that govern the manipulation of the symbols, and
how the symbols themselves can be used for recording ideas and gain-
ing insights into situations. Computer technologies today can produce
graphs of functions, perform operations on symbols, and instanta-
neously do calculations on columns of data. Students now need to learn
how to interpret technological representations and how to use the tech-
nology effectively and wisely.

Often, algebra has not been treated explicitly in the school curricu-
lum until the traditional algebra course offered in middle school or
high school. By promoting algebra as a strand that is begun in the
early grades, Principles and Standards supports other possibilities for
configuring programs in the middle grades and secondary schools. The
Standards for grades 6-8 include a significant emphasis on algebra,
along with much more geometry than has normally been offered in the
middle grades, and call for the integration of these two areas. The
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Standards for grades 9-12, assuming that this strong foundation in al-
gebra will be in place by the end of the eighth grade, describe an ambi-
tious program in algebra, geometry, and data analysis and statistics and
also call for integration and connections among ideas.

Understand patterns, relations, and functions

Early experiences with classifying and ordering objects are natural
and interesting for young children. Teachers might help children notice
that red-blue-blue-red-blue-blue can be extended with another red-
blue-blue sequence or help them predict that the twelfth term is blue,
assuming that the red-blue-blue pattern repeats indefinitely. Initially,
students may describe the regularity in patterns verbally rather than
with mathematical symbols (English and Warren 1998). In grades 3-5,
they can begin to use variables and algebraic expressions as they de-
scribe and extend patterns. By the end of secondary school, they should
be comfortable using the notation of functions to describe relation-
ships.

In the lower grades, students can describe patterns like 2, 4, 6, 8, ...
by focusing on how a term is obtained from the previous number—in
this example, by adding 2. This is the beginning of recursive thinking.
Later, students can study sequences that can best be defined and com-
puted using recursion, such as the Fibonacci sequence, 1, 1, 2, 3, 5,

8, ..., in which each term is the sum of the previous two terms. Recur-
sive sequences appear naturally in many contexts and can be studied
using technology.

As they progress from preschool through high school, students
should develop a repertoire of many types of functions. In the middle
grades, students should focus on understanding linear relationships. In
high school, they should enlarge their repertoire of functions and learn
about the characteristics of classes of functions.

Many college students understand the notion of function only as a
rule or formula such as “given #, find 2" for n = 0, 1, 2, and 3” (Vinner
and Dreyfus 1989). By the middle grades, students should be able to
understand the relationships among tables, graphs, and symbols and to
judge the advantages and disadvantages of each way of representing re-
lationships for particular purposes. As they work with multiple repre-
sentations of functions—including numeric, graphic, and symbolic—
they will develop a more comprehensive understanding of functions
(see Leinhardt, Zaslavsky, and Stein 1990; Moschkovich, Schoenfeld
and Arcavi 1993; NRC 1998).

Represent and analyze mathematical situations and
structures using algebraic symbols

Students’ understanding of properties of numbers develops gradually
from preschool through high school. While young children are skip-
counting by twos, they may notice that the numbers they are using end
in 0, 2, 4, 6, and 8; they could then use this algebraic observation to ex-
tend the pattern. In grades 3-5, as students investigate properties of
whole-number operations, they may find that they can multiply 18 by
14 mentally by computing 18 x 10 and adding it to 18 x 4; they are
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using the distributive property of multiplication over addition. Some- Fig. 3.2.
times geometric arguments can be understood long before students can
reasonably be expected to perform sophisticated manipulations of alge-
braic symbols. For example, the diagram in figure 3.2 might help lead

Demonstration that 1 +3 +5 +7 =4

upper elementary school students to the conjecture that the sum of the
first » odd numbers is #*. Middle school students should be able to un-

derstand how the diagram relates to the equation. Students in high
school should be able to represent the relationship in general, with

symbols, as 1 + 3 + --- + 2n — 1) = #*, and they should be able to prove
the validity of their generalization.

Research indicates a variety of student difficulties with the concept of

variable (Kiichemann 1978; Kieran 1983; Wagner and Parker 1993), so
developing understanding of variable over the grades is important. In
the elementary grades, students typically develop a notion of variable as
a placeholder for a specific number, as in __ + 2 = 11. Later, they should
learn that the variable x in the equation 3x + 2 = 11 has a very different
use from the variable x in the identity 0 x x = 0 and that both uses are
quite different from the use of 7 in the formula A = T*. A thorough un-
derstanding of variable develops over a long time, and it needs to be
grounded in extensive experience (Sfard 1991).

The notion of equality also should be developed throughout the cur-
riculum. As a consequence of the instruction they have received, young
students typically perceive the equals sign operationally, that is, as a sig-
nal to “do something” (Behr, Erlwanger, and Nichols 1976; Kieran
1981). They should come to view the equals sign as a symbol of equiva-
lence and balance.

Students should begin to develop their skill in producing equivalent
expressions and solving linear equations in the middle grades, both
mentally and with paper and pencil. They should develop fluency in
operating with symbols in their high school years, with by-hand or
mental computation in simple cases and with computer algebra tech-
nology in all cases. In general, if students engage extensively in sym-
bolic manipulation before they develop a solid conceptual foundation
for their work, they will be unable to do more than mechanical manipu-
lations (NRC 1998). The foundation for meaningful work with sym-
bolic notation should be laid over a long time.

Use mathematical models to represent and understand
quantitative relationships

One of the most powerful uses of mathematics is the mathematical
modeling of phenomena. Students at all levels should have opportuni-
ties to model a wide variety of phenomena mathematically in ways that
are appropriate to their level. In the lower elementary grades, students
can use objects, pictures, and symbols to model situations that involve
the addition and subtraction of whole numbers. When children demon-
strate the situation “Gary has 4 apples, and Becky has 5 more” by ar-
ranging counters, they are doing beginning work with modeling.

In grades 3-5 students should use their models to make predictions,
draw conclusions, or better understand quantitative situations. These
uses of models will grow more sophisticated. For instance, in solving a
problem about making punch, middle-grades students might describe
the relationships in the problem with the formula P = (8/3)7, where P is
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the number of cups of punch and 7 is the number of cups of juice. This
mathematical model that can be used to decide how much punch will
be made from fifty cups of juice.

High school students should be able to develop models by drawing
on their knowledge of many classes of functions—to decide, for in-
stance, whether a situation would best be modeled with a linear func-
tion or a quadratic function—and be able to draw conclusions about the
situation by analyzing the model. Using computer-based laboratories
(devices that gather data, such as the speed or distance of an object, and
transmit them directly to a computer so that graphs, tables, and equa-
tions can be generated), students can get reliable numerical data quickly
from physical experiments. This technology allows them to build mod-
els in a wide range of interesting situations.

Analyze change in various contexts

Understanding change is fundamental to understanding functions
and to understanding many ideas presented in the news. The study of
mathematical change is formalized in calculus, when students study the
concept of the derivative. Research indicates this is not an area that stu-
dents typically understand with much depth, even after taking calculus
(Smith forthcoming). If ideas of change receive a more explicit focus
from the early grades on, perhaps students will eventually enter calculus
with a stronger basis for understanding the ideas at that level. In
prekindergarten through grades 2, students can, at first, describe quali-
tative change (“I grew taller over the summer”) and then quantitative
change (“I grew two inches in the last year”). Using graphs and tables,
students in grades 3—5 can begin to notice and describe change, such as
the changing nature of the growth of a plant—“It grows slowly, then
grows faster, then slows down.” And as they look at sequences, they can
distinguish between arithmetic growth (2, 5, 8, 11, 14, ...) and geomet-
ric growth (2, 4, 8, 16, ...). With a strong middle-grades focus on lin-
earity, students should learn about the idea that slope represents the
constant rate of change in linear functions and be ready to learn in high
school about classes of functions that have nonconstant rates of change.
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Through the study of geometry, students will learn about geometric
shapes and structures and how to analyze their characteristics and rela-
tionships. Spatial visualization—building and manipulating mental rep-
resentations of two- and three-dimensional objects and perceiving an
object from different perspectives—is an important aspect of geometric
thinking. Geometry is a natural place for the development of students’
reasoning and justification skills, culminating in work with proof in the
secondary grades. Geometric modeling and spatial reasoning offer ways
to interpret and describe physical environments and can be important
tools in problem solving.

Geometric ideas are useful in representing and solving problems in
other areas of mathematics and in real-world situations, so geometry
should be integrated when possible with other areas. Geometric repre-
sentations can help students make sense of area and fractions, his-
tograms and scatterplots can give insights about data, and coordinate
graphs can serve to connect geometry and algebra. Spatial reasoning is
helpful in using maps, planning routes, designing floor plans, and creat-
ing art. Students can learn to see the structure and symmetry around
them. Using concrete models, drawings, and dynamic geometry soft-
ware, students can engage actively with geometric ideas. With well-
designed activities, appropriate tools, and teachers’ support, students
can make and explore conjectures about geometry and can learn to rea-
son carefully about geometric ideas from the earliest years of schooling.
Geometry is more than definitions; it is about describing relationships
and reasoning. The notion of building understanding in geometry
across the grades, from informal to more formal thinking, is consistent
with the thinking of theorists and researchers (Burger and Shaughnessy
1986; Fuys, Geddes, and Tischler 1988; Senk 1989; van Hiele 1986).

Geometry has long been regarded as the place in the school mathe-
matics curriculum where students learn to reason and to see the ax-
iomatic structure of mathematics. The Geometry Standard includes a
strong focus on the development of careful reasoning and proof, using
definitions and established facts. Technology also has an important role
in the teaching and learning of geometry. Tools such as dynamic geom-
etry software enable students to model, and have an interactive experi-
ence with, a large variety of two-dimensional shapes. Using technology,
students can generate many examples as a way of forming and exploring
conjectures, but it is important for them to recognize that generating
many examples of a particular phenomenon does not constitute a proof.
Visualization and spatial reasoning are also improved by interaction
with computer animations and in other technological settings
(Clements et al. 1997; Yates 1988).

Analyze characteristics and properties of two- and
three-dimensional geometric shapes and develop
mathematical arguments about geometric relationships

Young students are inclined naturally to observe and describe a variety
of shapes and to begin to notice their properties. Identifying shapes is
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important, too, but the focus on properties and their relationships
should be strong. For example, students in prekindergarten through
grade 2 may observe that rectangles work well for tiling because they
have four right angles. At this level, students can learn about geometric
shapes using objects that can be seen, held, and manipulated. Later, the
study of the attributes of shapes and of their properties becomes more
abstract. In higher grades, students can learn to focus on and discuss
components of shapes, such as sides and angles, and the properties of
classes of shapes. For example, using objects or dynamic geometric soft-
ware to experiment with a variety of rectangles, students in grades 3-5
should be able to conjecture that rectangles always have congruent diag-
onals that bisect each other.

Through the middle grades and into high school, as they study such
topics as similarity and congruence, students should learn to use deduc-
tive reasoning and more-formal proof techniques to solve problems and
to prove conjectures. At all levels, students should learn to formulate
convincing explanations for their conjectures and solutions. Eventually,
they should be able to describe, represent, and investigate relationships
within a geometric system and to express and justify them in logical
chains. They should also be able to understand the role of definitions,
axioms, and theorems and be able to construct their own proofs.

Specify locations and describe spatial relationships using
coordinate geometry and other representational systems

At first, young children learn concepts of relative position, such as
above, behind, near, and between. Later they can make and use rectan-
gular grids to locate objects and measure the distance between points
along vertical or horizontal lines. Experiences with the rectangular co-
ordinate plane will be useful as they solve a wider array of problems in
geometry and algebra. In the middle and secondary grades, the coordi-
nate plane can be helpful as students work on discovering and analyz-
ing properties of shapes. Finding distances between points in the plane
by using scales on maps or the Pythagorean relationship is important
in the middle grades. Geometric figures, such as lines in the middle
grades or triangles and circles in high school, can be represented ana-
lytically, thus establishing a fundamental connection between algebra
and geometry.

Students should gain experience in using a variety of visual and coor-
dinate representations to analyze problems and study mathematics. In
the elementary grades, for example, an interpretation of whole-number
addition can be demonstrated on the number line. In later years, stu-
dents can use the number line to represent operations on other types of
numbers. In grades 3-5, grids and arrays can help students understand
multiplication. Later, more-complex problems can be considered. For
example, in trying to minimize the distance an ambulance would have to
travel to reach a new hospital from any location in the community, stu-
dents in the middle grades might use distances measured along streets.
In high school, students can be asked to find the shortest airplane route
between two cities and compare the results using a map to the results
using a globe. If students were trying to minimize the distances of a car
trip to several cities, they might use vertex-edge graphs. High school

Principles and Standards for School Mathematics



students should use Cartesian coordinates as a means both to solve prob-
lems and to prove their results.

Apply transformations and use symmetry to analyze
mathematical situations

Young children come to school with intuitions about how shapes can
be moved. Students can explore motions such as slides, flips, and turns
by using mirrors, paper folding, and tracing. Later, their knowledge
about transformations should become more formal and systematic. In
grades 3-5 students can investigate the effects of transformations and
begin to describe them in mathematical terms. Using dynamic geome-
try software, they can begin to learn the attributes needed to define a
transformation. For example, to transform a figure using a rotation,
students need to define the center of rotation, the direction of the rota-
tion, and the angle of rotation, as illustrated in figure 3.3. In the middle
grades, students should learn to understand what it means for a trans-
formation to preserve distance, as translations, rotations, and reflections
do. High school students should learn multiple ways of expressing
transformations, including using matrices to show how figures are
transformed on the coordinate plane, as well as function notation. They
should also begin to understand the effects of compositions of transfor-
mations. At all grade levels, appropriate consideration of symmetry pro-
vides insights into mathematics and into art and aesthetics.

Use visualization, spatial reasoning, and geometric
modeling to solve problems

Beginning in the early years of schooling, students should develop
visualization skills through hands-on experiences with a variety of geo-
metric objects and through the use of technology that allows them to
turn, shrink, and deform two- and three-dimensional objects. Later,
they should become comfortable analyzing and drawing perspective
views, counting component parts, and describing attributes that cannot
be seen but can be inferred. Students need to learn to physically and
mentally change the position, orientation, and size of objects in system-
atic ways as they develop their understandings about congruence, simi-
larity, and transformations.

One aspect of spatial visualization involves moving between two- and
three-dimensional shapes and their representations. Elementary school
students can wrap blocks in nets—two dimensional figures, usually made
of paper, that can be folded to form three-dimensional objects—as a step
toward learning to predict whether certain nets match certain solids. By
the middle grades, they should be able to interpret and create top or side
views of objects. This skill can be developed by challenging them to
build a structure given only the side view and the front view, as in figure
3.4. In grades 3-5, students can determine if it is possible to build more
than one structure satisfying both conditions. Middle-grades and sec-
ondary school students can be asked to find the minimum number of
blocks needed to build the structure. High school students should be
able to visualize and draw other cross-sections of the structures and of a
range of geometric solids.
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Measurement is the assignment of a numerical value to an attribute
of an object, such as the length of a pencil. At more-sophisticated levels,
measurement involves assigning a number to a characteristic of a situa-
tion, as is done by the consumer price index. Understanding what a
measurable attribute is and becoming familiar with the units and
processes that are used in measuring attributes is a major emphasis in
this Standard. Through their school experience, primarily in prekinder-
garten through grade 8, students should become proficient in using
measurement tools, techniques, and formulas in a range of situations.

The study of measurement is important in the mathematics curricu-
lum from prekindergarten through high school because of the practical-
ity and pervasiveness of measurement in so many aspects of everyday
life. The study of measurement also offers an opportunity for learning
and applying other mathematics, including number operations, geo-
metric ideas, statistical concepts, and notions of function. It highlights
connections within mathematics and between mathematics and areas
outside of mathematics, such as social studies, science, art, and physical
education.

Measurement lends itself especially well to the use of concrete mate-
rials. In fact, it is unlikely that children can gain a deep understanding
of measurement without handling materials, making comparisons phys-
ically, and measuring with tools. Measurement concepts should grow in
sophistication and breadth across the grades, and instructional pro-
grams should not repeat the same measurement curriculum year after
year. However, it should be emphasized more in the elementary and
middle grades than in high school.

Understand measurable attributes of objects and the
units, systems, and processes of measurement

A measurable attribute is a characteristic of an object that can be
quantified. Line segments have length, plane regions have area, and
physical objects have mass. As students progress through the curricu-
lum from preschool through high school, the set of attributes they can
measure should expand. Recognizing that objects have attributes that
are measurable is the first step in the study of measurement. Children
in prekindergarten through grade 2 begin by comparing and ordering
objects using language such as longer and shorter. Length should be the
focus in this grade band, but weight, time, area, and volume should also
be explored. In grades 3-5, students should learn about area more thor-
oughly, as well as perimeter, volume, temperature, and angle measure.
In these grades, they learn that measurements can be computed using
formulas and need not always be taken directly with a measuring tool.
Middle-grades students build on these earlier measurement experiences
by continuing their study of perimeter, area, and volume and by begin-
ning to explore derived measurements, such as speed. They should also
become proficient in measuring angles and understanding angle rela-
tionships. In high school, students should understand how decisions
about unit and scale can affect measurements. Whatever their grade
level, students should have many informal experiences in understanding
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attributes before using tools to measure them or relying on formulas to
compute measurements.

As they progress through school, not only should students’ repertoire
of measurable attributes expand, but their understanding of the rela-
tionships between attributes should also develop. Students in the ele-
mentary grades can explore how changing an object’s attributes affects
certain measurements. For example, cutting apart and rearranging the
pieces of a shape may change the perimeter but will not affect the area.
In the middle grades this idea can be extended to explorations of how
the surface area of a rectangular prism can vary as the volume is held
constant. Such observations can offer glimpses of sophisticated mathe-
matical concepts such as invariance under certain transformations.

The types of units that students use for measuring and the ways they
use them should expand and shift as students move through the
prekindergarten through grade 2 curriculum. In preschool through
grade 2, students should begin their study of measurement by using
nonstandard units. They should be encouraged to use a wide variety of
objects, such as paper clips to measure length, square tiles to measure
area, and paper cups to measure volume. Young children should also
have opportunities to use standard units like centimeters, pounds, and
hours. The “standardization” of units should arise later in the lower
grades, as students notice that using Joey’s foot to measure the length of
the classroom gives a different length from that found by using Aria’s
foot. Such experiences help students see the convenience and consis-
tency of using standard units. As students progress through middle
school and high school, they should learn how to use standard units to
measure new abstract attributes, such as volume and density. By sec-
ondary school, as students are measuring abstract attributes, they
should use more-complex units, such as pounds per square inch and
person-days.

Understanding that different units are needed to measure different
attributes is sometimes difficult for young children. Learning how to
choose an appropriate unit is a major part of understanding measure-
ment. For example, students in prekindergarten through grade 2 should
learn that length can be measured using linear tools but area cannot be
directly measured this way. Young children should see that to measure
area they will need to use a unit of area such as a square region; middle-
grades students should learn that square regions do not work for mea-
suring volume and should explore the use of three-dimensional units.
Students at all levels should learn to make wise choices of units or
scales, depending on the problem situation. Choosing a convenient unit
of measurement is also important. For example, although the length of
a soccer field can be measured in centimeters, the result may be difficult
to interpret and use. Students should have a reasonable understanding
of the role of units in measurement by the end of their elementary
school years.

The metric system has a simple and consistent internal organization.
Each unit is always related to the previous unit by a power of 10: a cen-
timeter is ten times larger than a millimeter, a decimeter is ten times
larger than a centimeter, and so forth. Since the customary English sys-
tem of measurement is still prevalent in the United States, students
should learn both customary and metric systems and should know some
rough equivalences between the metric and customary systems—for
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example, that a two-liter bottle of soda is a little more than half a gal-
lon. The study of these systems begins in elementary school, and stu-
dents at this level should be able to carry out simple conversions within
both systems. Students should develop proficiency in these conversions
in the middle grades and should learn some useful benchmarks for con-
verting between the two systems. The study of measurement systems
can help students understand aspects of the base-ten system, such as
place value. And in making conversions, students apply their knowledge
of proportions.

Understanding that all measurements are approximations is a diffi-
cult but important concept for students. They should work with this
notion in grades 3-5 through activities in which they measure certain
objects, compare their measurements with those of the rest of the class,
and note that many of the values do not agree. Class discussions of their
observations can elicit the ideas of precision and accuracy. Middle-
grades students should continue to develop an understanding of mea-
surements as approximations. In high school, students should come to
recognize the need to report an appropriate number of significant digits
when computing with measurements.

Apply appropriate techniques, tools, and formulas to
determine measurements

Measurement techniques are strategies used to determine a measure-
ment, such as counting, estimating, and using formulas or tools. Mea-
surement tools are the familiar devices that most people associate with
taking measurements; they include rulers, measuring tapes, vessels,
scales, clocks, and stopwatches. Formulas are general relationships that
produce measurements when values are specified for the variables in the
formula.

Students in prekindergarten through grade 2 should learn to use a
variety of techniques, including counting and estimating, and such tools
as rulers, scales, and analog clocks. Elementary and middle-grades stu-
dents should continue to use these techniques and develop new ones. In
addition, they ought to begin to adapt their current tools and invent
new techniques to find more-complicated measurements. For example,
they might use transparent grid paper to approximate the area of a leaf.
Middle-grades students can use formulas for the areas of triangles and
rectangles to find the area of a trapezoid. An important measurement
technique in high school is successive approximation, a precursor to
calculus concepts.

Students should begin to develop formulas for perimeter and area in
the elementary grades. Middle-grades students should formalize these
techniques, as well as develop formulas for the volume and surface area
of objects like prisms and cylinders. Many elementary and middle-
grades children have difficulty with understanding perimeter and area
(Kenney and Kouba 1997; Lindquist and Kouba 1989). Often, these
children are using formulas such as P = 2/ + 2w or A = / X w without un-
derstanding how these formulas relate to the attribute being measured
or the unit of measurement being used. Teachers must help students see
the connections between the formula and the actual object. In high
school, as students use formulas in solving problems, they should rec-
ognize that the units in the measurements behave like variables under
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algebraic procedures, and they can use this observation to organize
their conversions and computations using unit analysis.

Estimating is another measurement technique that should be devel-
oped throughout the school years. Estimation activities in prekinder-
garten through grade 2 should focus on helping children better under-
stand the process of measuring and the role of the size of the unit.
Elementary school and middle-grades students should have many op-
portunities to estimate measures by comparing them against some
benchmark. For example, a student might estimate the teacher’s height
by noting that the teacher is about one and one-half times as tall as the
student. Middle-grades students should also use benchmarks to esti-
mate angle measures and should estimate derived measurements such as
speed.

Finally, students in grades 3—5 should have opportunities to use maps
and make simple scale drawings. Grades 6-8 students should extend
their understanding of scaling to solve problems involving scale factors.
These problems can help students make sense of proportional relation-
ships and develop an understanding of similarity. High school students
should study more-sophisticated aspects of scaling, including the effects
of scale changes on a problem situation. They should also come to un-
derstand nonlinear scale changes such as logarithmic scaling and how
such techniques are used in analyzing data and in modeling.

Standards for School Mathematics

47



Instructional programs
from prekindergarten through
grade 12 should enable all
students to—

e formulate questions that can
be addressed with data and
collect, organize, and display
relevant data to answer
them;

e select and use appropriate
statistical methods to analyze
data;

e develop and evaluate infer-
ences and predictions that
are based on data;

e understand and apply basic
concepts of probability.
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The Data Analysis and Probability Standard recommends that stu-
dents formulate questions that can be answered using data and ad-
dresses what is involved in gathering and using the data wisely. Students
should learn how to collect data, organize their own or others’ data, and
display the data in graphs and charts that will be useful in answering
their questions. This Standard also includes learning some methods for
analyzing data and some ways of making inferences and conclusions
from data. The basic concepts and applications of probability are also
addressed, with an emphasis on the way that probability and statistics
are related.

The amount of data available to help make decisions in business, pol-
itics, research, and everyday life is staggering: Consumer surveys guide
the development and marketing of products. Polls help determine
political-campaign strategies, and experiments are used to evaluate the
safety and efficacy of new medical treatments. Statistics are often mis-
used to sway public opinion on issues or to misrepresent the quality
and effectiveness of commercial products. Students need to know
about data analysis and related aspects of probability in order to reason
statistically—skills necessary to becoming informed citizens and intel-
ligent consumers.

The increased curricular emphasis on data analysis proposed in these
Standards is intended to span the grades rather than to be reserved for
the middle grades and secondary school, as is common in many coun-
tries. NCTM’s 1989 Curriculum and Evaluation Standards for School
Mathematics introduced standards in statistics and probability at all
grade bands; a number of organizations have developed instructional
materials and professional development programs to promote the
teaching and learning of these topics. Building on this base, these Stan-
dards recommend a strong development of the strand, with concepts
and procedures becoming increasingly sophisticated across the grades
so that by the end of high school students have a sound knowledge of
elementary statistics. To understand the fundamentals of statistical
ideas, students must work directly with data. The emphasis on working
with data entails students’ meeting new ideas and procedures as they
progress through the grades rather than revisiting the same activities
and topics. The data and statistics strand allows teachers and students
to make a number of important connections among ideas and proce-
dures from number, algebra, measurement, and geometry. Work in data
analysis and probability offers a natural way for students to connect
mathematics with other school subjects and with experiences in their
daily lives.

In addition, the processes used in reasoning about data and statistics
will serve students well in work and in life. Some things children learn
in school seem to them predetermined and rule bound. In studying
data and statistics, they can also learn that solutions to some problems
depend on assumptions and have some degree of uncertainty. The kind
of reasoning used in probability and statistics is not always intuitive,
and so students will not necessarily develop it if it is not included in
the curriculum.
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Formulate questions that can be addressed with data
and collect, organize, and display relevant data to
answer them

Because young children are naturally curious about their world, they
often raise questions such as, How many? How much? What kind? or
Which of these? Such questions often offer opportunities for beginning
the study of data analysis and probability. Young children like to design
questions about things close to their experience—What kind of pets do
classmates have? What are children’s favorite kinds of pizza? As stu-
dents move to higher grades, the questions they generate for investiga-
tion can be based on current issues and interests. Students in grades
6-8, for example, may be interested in recycling, conservation, or man-
ufacturers’ claims. They may pose questions such as, Is it better to use
paper or plastic plates in the cafeteria? or Which brand of batteries lasts
longer? By grades 9-12, students will be ready to pose and investigate
problems that explore complex issues.

Young children can devise simple data-gathering plans to attempt to
answer their questions. In the primary grades, the teacher might help
frame the question or provide a tally sheet, class roster, or chart on
which data can be recorded as they are collected. The “data” might be
real objects, such as children’s shoes arranged in a bar graph or the chil-
dren themselves arranged by interest areas. As students move through
the elementary grades, they should spend more time planning the data
collection and evaluating how well their methods worked in getting in-
formation about their questions. In the middle grades, students should
work more with data that have been gathered by others or generated by
simulations. By grades 9-12, students should understand the various
purposes of surveys, observational studies, and experiments.

A fundamental idea in prekindergarten through grade 2 is that data can
be organized or ordered and that this “picture” of the data provides infor-
mation about the phenomenon or question. In grades 3-5, students
should develop skill in representing their data, often using bar graphs,
tables, or line plots. They should learn what different numbers, symbols,
and points mean. Recognizing that some numbers represent the values of
the data and others represent the frequency with which those values
occur is a big step. As students begin to understand ways of representing
data, they will be ready to compare two or more data sets. Books, news-
papers, the World Wide Web, and other media are full of displays of
data, and by the upper elementary grades, students ought to learn to read
and understand these displays. Students in grades 6-8 should begin to
compare the effectiveness of various types of displays in organizing the
data for further analysis or in presenting the data clearly to an audience.
As students deal with larger or more-complex data sets, they can reorder
data and represent data in graphs quickly, using technology so that they
can focus on analyzing the data and understanding what they mean.

Select and use appropriate statistical methods to
analyze data

Although young children are often most interested in their own
piece of data on a graph (I have five people in 72y family), putting all
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the students’ information in one place draws attention to the set of
data. Later, students should begin to describe the set of data as a
whole. Although this transition is difficult (Konold forthcoming), stu-
dents may, for example, note that “more students come to school by
bus than by all the other ways combined.” By grades 3-5, students
should be developing an understanding of aggregated data. As older
students begin to see a set of data as a whole, they need tools to de-
scribe this set. Statistics such as measures of center or location (e.g.,
mean, median, mode), measures of spread or dispersion (range, stan-
dard deviation), and attributes of the shape of the data become useful
to students as descriptors. In the elementary grades, students’ under-
standings can be grounded in informal ideas, such as middle, concen-
tration, or balance point (Mokros and Russell 1995). With increasing
sophistication in secondary school, students should choose particular
summary statistics according to the questions to be answered.

Throughout the school years, students should learn what it means to
make valid statistical comparisons. In the elementary grades, students
might say that one group has more or less of some attribute than an-
other. By the middle grades, students should be quantifying these dif-
ferences by comparing specific statistics. Beginning in grades 3—5 and
continuing in the middle grades, the emphasis should shift from analyz-
ing and describing one set of data to comparing two or more sets
(Konold forthcoming). As they move through the middle grades into
high school, students will need new tools, including histograms, stem-
and-leaf plots, box plots, and scatterplots, to identify similarities and
differences among data sets. Students also need tools to investigate as-
sociation and trends in bivariate data, including scatterplots and fitted
lines in grades 6-8 and residuals and correlation in grades 9-12.

Develop and evaluate inferences and predictions that
are based on data

Central elements of statistical analysis—defining an appropriate
sample, collecting data from that sample, describing the sample, and
making reasonable inferences relating the sample and the population—
should be understood as students move through the grades. In the
early grades, students are most often working with census data, such as
a survey of each child in the class about favorite kinds of ice cream.
The notion that the class can be viewed as a sample from a larger pop-
ulation is not obvious at these grades. Upper elementary and early
middle-grades students can begin to develop notions about statistical
inference, but developing a deep understanding of the idea of sampling
is difficult (Schwartz et al. 1998). Research has shown that students in
grades 5-8 expect their own judgment to be more reliable than infor-
mation obtained from data (Hancock, Kaput, and Goldsmith 1992). In
the later middle grades and high school, students should address the
ideas of sample selection and statistical inference and begin to under-
stand that there are ways of quantifying how certain one can be about
statistical results.

In addition, students in grades 9-12 should use simulations to learn
about sampling distributions and make informal inferences. In particu-
lar, they should know that basic statistical techniques are used to moni-
tor quality in the workplace. Students should leave secondary school
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with the ability to judge the validity of arguments that are based on
data, such as those that appear in the press.

Understand and apply basic concepts of probability

A subject in its own right, probability is connected to other areas of
mathematics, especially number and geometry. Ideas from probability
serve as a foundation to the collection, description, and interpretation
of data.

In prekindergarten through grade 2, the treatment of probability
ideas should be informal. Teachers should build on children’s develop-
ing vocabulary to introduce and highlight probability notions, for ex-
ample, We’ll probably have recess this afternoon, or It’s unlikely to rain
today. Young children can begin building an understanding of chance
and randomness by doing experiments with concrete objects, such as
choosing colored chips from a bag. In grades 3-5 students can consider
ideas of chance through experiments—using coins, dice, or spinners—
with known theoretical outcomes or through designating familiar
events as impossible, unlikely, likely, or certain. Middle-grades students
should learn and use appropriate terminology and should be able to
compute probabilities for simple compound events, such as the number
of expected occurrences of two heads when two coins are tossed 100
times. In high school, students should compute probabilities of com-
pound events and understand conditional and independent events.
Through the grades, students should be able to move from situations
for which the probability of an event can readily be determined to situ-
ations in which sampling and simulations help them quantify the likeli-
hood of an uncertain outcome.

Many of the phenomena that students encounter, especially in school,
have predictable outcomes. When a fair coin is flipped, it is equally
likely to come up heads or tails. Which outcome will result on a given
flip is uncertain—even if ten flips in a row have resulted in heads, for
many people it is counterintuitive that the eleventh flip has only a 50
percent likelihood of being tails. If an event is random and if it is re-
peated many, many times, then the distribution of outcomes forms a pat-
tern. The idea that individual events are not predictable in such a situa-
tion but that a pattern of outcomes can be predicted is an important
concept that serves as a foundation for the study of inferential statistics.
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Instructional programs
from prekindergarten through
grade 12 should enable all
students to—

e build new mathematical
knowledge through problem

solving;

e solve problems that arise in
mathematics and in other
contexts;

e apply and adapt a variety of
appropriate strategies to
solve problems;

e monitor and reflect on the
process of mathematical
problem solving.
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Problem solving means engaging in a task for which the solution
method is not known in advance. In order to find a solution, students
must draw on their knowledge, and through this process, they will often
develop new mathematical understandings. Solving problems is not
only a goal of learning mathematics but also a major means of doing so.
Students should have frequent opportunities to formulate, grapple with,
and solve complex problems that require a significant amount of effort
and should then be encouraged to reflect on their thinking.

By learning problem solving in mathematics, students should acquire
ways of thinking, habits of persistence and curiosity, and confidence in
unfamiliar situations that will serve them well outside the mathematics
classroom. In everyday life and in the workplace, being a good problem
solver can lead to great advantages.

Problem solving is an integral part of all mathematics learning, and so
it should not be an isolated part of the mathematics program. Problem
solving in mathematics should involve all the five content areas de-
scribed in these Standards. The contexts of the problems can vary from
familiar experiences involving students’ lives or the school day to appli-
cations involving the sciences or the world of work. Good problems will
integrate multiple topics and will involve significant mathematics.

Build new mathematical knowledge through problem
solving

How can problem solving help students learn mathematics? Good
problems give students the chance to solidify and extend what they know
and, when well chosen, can stimulate mathematics learning. With young
children, most mathematical concepts can be introduced through prob-
lems that come from their worlds. For example, suppose second graders
wanted to find out whether there are more boys or girls in the four
second-grade classes. 'To solve this problem, they would need to learn
how to gather information, record data, and accurately add several num-
bers at a time. In the middle grades, the concept of proportion might be
introduced through an investigation in which students are given recipes
for punch that call for different amounts of water and juice and are asked
to determine which is “fruitier.” Since no two recipes yield the same
amount of juice, this problem is difficult for students who do not have an
understanding of proportion. As various ideas are tried, with good ques-
tioning and guidance by a teacher, students eventually converge on using
proportions. In high school, many areas of the curriculum can be intro-
duced through problems from mathematical or applications contexts.

Problem solving can and should be used to help students develop flu-
ency with specific skills. For example, consider the following problem,
which is adapted from the Curriculum and Evaluation Standards for School
Mathematics NCTM 1989, p. 24):

I have pennies, dimes, and nickels in my pocket. If I take three coins out of
my pocket, how much money could I have taken?

Knowledge is needed to solve this problem—knowledge of the value
of pennies, dimes, and nickels and also some understanding of addition.
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Working on this problem offers good practice in addition skills. But the
important mathematical goal of this problem—helping students to
think systematically about possibilities and to organize and record their
thinking—need not wait until students can add fluently.

The teacher’s role in choosing worthwhile problems and mathemati-
cal tasks is crucial. By analyzing and adapting a problem, anticipating
the mathematical ideas that can be brought out by working on the
problem, and anticipating students’ questions, teachers can decide if
particular problems will help to further their mathematical goals for the
class. There are many, many problems that are interesting and fun but
that may not lead to the development of the mathematical ideas that are
important for a class at a particular time. Choosing problems wisely,
and using and adapting problems from instructional materials, is a diffi-
cult part of teaching mathematics.

Solve problems that arise in mathematics and in other
contexts

People who see the world mathematically are said to have a “mathe-
matical disposition.” Good problem solvers tend naturally to analyze
situations carefully in mathematical terms and to pose problems based
on situations they see. They first consider simple cases before trying
something more complicated, yet they will readily consider a more so-
phisticated analysis. For example, a task for middle-grades students pre-
sents data about two ambulance companies and asks which company is
more reliable (Balanced Assessment for the Mathematics Curriculum
1999a). A quick answer found by looking at the average time customers
had to wait for each company turns out to be misleading. A more care-
ful mathematical analysis involving plotting response times versus time
of day reveals a different solution. In this task, a disposition to analyze
more deeply leads to a more complete understanding of the situation
and a correct solution. Throughout the grades, teachers can help build
this disposition by asking questions that help students find the mathe-
matics in their worlds and experiences and by encouraging students to
persist with interesting but challenging problems.

Posing problems comes naturally to young children: I wonder how long
it would take to count to a million? How many soda cans would it take to
fill the school building? Teachers and parents can foster this inclination by
helping students make mathematical problems from their worlds. Teach-
ers play an important role in the development of students’ problem-
solving dispositions by creating and maintaining classroom environments,
from prekindergarten on, in which students are encouraged to explore,
take risks, share failures and successes, and question one another. In such
supportive environments, students develop confidence in their abilities
and a willingness to engage in and explore problems, and they will be
more likely to pose problems and to persist with challenging problems.

Apply and adapt a variety of appropriate strategies to
solve problems

Of the many descriptions of problem-solving strategies, some of the
best known can be found in the work of Pélya (1957). Frequently cited
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strategies include using diagrams, looking for patterns, listing all possi-
bilities, trying special values or cases, working backward, guessing and
checking, creating an equivalent problem, and creating a simpler prob-
lem. An obvious question is, How should these strategies be taught?
Should they receive explicit attention, and how should they be inte-
grated with the mathematics curriculum? As with any other component
of the mathematical tool kit, strategies must receive instructional atten-
tion if students are expected to learn them. In the lower grades, teach-
ers can help children express, categorize, and compare their strategies.
Opportunities to use strategies must be embedded naturally in the cur-
riculum across the content areas. By the time students reach the middle
grades, they should be skilled at recognizing when various strategies are
appropriate to use and should be capable of deciding when and how to
use them. By high school, students should have access to a wide range
of strategies, be able to decide which one to use, and be able to adapt
and invent strategies.

Young children’s earliest experiences with mathematics come
through solving problems. Different strategies are necessary as students
experience a wider variety of problems. Students must become aware of
these strategies as the need for them arises, and as they are modeled
during classroom activities, the teacher should encourage students to
take note of them. For example, after a student has shared a solution
and how it was obtained, the teacher may identify the strategy by say-
ing, “It sounds like you made an organized list to find the solution. Did
anyone solve the problem a different way?” This verbalization helps de-
velop common language and representations and helps other students
understand what the first student was doing. Such discussion also sug-
gests that no strategy is learned once and for all; strategies are learned
over time, are applied in particular contexts, and become more refined,
elaborate, and flexible as they are used in increasingly complex problem
situations.

Monitor and reflect on the process of mathematical
problem solving

Effective problem solvers constantly monitor and adjust what they
are doing. They make sure they understand the problem. If a problem
is written down, they read it carefully; if it is told to them orally, they
ask questions until they understand it. Effective problem solvers plan
frequently. They periodically take stock of their progress to see whether
they seem to be on the right track. If they decide they are not making
progress, they stop to consider alternatives and do not hesitate to take a
completely different approach. Research (Garofalo and Lester 1985;
Schoenfeld 1987) indicates that students’ problem-solving failures are
often due not to a lack of mathematical knowledge but to the ineffective
use of what they do know.

Good problem solvers become aware of what they are doing and fre-
quently monitor, or self-assess, their progress or adjust their strategies
as they encounter and solve problems (Bransford et al. 1999). Such re-
flective skills (called mzetacognition) are much more likely to develop in a
classroom environment that supports them. Teachers play an important
role in helping to enable the development of these reflective habits of
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mind by asking questions such as “Before we go on, are we sure we un-
derstand this?” “What are our options?” “Do we have a plan?” “Are we
making progress or should we reconsider what we are doing?” “Why
do we think this is true?” Such questions help students get in the habit
of checking their understanding as they go along. This habit should
begin in the lowest grades. As teachers maintain an environment in
which the development of understanding is consistently monitored
through reflection, students are more likely to learn to take responsi-
bility for reflecting on their work and make the adjustments necessary
when solving problems.
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Instructional programs
from prekindergarten through
grade 12 should enable all
students to—

e recognize reasoning and
proof as fundamental as-
pects of mathematics;

 make and investigate math-
ematical conjectures;

e develop and evaluate mathe-
matical arguments and
proofs;

e select and use various types
of reasoning and methods of
proof.

o6

Mathematical reasoning and proof offer powerful ways of developing
and expressing insights about a wide range of phenomena. People who
reason and think analytically tend to note patterns, structure, or regu-
larities in both real-world situations and symbolic objects; they ask if
those patterns are accidental or if they occur for a reason; and they con-
jecture and prove. Ultimately, a mathematical proof is a formal way of
expressing particular kinds of reasoning and justification.

Being able to reason is essential to understanding mathematics. By de-
veloping ideas, exploring phenomena, justifying results, and using mathe-
matical conjectures in all content areas and—with different expectations
of sophistication—at all grade levels, students should see and expect that
mathematics makes sense. Building on the considerable reasoning skills
that children bring to school, teachers can help students learn what math-
ematical reasoning entails. By the end of secondary school, students
should be able to understand and produce mathematical proofs—
arguments consisting of logically rigorous deductions of conclusions
from hypotheses—and should appreciate the value of such arguments.

Reasoning and proof cannot simply be taught in a single unit on
logic, for example, or by “doing proofs” in geometry. Proof is a very
difficult area for undergraduate mathematics students. Perhaps students
at the postsecondary level find proof so difficult because their only ex-
perience in writing proofs has been in a high school geometry course,
so they have a limited perspective (Moore 1994). Reasoning and proof
should be a consistent part of students’ mathematical experience in
prekindergarten through grade 12. Reasoning mathematically is a habit
of mind, and like all habits, it must be developed through consistent use
in many contexts.

Recognize reasoning and proof as fundamental aspects
of mathematics

From children’s earliest experiences with mathematics, it is impor-
tant to help them understand that assertions should always have rea-
sons. Questions such as “Why do you think it is true?” and “Does any-
one think the answer is different, and why do you think so?” help
students see that statements need to be supported or refuted by evi-
dence. Young children may wish to appeal to others as sources for their
reasons (“My sister told me so”) or even to vote to determine the best
explanation, but students need to learn and agree on what is acceptable
as an adequate argument in the mathematics classroom. These are the
first steps toward realizing that mathematical reasoning is based on spe-
cific assumptions and rules.

Part of the beauty of mathematics is that when interesting things
happen, it is usually for good reason. Mathematics students should un-
derstand this. Consider, for example, the following “magic trick” one
might find in a book of mathematical recreations:

Write down your age. Add 5. Multiply the number you just got by 2. Add
10 to this number. Multiply this number by 5. Tell me the result. I can tell
you your age.
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The procedure given to find the answer is, Drop the final zero from
the number you are given and subtract 10. The result is the person’s
age. Why does it work? Students at all grade levels can explore and ex-
plain problems such as this one.

Systematic reasoning is a defining feature of mathematics. It is found
in all content areas and, with different requirements of rigor, at all
grade levels. For example, first graders can note that even and odd
numbers alternate; third graders can conjecture and justify—informally,
perhaps, by paper folding—that the diagonals of a square are perpen-
dicular. Middle-grades students can determine the likelihood of an even
or odd product when two number cubes are rolled and the numbers
that come up are multiplied. And high school students could be asked
to consider what happens to a correlation coefficient under linear trans-
formation of the variables.

Make and investigate mathematical conjectures

Doing mathematics involves discovery. Conjecture—that is, in-
formed guessing—is a major pathway to discovery. Teachers and re-
searchers agree that students can learn to make, refine, and test conjec-
tures in elementary school. Beginning in the earliest years, teachers can
help students learn to make conjectures by asking questions: What do
you think will happen next? What is the pattern? Is this true always?
Sometimes? Simple shifts in how tasks are posed can help students
learn to conjecture. Instead of saying, “Show that the mean of a set of
data doubles when all the values in the data set are doubled,” a teacher
might ask, “Suppose all the values of a sample are doubled. What
change, if any, is there in the mean of the sample? Why?” High school
students using dynamic geometry software could be asked to make ob-
servations about the figure formed by joining the midpoints of succes-
sive sides of a parallelogram and attempt to prove them. To make con-
jectures, students need multiple opportunities and rich, engaging
contexts for learning.

Young children will express their conjectures and describe their
thinking in their own words and often explore them using concrete ma-
terials and examples. Students at all grade levels should learn to investi-
gate their conjectures using concrete materials, calculators and other
tools, and increasingly through the grades, mathematical representa-
tions and symbols. They also need to learn to work with other students
to formulate and explore their conjectures and to listen to and under-
stand conjectures and explanations offered by classmates.

"Teachers can help students revisit conjectures that hold in one context
to check to see whether they still hold in a new setting. For instance, the
common notion that “multiplication makes bigger” is quite appropriate
for young children working with whole numbers larger than 1. As they
move to fractions, this conjecture needs to be revisited. Students may
not always have the mathematical knowledge and tools they need to find
a justification for a conjecture or a counterexample to refute it. For ex-
ample, on the basis of their work with graphing calculators, high school
students might be quite convinced that if a polynomial function has a
value that is greater than 0 and a value that is less than 0 then it will
cross the x-axis somewhere. Teachers can point out that a rigorous proof
requires more knowledge than most high school students have.
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Fig. 3.5.

A representation of 9 as an
odd number
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Develop and evaluate mathematical arguments and
proofs

Along with making and investigating conjectures, students should
learn to answer the question, Why does this work? Children in the
lower grades will tend to justify general claims using specific cases. For
instance, students might represent the odd number 9 as in figure 3.5
and note that “an odd number is something that has one number left
over” (Ball and Bass forthcoming, p. 33). Students might then reason
that any odd number will have an “extra” unit in it, and so when two
odd numbers are added, the two “extra” units will become a pair, giving
an even number, with no “extras.” By the upper elementary grades, jus-
tifications should be more general and can draw on other mathematical
results. Using the fact that congruent shapes have equal area, a fifth
grader might claim that a particular triangle and rectangle have the
same area because each was formed by dividing one of two congruent
rectangles in half. In high school, students should be expected to con-
struct relatively complex chains of reasoning and provide mathematical
reasons. ‘1o help students develop and justify more-general conjectures
and also to refute conjectures, teachers can ask, “Does this always
work? Sometimes? Never? Why?” This extension to general cases
draws on more-sophisticated mathematical knowledge that should build
up over the grades.

Students can learn about reasoning through class discussion of claims
that other students make. The statement, If a number is divisible by 6
and by 4, then it is divisible by 24, could be examined in various ways.
Middle-grades students could find a counterexample—the number 12 is
divisible by 6 and by 4 but not by 24. High school students might find a
related conjecture involving prime numbers that they could verify. Or
students could explore the converse. In any event, both plausible and
flawed arguments that are offered by students create an opportunity for
discussion. As students move through the grades, they should compare
their ideas with others’ ideas, which may cause them to modify, consoli-
date, or strengthen their arguments or reasoning. Classrooms in which
students are encouraged to present their thinking and in which every-
one contributes by evaluating one another’ thinking provide rich envi-
ronments for learning mathematical reasoning.

Young children’s explanations will be in their own language and often
will be represented verbally or with objects. Students can learn to artic-
ulate their reasoning by presenting their thinking to their groups, their
classmates, and to others outside the classroom. High school students
should be able to present mathematical arguments in written forms that
would be acceptable to professional mathematicians. The particular for-
mat of a mathematical justification or proof, be it narrative argument,
“two-column proof,” or a visual argument, is less important than a clear
and correct communication of mathematical ideas appropriate to the
students’ grade level.

Select and use various types of reasoning and methods
of proof

In the lower grades, the reasoning that children learn and use in
mathematics class is informal compared to the logical deduction used
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by the mathematician. Over the years of schooling, as teachers help stu-
dents learn the norms for mathematical justification and proof, the
repertoire of the types of reasoning available to students—algebraic and
geometric reasoning, proportional reasoning, probabilistic reasoning,
statistical reasoning, and so forth—should expand. Students need to en-
counter and build proficiency in all these forms with increasing sophis-
tication as they move through the curriculum.

Young children should be encouraged to reason from what they
know. A child who solves the problem 6 + 7 by calculating 6 + 6 and
then adding 1 is drawing on her knowledge of adding pairs, of adding 1,
and of associativity. Students can be taught how to make explicit the
knowledge they are using as they create arguments and justifications.

Early efforts at justification by young children will involve trial-and-
error strategies or the unsystematic trying of many cases. With guid-
ance and many opportunities to explore, students can learn by the
upper elementary grades how to be systematic in their explorations, to
know that they have tried all cases, and to create arguments using cases.
One research study (Maher and Martino 1996, p. 195) reported a fifth
grader’s elegant proof by cases in response to the problem in figure 3.6.

Proof by contradiction is also possible with young children. A first
grader argued from his knowledge of whole-number patterns that the
number 0 is even: “If 0 were odd, then 0 and 1 would be two odd num-
bers in a row. Even and odd numbers alternate. So 0 must be even.” Be-
ginning in the elementary grades, children can learn to disprove conjec-
tures by finding counterexamples. At all levels, students will reason
inductively from patterns and specific cases. Increasingly over the
grades, they should also learn to make effective deductive arguments
based on the mathematical truths they are establishing in class.

Name _S"/epA anm€ Date

Please send a letter to a student who is ill and unable come to school.
Describe all the different towers you have built that are three cubes tall,
when you have two colors available to work with. Why were you sure that

Fig. 3.6.

Stephanie’s elegant “proof by cases”
produced in grade 5 (from Maher
and Martino [1996])
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Instructional programs
from prekindergarten through
grade 12 should enable all
students to—

e organize and consolidate
their mathematical thinking
though communication;

e communicate their mathe-
matical thinking coherently
and clearly to peers, teachers,
and others;

e analyze and evaluate the
mathematical thinking and
strategies of others;

e use the language of mathe-
matics to express mathemat-
ical ideas precisely.
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Communication is an essential part of mathematics and mathematics
education. It is a way of sharing ideas and clarifying understanding.
Through communication, ideas become objects of reflection, refine-
ment, discussion, and amendment. The communication process also
helps build meaning and permanence for ideas and makes them public.
When students are challenged to think and reason about mathematics
and to communicate the results of their thinking to others orally or in
writing, they learn to be clear and convincing. Listening to others’ ex-
planations gives students opportunities to develop their own under-
standings. Conversations in which mathematical ideas are explored
from multiple perspectives help the participants sharpen their thinking
and make connections. Students who are involved in discussions in
which they justify solutions—especially in the face of disagreement—
will gain better mathematical understanding as they work to convince
their peers about differing points of view (Hatano and Inagaki 1991).
Such activity also helps students develop a language for expressing
mathematical ideas and an appreciation of the need for precision in that
language. Students who have opportunities, encouragement, and sup-
port for speaking, writing, reading, and listening in mathematics classes
reap dual benefits: they communicate to learn mathematics, and they
learn to communicate mathematically.

Because mathematics is so often conveyed in symbols, oral and writ-
ten communication about mathematical ideas is not always recognized
as an important part of mathematics education. Students do not neces-
sarily talk about mathematics naturally; teachers need to help them
learn how to do so (Cobb, Wood, and Yackel 1994). As students
progress through the grades, the mathematics about which they com-
municate should become more complex and abstract. Students’ reper-
toire of tools and ways of communicating, as well as the mathematical
reasoning that supports their communication, should become increas-
ingly sophisticated. Support for students is vital. Students whose pri-
mary language is not English may need some additional support in
order to benefit from communication-rich mathematics classes, but
they can participate fully if classroom activities are appropriately struc-
tured (Silver, Smith, and Nelson 1995).

Students need to work with mathematical tasks that are worthwhile
topics of discussion. Procedural tasks for which students are expected to
have well-developed algorithmic approaches are usually not good can-
didates for such discourse. Interesting problems that “go somewhere”
mathematically can often be catalysts for rich conversations. Technol-
ogy is another good basis for communication. As students generate and
examine numbers or objects on the calculator or computer screen, they
have a common (and often easily modifiable) referent for their discus-
sion of mathematical ideas.

Organize and consolidate their mathematical thinking
through communication

Students gain insights into their thinking when they present their
methods for solving problems, when they justify their reasoning to a
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classmate or teacher, or when they formulate a question about some-
thing that is puzzling to them. Communication can support students’
learning of new mathematical concepts as they act out a situation, draw,
use objects, give verbal accounts and explanations, use diagrams, write,
and use mathematical symbols. Misconceptions can be identified and
addressed. A side benefit is that it reminds students that they share re-
sponsibility with the teacher for the learning that occurs in the lesson
(Silver, Kilpatrick, and Schlesinger 1990).

Reflection and communication are intertwined processes in mathe-
matics learning. With explicit attention and planning by teachers, com-
munication for the purposes of reflection can become a natural part of
mathematics learning. Children in the early grades, for example, can
learn to explain their answers and describe their strategies. Young stu-
dents can be asked to “think out loud,” and thoughtful questions posed
by a teacher or classmate can provoke them to reexamine their reason-
ing. With experience, students will gain proficiency in organizing and
recording their thinking.

Writing in mathematics can also help students consolidate their
thinking because it requires them to reflect on their work and clarify
their thoughts about the ideas developed in the lesson. Later, they may
find it helpful to reread the record of their own thoughts.

Communicate their mathematical thinking coherently
and clearly to peers, teachers, and others

In order for a mathematical result to be recognized as correct, the
proposed proof must be accepted by the community of professional
mathematicians. Students need opportunities to test their ideas on the
basis of shared knowledge in the mathematical community of the class-
room to see whether they can be understood and if they are sufficiently
convincing. When such ideas are worked out in public, students can
profit from being part of the discussion, and the teacher can monitor
their learning (Lampert 1990). Learning what is acceptable as evidence
in mathematics should be an instructional goal from prekindergarten
through grade 12.

"To support classroom discourse effectively, teachers must build a
community in which students will feel free to express their ideas. Stu-
dents in the lower grades need help from teachers in order to share
mathematical ideas with one another in ways that are clear enough for
other students to understand. In these grades, learning to see things
from other people’s perspectives is a challenge for students. Starting in
grades 3-5, students should gradually take more responsibility for par-
ticipating in whole-class discussions and responding to one another di-
rectly. They should become better at listening, paraphrasing, question-
ing, and interpreting others’ ideas. For some students, participation in
class discussions is a challenge. For example, students in the middle
grades are often reluctant to stand out in any way during group interac-
tions. Despite this fact, teachers can succeed in creating communication-
rich environments in middle-grades mathematics classrooms. By the
time students graduate from high school, they should have internalized
standards of dialogue and argument so that they always aim to present
clear and complete arguments and work to clarify and complete them
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when they fall short. Modeling and carefully posed questions can help
clarify age-appropriate expectations for student work.

Written communication should be nurtured in a similar fashion. Stu-
dents begin school with few writing skills. In the primary grades, they
may rely on other means, such as drawing pictures, to communicate.
Gradually they will also write words and sentences. In grades 3-5, stu-
dents can work on sequencing ideas and adding details, and their writ-
ing should become more elaborate. In the middle grades, they should
become more explicit about basing their writing on a sense of audience
and purpose. For some purposes it will be appropriate for students to
describe their thinking informally, using ordinary language and
sketches, but they should also learn to communicate in more-formal
mathematical ways, using conventional mathematical terminology,
through the middle grades and into high school. By the end of the high
school years, students should be able to write well-constructed mathe-
matical arguments using formal vocabulary.

Examining and discussing both exemplary and problematic pieces of
mathematical writing can be beneficial at all levels. Since written assess-
ments of students’ mathematical knowledge are becoming increasingly
prevalent, students will need practice responding to typical assessment
prompts. The process of learning to write mathematically is similar to
that of learning to write in any genre. Practice, with guidance, is impor-
tant. So is attention to the specifics of mathematical argument, includ-
ing the use and special meanings of mathematical language and the rep-
resentations and standards of explanation and proof.

As students practice communication, they should express themselves
increasingly clearly and coherently. They should also acquire and rec-
ognize conventional mathematical styles of dialogue and argument.
Through the grades, their arguments should become more complete
and should draw directly on the shared knowledge in the classroom.
Over time, students should become more aware of, and responsive to,
their audience as they explain their ideas in mathematics class. They
should learn to be aware of whether they are convincing and whether
others can understand them. As students mature, their communication
should reflect an increasing array of ways to justify their procedures and
results. In the lower grades, providing empirical evidence or a few ex-
amples may be enough. Later, short deductive chains of reasoning
based on previously accepted facts should become expected. In the mid-
dle grades and high school, explanations should become more mathe-
matically rigorous and students should increasingly state in their sup-
porting arguments the mathematical properties they used.

Analyze and evaluate the mathematical thinking and
strategies of others

In the process of working on problems with other students, learners
gain several benefits. Often, a student who has one way of seeing a prob-
lem can profit from another student’s view, which may reveal a different
aspect of the problem. For example, students who try to solve the follow-
ing problem (Krutetskii 1976, p. 121) algebraically often have difficulty
setting up the equations, and they benefit from the insights provided by
students who approach the problem using visual representations.
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There are some rabbits and some hutches. If one rabbit is put in each
hutch, one rabbit will be left without a place. If two rabbits are put in each
hutch, one hutch will remain empty. How many rabbits and how many
hutches are there?

It is difficult for students to learn to consider, evaluate, and build on
the thinking of others, especially when their peers are still developing
their own mathematical understandings. A good setting in which young
students can share and analyze one another’ strategies is in solving
arithmetic problems, where students’ invented strategies can become
objects of discussion and critique. Students must also learn to question
and probe one another’ thinking in order to clarify underdeveloped
ideas. Moreover, since not all methods have equal merit, students must
learn to examine the methods and ideas of others in order to determine
their strengths and limitations. By carefully listening to, and thinking
about, the claims made by others, students learn to become critical
thinkers about mathematics.

Use the language of mathematics to express
mathematical ideas precisely

As students articulate their mathematical understanding in the lower
grades, they begin by using everyday, familiar language. This provides a
base on which to build a connection to formal mathematical language.
"Teachers can help students see that some words that are used in every-
day language, such as similar, factor, area, or function, are used in mathe-
matics with different or more-precise meanings. This observation is the
foundation for understanding the concept of mathematical definitions.
It is important to give students experiences that help them appreciate
the power and precision of mathematical language. Beginning in the
middle grades, students should understand the role of mathematical de-
finitions and should use them in mathematical work. Doing so should
become pervasive in high school. However, it is important to avoid a
premature rush to impose formal mathematical language; students need
to develop an appreciation of the need for precise definitions and for
the communicative power of conventional mathematical terms by first
communicating in their own words. Allowing students to grapple with
their ideas and develop their own informal means of expressing them
can be an effective way to foster engagement and ownership.

"Technology affords other opportunities and challenges for the devel-
opment and analysis of language. The symbols used in a spreadsheet
may be related to, but are not the same as, the algebraic symbols used
generally by mathematicians. Students will profit from experiences that
require comparisons of standard mathematical expressions with those
used with popular tools like spreadsheets or calculators.
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Instructional programs
from prekindergarten through
grade 12 should enable all
students to—

e recognize and use connec-
tions among mathematical
ideas;

¢ understand how mathe-
matical ideas interconnect
and build on one another to
produce a coherent whole;

e recognize and apply mathe-
matics in contexts outside of
mathematics.
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When students can connect mathematical ideas, their understanding
is deeper and more lasting. They can see mathematical connections in
the rich interplay among mathematical topics, in contexts that relate
mathematics to other subjects, and in their own interests and experi-
ence. Through instruction that emphasizes the interrelatedness of
mathematical ideas, students not only learn mathematics, they also
learn about the utility of mathematics.

Mathematics is not a collection of separate strands or standards, even
though it is often partitioned and presented in this manner. Rather,
mathematics is an integrated field of study. Viewing mathematics as a
whole highlights the need for studying and thinking about the connec-
tions within the discipline, as reflected both within the curriculum of a
particular grade and between grade levels. To emphasize the connections,
teachers must know the needs of their students as well as the mathematics
that the students studied in the preceding grades and what they will study
in the following grades. As the Learning Principle emphasizes, under-
standing involves making connections. Teachers should build on students’
previous experiences and not repeat what students have already done.
"This approach requires students to be responsible for what they have
learned and for using that knowledge to understand and make sense of
new ideas.

Recognize and use connections among mathematical
ideas

By emphasizing mathematical connections, teachers can help stu-
dents build a disposition to use connections in solving mathematical
problems, rather than see mathematics as a set of disconnected, isolated
concepts and skills. This disposition can be fostered through the guid-
ing questions that teachers ask, for instance, “How is our work today
with similar triangles related to the discussion we had last week about
scale drawings?” Students need to be made explicitly aware of the
mathematical connections.

The notion that mathematical ideas are connected should permeate
the school mathematics experience at all levels. The mathematical expe-
riences of children first entering school have not been separated into
categories, and this integration of mathematics in many contexts should
continue in school. Children can learn to recognize mathematical pat-
terns in the rhythms of the songs they sing, identify the hexagonal shape
in a honeycomb, and count the number of times they can jump rope suc-
cessfully. As students move into grades 35, their mathematical activity
should expand into more-abstract contexts. They can begin to see the
connections among arithmetic operations, understanding, for example,
how multiplication can be thought of as repeated addition. As they see
how mathematical operations can be used in different contexts, they can
develop an appreciation for the abstraction of mathematics. In grades
6-8, students should see mathematics as a discipline of connected ideas.
The key mathematical ideas in the middle grades are themselves closely
connected, and ideas about rational numbers, proportionality, and linear
relationships will pervade much of their mathematical and everyday

Principles and Standards for School Mathematics



activity. In grades 9-12, students not only learn to expect connections
but they learn to take advantage of them, using insights gained in one
context to solve problems in another.

Throughout the pre-K-12 span, students should routinely ask them-
selves, “How is this problem or mathematical topic like things I have
studied before?” From the perspective of connections, new ideas are seen
as extensions of previously learned mathematics. Students learn to use
what they already know to address new situations. Elementary school stu-
dents link their knowledge of the subtraction of whole numbers to the
subtraction of decimals or fractions. Middle-grades students recognize
and connect multiple representations of the same mathematical idea, such
as the ratio that represents rate of change and the tilt or slope of a line.
High school students connect ideas in algebra and geometry.

Some activities can be especially productive for featuring mathemati-
cal connections. For instance, the relationship between the diameter
and the circumference of a circle can be studied empirically by collect-
ing a variety of circular objects and measuring their circumferences and
diameters. Middle-grades students might collect and graph data for the
two variables—circumference (C) and diameter (4). By doing so, they
can see that all the points lie close to a straight line through (0, 0),
which suggests that the ratio of C/d is constant. This activity usually
leads to an average value for C/d that lies between 3.1 and 3.2—a rough
approximation of Tt. The problem involves ideas from measurement,
data analysis, geometry, algebra, and number.

Understand how mathematical ideas interconnect and
build on one another to produce a coherent whole

As students progress through their school mathematics experience,
their ability to see the same mathematical structure in seemingly differ-
ent settings should increase. Prekindergarten through grade 2 students
recognize instances of counting, number, and shape; upper elementary
school students look for instances of arithmetic operations, and middle-
grades students look for examples of rational numbers, proportionality,
and linear relationships. High school students are ready to look for
connections among the many mathematical ideas they are encounter-
ing. For instance, a method for finding the volume of the truncated
square pyramid shown at the top of figure 3.7, is suggested by the
method for finding the area of the trapezoid that follows in the figure
(Banchoft 1990, pp. 20-22).

As students develop a view of mathematics as a connected and inte-
grated whole, they will have less of a tendency to view mathematical
skills and concepts separately. If conceptual understandings are linked
to procedures, students will not perceive mathematics as an arbitrary set
of rules. This integration of procedures and concepts should be central
in school mathematics.

Recognize and apply mathematics in contexts outside
of mathematics

School mathematics experiences at all levels should include opportu-
nities to learn about mathematics by working on problems arising in
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Connections between methods for
finding the volume of a truncated
pyramid and for finding the area of a
trapezoid
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contexts outside of mathematics. These connections can be to other
subject areas and disciplines as well as to students’ daily lives. Prekin-
dergarten through grade 2 students can learn about mathematics pri-
marily through connections with the real world. Students in grades 3-5
should learn to apply important mathematical ideas in other subject
areas. This set of ideas expands in grades 6-8, and in grades 9-12 stu-
dents should be confidently using mathematics to explain complex ap-
plications in the outside world.

The opportunity for students to experience mathematics in a con-
text is important. Mathematics is used in science, the social sciences,
medicine, and commerce. The link between mathematics and science
is not only through content but also through process. The processes
and content of science can inspire an approach to solving problems
that applies to the study of mathematics. In the National Science Educa-
tion Standards, a yearlong elementary school science activity about
weather is described (National Research Council 1996, pp. 131-33).
The connections to mathematics in this activity are substantial: stu-
dents design instruments for measuring weather conditions and plan
for how to organize and communicate their data.

Steinberg (1998, p. 97) reports the following incident in which
eleventh-grade students at a high school worked with the CVS Corpo-
ration to locate a new pharmacy in a Boston neighborhood:

Although fully aware that the company would probably not rely
only on their calculations in making a monetary decision as to
where to locate a store, the students still felt involved in a real
problem.... Organized into small work teams supported by experts
from various departments within the CVS organization, students
analyzed demographic and economic data to determine market de-
mand for a CVS pharmacy in different neighborhoods. Students
also worked with CVS staff to identify and evaluate several possible
locations for the new store.... Students worked with architects on
design options for the new store and worked with accountants on
financing plans.

This project was incorporated into the students’ mathematics and
humanities classes. The students saw the connections of mathematics to
the world of commerce and to other disciplines, and they also saw the
connections within mathematics as they applied knowledge from sev-
eral different areas.

Data analysis and statistics are useful in helping students clarify is-
sues related to their personal lives. Students in prekindergarten through
grade 2 who are working on calendar activities can collect data on the
weather by recording rainy, cloudy, or sunny days. They can record the
data, count days, generalize about conditions, and make predictions for
the future. Students in grades 3-5 can use the Internet to collaborate
with students in other classrooms to collect and analyze data about acid
rain, deforestation, and other phenomena. By grades 9-12, students
should be able to use their knowledge of data analysis and mathematical
modeling to understand societal issues and workplace problems in rea-
sonable depth.
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The ways in which mathematical ideas are represented is fundamen-
tal to how people can understand and use those ideas. Consider how
much more difficult multiplication is using Roman numerals (for those
who have not worked extensively with them) than using Arabic base-ten
notation. Many of the representations we now take for granted—such
as numbers expressed in base-ten or binary form, fractions, algebraic
expressions and equations, graphs, and spreadsheet displays—are the
result of a process of cultural refinement that took place over many
years. When students gain access to mathematical representations and
the ideas they represent, they have a set of tools that significantly ex-
pand their capacity to think mathematically.

"The term representation refers both to process and to product—in
other words, to the act of capturing a mathematical concept or relation-
ship in some form and to the form itself. The child who wrote her age
as shown in figure 3.8 used a representation. The graph of f(x) = x* is a
representation. Moreover, the term applies to processes and products
that are observable externally as well as to those that occur “internally,”
in the minds of people doing mathematics. All these meanings of repre-
sentation are important to consider in school mathematics.

Some forms of representation—such as diagrams, graphical displays,
and symbolic expressions—have long been part of school mathematics.
Unfortunately, these representations and others have often been taught
and learned as if they were ends in themselves. Representations should
be treated as essential elements in supporting students’ understanding
of mathematical concepts and relationships; in communicating mathe-
matical approaches, arguments, and understandings to one’s self and to
others; in recognizing connections among related mathematical con-
cepts; and in applying mathematics to realistic problem situations
through modeling. New forms of representation associated with elec-
tronic technology create a need for even greater instructional attention
to representation.

Create and use representations to organize, record,
and communicate mathematical ideas

Students should understand that written representations of mathe-
matical ideas are an essential part of learning and doing mathematics. It
is important to encourage students to represent their ideas in ways that
make sense to them, even if their first representations are not conven-
tional ones. It is also important that they learn conventional forms of
representation to facilitate both their learning of mathematics and their
communication with others about mathematical ideas.

The fact that representations are such effective tools may obscure
how difficult it was to develop them and, more important, how much
work it takes to understand them. For instance, base-ten notation is dif-
ficult for young children, and the curriculum should allow many oppor-
tunities for making connections between students’ emerging under-
standing of the counting numbers and the structure of base-ten
representation. But as students move through the curriculum, the focus
tends to be increasingly on presenting the mathematics itself, perhaps
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A child’s representation of five and
one-half

|

Instructional programs
from prekindergarten through
grade 12 should enable all
students to—

e create and use representa-
tions to organize, record,
and communicate mathe-
matical ideas;

e select, apply, and translate
among mathematical repre-
sentations to solve problems;

e use representations to
model and interpret physi-
cal, social, and mathematical
phenomena.
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Fig. 3.9.
Rectangular pool and border
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under the assumption that students who are old enough to think in for-
mal terms do not, like their younger counterparts, need to negotiate be-
tween their naive conceptions and the mathematical formalisms. Re-
search indicates, however, that students at all levels need to work at
developing their understandings of the complex ideas captured in con-
ventional representations. A representation as seemingly clear as the
variable x can be difficult for students to comprehend.

The idiosyncratic representations constructed by students as they
solve problems and investigate mathematical ideas can play an impor-
tant role in helping students understand and solve problems and pro-
viding meaningful ways to record a solution method and to describe the
method to others. Teachers can gain valuable insights into students’
ways of interpreting and thinking about mathematics by looking at
their representations. They can build bridges from students’ personal
representations to more-conventional ones, when appropriate. It is im-
portant that students have opportunities not only to learn conventional
forms of representation but also to construct, refine, and use their own
representations as tools to support learning and doing mathematics.

Through the middle grades, children’s mathematical representations
usually are about objects and actions from their direct experience. Pri-
mary school students might use objects to represent the number of
wheels on four bicycles or the number of fireflies in a story. They may
represent larger numbers of objects using place-value mats or base-ten
blocks. In the middle grades, students can begin to create and use
mathematical representations for more-abstract objects, such as rational
numbers, rates, or linear relationships. High school students should use
conventional representations as a primary means for expressing and un-
derstanding more-abstract mathematical concepts. Through their rep-
resentations, they should be ready to see a common structure in mathe-
matical phenomena that come from very different contexts.

Representations can help students organize their thinking. Students’
use of representations can help make mathematical ideas more concrete
and available for reflection. In the lower grades, for example, children
can use representations to provide a record for their teachers and their
peers of their efforts to understand mathematics. In the middle grades,
they should use representations more to solve problems or to portray,
clarify, or extend a mathematical idea. They might, for example, focus
on collecting a large amount of data in a weather experiment over an
extended time and use a spreadsheet and related graphs to organize and
represent the data. They might develop an algebraic representation for
a real-world relationship (e.g., the number of unit tiles around a rectan-
gular pool with dimensions 7z units by # units where 7z and # are inte-
gers; see fig 3.9) and begin to recognize that symbolic representations
that appear different can describe the same phenomenon. For instance,
the number of tiles in the border of the 7z X # pool can be expressed as
2n+2m+4oras2(m+2)+2n.

Computers and calculators change what students can do with conven-
tional representations and expand the set of representations with which
they can work. For example, students can flip, invert, stretch, and zoom
in on graphs using graphing utilities or dynamic geometry software.
They can use computer algebra systems to manipulate expressions, and
they can investigate complex data sets using spreadsheets. As students
learn to use these new, versatile tools, they also can consider ways in
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which some representations used in electronic technology differ from
conventional representations. For example, numbers in scientific nota-
tion are represented differently in calculators and in textbooks. The al-
gebraic expressions on computer algebra systems may look different
from those in textbooks.

Select, apply, and translate among mathematical
representations to solve problems

Different representations often illuminate different aspects of a com-
plex concept or relationship. For example, students usually learn to rep-
resent fractions as sectors of a circle or as pieces of a rectangle or some
other figure. Sometimes they use physical displays of pattern blocks or
fraction bars that convey the part-whole interpretation of fractions. Such
displays can help students see fraction equivalence and the meaning of
the addition of fractions, especially when the fractions have the same de-
nominator and when their sum is less than 1. Yet this form of represen-
tation does not convey other interpretations of fraction, such as ratio, in-
dicated division, or fraction as number. Other common representations
for fractions, such as points on a number line or ratios of discrete ele-
ments in a set, convey some but not all aspects of the complex fraction
concept. Thus, in order to become deeply knowledgeable about frac-
tions—and many other concepts in school mathematics—students will
need a variety of representations that support their understanding.

The importance of using multiple representations should be empha-
sized throughout students’ mathematical education. For example, a
prekindergarten through grade 2 student should know how to represent
three groups of four through repeated addition, skip-counting, or an
array of objects. Primary-grades students begin to see how some repre-
sentations make it easier to understand some properties. Using the ar-
rays in figure 3.10, a teacher could make commutativity visible.

In grades 3-5, students’ repertoires of representations should expand
to include more-complex pictures, tables, graphs, and words to model
problems and situations. For middle-grades students, representations
are useful in developing ideas about algebra. As students become math-
ematically sophisticated, they develop an increasingly large repertoire
of mathematical representations as well as a knowledge of how to use
them productively. Such knowledge includes choosing and moving be-
tween representations and learning to ask such questions as, Would a
graph give me more insight than a symbolic expression to solve this
problem?

One of the powerful aspects of mathematics is its use of abstraction—
the stripping away by symbolization of some features of a problem that
are not necessary for analysis, allowing the “naked symbols” to be oper-
ated on easily. In many ways, this fact lies behind the power of mathe-
matical applications and modeling. Consider this problem:

From a ship on the sea at night, the captain can see three lighthouses and
can measure the angles between them. If the captain knows the position
of the lighthouses from a map, can the captain determine the position of
the ship?

When the problem is translated into a mathematical representation,
the ship and the lighthouses become points in the plane, and the problem
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can be solved without knowing that it is about ships. Many other prob-
lems from different contexts may have similar representations. As soon as
the problem is represented in some form, the classic solution methods for
that mathematical form may be used to solve the problem.

"Technological tools now offer opportunities for students to have
more and different experiences with the use of multiple representations.
For instance, in prekindergarten through grade 2, teachers and students
can work with on-screen versions of concrete manipulatives, getting ac-
curacy and immediate feedback. Later on, dynamic geometry tools can
be used for generating conjectures. Several software packages allow stu-
dents to view a function simultaneously in tabular, graphical, and equa-
tion form. Such software can allow students to examine how certain
changes in one representation, such as varying a parameter in the equa-
tion ax’ + bx + ¢ = 0, simultaneously affect the other representations.
Computer and calculator simulations can be used to investigate physical
phenomena, such as motion.

As students’ representational repertoire expands, it is important for
students to reflect on their use of representations to develop an under-
standing of the relative strengths and weaknesses of various representa-
tions for different purposes. For example, when students learn different
representational forms for displaying statistical data, they need oppor-
tunities to consider the kinds of data and questions for which a circle
graph might be more appropriate than a line graph or a box-and-
whiskers plot more appropriate than a histogram.

Use representations to model and interpret physical,
social, and mathematical phenomena

The term model has many different meanings. So it is not surprising
that the word is used in many different ways in discussions about
mathematics education. For example, 7zodel is used to refer to physical
materials with which students work in school—manipulative models.
The term is also used to suggest exemplification or simulation, as in
when a teacher models the problem-solving process for her students.
Yet another usage treats the term as if it were roughly synonymous with
representation. The term mathematical model, which is the focus in this
context, means a mathematical representation of the elements and rela-
tionships in an idealized version of a complex phenomenon. Mathemat-
ical models can be used to clarify and interpret the phenomenon and to
solve problems.

In some activities, models allow a view of a real-world phenomenon,
such as the flow of traffic, through an analytic structure imposed on it.
An example of a general question to be explored might be, How long
should a traffic light stay green to let a reasonable number of cars flow
through the intersection? Students can gather data about how long (on
average) it takes the first car to go through, the second car, and so on.
They can represent these data statistically, or they can construct ana-
Iytic functions to work on the problem in the abstract, considering the
wait time before a car starts moving, how long it takes a car to get up to
regular traffic speed, and so on.

Technological tools now allow students to explore iterative models
for situations that were once studied in much more advanced courses.
For example, it is now possible for students in grades 9-12 to model
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predator-prey relations. The initial set-up might be that a particular
habitat houses so many wolves and so many rabbits, which are the
wolves’ primary food source. When the wolves are well fed, they
reproduce well (and more wolves eat more rabbits); when the wolves
are starved, they die off. The rabbits multiply readily when wolves are
scarce but lose numbers rapidly when the wolf population is large.
Modeling software that uses difference equations allows students to
enter initial conditions and the rules for change and then see what
happens to the system dynamically.

Students’ use of representations to model physical, social, and math-
ematical phenomena should grow through the years. In prekinder-
garten through grade 2, students can model distributing 24 cookies
among 8 children, using tiles or blocks in a variety of ways. As students
continue to encounter representations in grades 35, they begin to use
them to model phenomena in the world around them and to aid them
in noticing quantitative patterns. As middle-grades students model and
solve problems that arise in the real and mathematical worlds, they
learn to use variables to represent unknowns and also learn to employ
equations, tables, and graphs to represent and analyze relationships.
High school students create and interpret models of phenomena
drawn from a wider range of contexts—including physical and social
environments—by identifying essential elements of the context and by
devising representations that capture mathematical relationships
among those elements. With electronic technologies, students can use
representations for problems and methods that until recently were dif-
ficult to explore meaningfully in high school. Iterative numerical
methods, for example, can be used to develop an intuitive concept of
limit and its applications. The asymptotic behavior of functions is
more easily understood graphically, as are the effects of transforma-
tions on functions. These tools and understandings give students ac-
cess to models that can be used to analyze a greatly expanded range of
realistic and interesting situations.

Standards for School Mathematics
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CHAPTER

Standards for
(Grades Pre-K-2

During the years from birth to age four, much important mathematical
development occurs in young children. Whether they are cared for by fam-
ily members during their preschool years or receive care from persons out-
side their families, all children need their innate desire for learning to be
nurtured and supported. In kindergarten through grade 2, considerations
such as high-quality educational settings and experiences become para-
mount. Throughout the early years, the Standards and specific expectations
for mathematics learning recommended here can help parents and educa-
tors give children a solid affective and cognitive foundation in mathematics.

Mathematics for the Youngest Learner

The foundation for children’s mathematical development is established
in the earliest years. Mathematics learning builds on the curiosity and en-
thusiasm of children and grows naturally from their experiences. Mathe-
matics at this age, if appropriately connected to a child’s world, is more
than “getting ready” for school or accelerating them into elementary arith-
metic. Appropriate mathematical experiences challenge young children to
explore ideas related to patterns, shapes, numbers, and space with increas-
ing sophistication.

"The principle that all children can learn mathematics applies to all ages.
Many mathematics concepts, at least in their intuitive beginnings, develop be-
fore school. For instance, infants spontaneously recognize and discriminate
small numbers of objects (Starkey and Cooper 1980). Before they enter
school, many children possess a substantive informal knowledge of mathe-
matics. They use mathematical ideas in everyday life and develop mathemati-
cal knowledge that can be quite complex and sophisticated (Baroody 1992;
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Clements et al. 1999; Gelman 1994; Ginsburg, Klein, and Starkey 1998).
Children’s long-term success in learning and development requires high-
quality experiences during the “years of promise” (Carnegie Corporation
1999). Adults can foster children’s mathematical development by provid-
ing environments rich in language, where thinking is encouraged, unique-
ness is valued, and exploration is supported. Play is children’s work. Adults
support young children’s diligence and mathematical development when
they direct attention to the mathematics children use in their play, chal-
lenge them to solve problems, and encourage their persistence.

Children learn through exploring their world; thus, interests and
everyday activities are natural vehicles for developing mathematical
thinking. When a parent places crackers in a toddler’s hands and says,

) “Here are two crackers—one, two,” or when a three-year-old chooses
Children must learn how she wants her sandwich cut—into pieces shaped like triangles, rec-
. tangles, or small squares—mathematical thinking is occurring. As a

to trust their own child arranges stuffed animals by size, an adult might ask, “Which ani-
mal is the smallest?” When children recognize a stop sign by focusing
on the octagonal shape, adults have an opportunity to talk about differ-
ent shapes in the environment. Through careful observation, conversa-
tions, and guidance, adults can help children make connections between
the mathematics in familiar situations and new ones.

Because young children develop a disposition for mathematics from
their early experiences, opportunities for learning should be positive and
supportive. Children must learn to trust their own abilities to make sense
of mathematics. Mathematical foundations are laid as playmates create
streets and buildings in the sand or make playhouses with empty boxes.
Mathematical ideas grow as children count steps across the room or sort
collections of rocks and other treasures. They learn mathematical con-
cepts through everyday activities: sorting (putting toys or groceries away),
reasoning (comparing and building with blocks), representing (drawing
to record ideas), recognizing patterns (talking about daily routines, re-
peating nursery rhymes, and reading predictable books), following direc-
tions (singing motion songs such as “Hokey Pokey”), and using spatial
visualization (working puzzles). Using objects, role-playing, drawing,
and counting, children show what they know.

abilities to make sense

of mathematics.
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High-quality learning results from formal and informal experiences
during the preschool years. “Informal” does not mean unplanned or
haphazard. Since the most powerful mathematics learning for pre-
schoolers often results from their explorations with problems and mate-
rials that interest them, adults should take advantage of opportunities to
monitor and influence how children spend their time. Adults can pro-
vide access to books and stories with numbers and patterns; to music
with actions and directions such as up, down, in, and out; or to games
that involve rules and taking turns. All these activities help children
understand a range of mathematical ideas. Children need things to
count, sort, compare, match, put together, and take apart.

Children need introductions to the language and conventions of
mathematics, at the same time maintaining a connection to their infor-
mal knowledge and language. They should hear mathematical language
being used in meaningful contexts. For example, a parent may ask a
child to get the sazze number of forks as spoons; or a sibling may be
taller than they are, but the same sibling may be shorter than the girl
next door. Young children need to learn words for comparing and for
indicating position and direction at the same time they are developing
an understanding of counting and number words.

Children are likely to enter formal school settings with various levels of
mathematics understanding. However, “not knowing” more often reflects
a lack of opportunity to learn than an inability to learn. Some children will
need additional support so that they do not start school at a disadvantage.
They should be identified with appropriate assessments that are adapted
to the needs and characteristics of young children. Interviews and observa-
tions, for example, are more appropriate assessment techniques than
group tests, which often do not yield complete data. Early assessments
should be used to gain information for teaching and for potential early in-
terventions rather than for sorting children. Pediatricians and other
health-care providers often recognize indicators of early learning difficul-
ties and can suggest community resources to address these challenges.

Mathematics Education in Prekindergarten through
Grade 2

Like the years from birth to formal schooling, prekindergarten
through grade 2 (pre-K-2) is a time of profound developmental change
for young students. At no other time in schooling is cognitive growth
so remarkable. Because young students are served in many different
educational settings and begin educational programs at various ages, we
refer to children at this level as students to denote their enrollment in
formal educational programs. Teachers of young students—including
parents and other caregivers—need to be knowledgeable about the
many ways students learn mathematics, and they need to have high
expectations for what can be learned during these early years.

Most students enter school confident in their own abilities, and they
are curious and eager to learn more about numbers and mathematical
objects. They make sense of the world by reasoning and problem solv-
ing, and teachers must recognize that young students can think in so-
phisticated ways. Young students are active, resourceful individuals who
construct, modify, and integrate ideas by interacting with the physical
world and with peers and adults. They make connections that clarify and
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Early education must
build on the principle
that all students can
learn significant

mathematics.
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extend their knowledge, thus adding new meaning to past experiences.
They learn by talking about what they are thinking and doing and by
collaborating and sharing their ideas. Students’ abilities to communicate
through language, pictures, and other symbolic means develop rapidly
during these years. Although students’ ways of knowing, representing,
and communicating may be different from those of adults, by the end of
grade 2, students should be using many conventional mathematical rep-
resentations with understanding.

It is especially important in the early years for every child to develop a
solid mathematical foundation. Children’s efforts and their confidence
that mathematics learning is within their reach must be supported.
Young students are building beliefs about what mathematics is, about
what it means to know and do mathematics, and about themselves as
mathematics learners. These beliefs influence their thinking, perfor-
mance, attitudes, and decisions about studying mathematics in later
years (Kamii 2000). Therefore, it is imperative to provide all students
with high-quality programs that include significant mathematics pre-
sented in a manner that respects both the mathematics and the nature of
young children. These programs should build on and extend students’
intuitive and informal mathematics knowledge. They should be
grounded in a knowledge of child development and take place in envi-
ronments that encourage students to be active learners and accept new
challenges. They should develop a strong conceptual framework while
encouraging and developing students’ skills and their natural inclination
to solve problems. Number activities oriented toward problem solving
can be successful even with very young children and can develop not
only counting and number abilities but also such reasoning abilities as
classifying and ordering (Clements 1984). Recent research has con-
firmed that an appropriate curriculum strengthens the development of
young students’ knowledge of number and geometry (Griffin and Case
1997; Klein, Starkey, and Wakeley 1999; Razel and Eylon 1991).

Mathematics teaching in the lower grades should encourage stu-
dents’ strategies and build on them as ways of developing more-general
ideas and systematic approaches. By asking questions that lead to clari-
fications, extensions, and the development of new understandings,
teachers can facilitate students’ mathematics learning. Teachers should
ensure that interesting problems and stimulating mathematical conver-
sations are a part of each day. They should honor individual students’
thinking and reasoning and use formative assessment to plan instruc-
tion that enables students to connect new mathematics learning with
what they know. Schools should furnish materials that allow students to
continue to learn mathematics through counting, measuring, construct-
ing with blocks and clay, playing games and doing puzzles, listening to
stories, and engaging in dramatic play, music, and art.

In prekindergarten through grade 2, mathematical concepts develop
at different times and rates for each child. If students are to attain the
mathematical goals described in Principles and Standards for School
Mathematics, their mathematics education must include much more
than short-term learning of rote procedures. All students need adequate
time and opportunity to develop, construct, test, and reflect on their in-
creasing understanding of mathematics. Early education must build on
the principle that all students can learn significant mathematics. Along
with their expectations for students, teachers should also set equally
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high standards for themselves, seeking, if necessary, the new knowledge
and skills they need to guide and nurture all students. School leaders
and teachers must take the responsibility for supporting learning so that
all students leave grade 2 confident and competent in the mathematics
described for this grade band.

The ten Standards presented in this document are not separate top-
ics for study but are carefully interwoven strands designed to support
the learning of connected mathematical ideas. At the core of mathe-
matics in the early years are the Number and Geometry Standards.
Numbers and their relationships, operations, place value, and attrib-
utes of shapes are examples of important ideas from these standards.
Each of the other mathematical Content Standards, including Alge-
bra, Measurement, and Data Analysis and Probability, contribute to,
and is learned in conjunction with, the Number and Geometry Stan-
dards. The Process Standards of Problem Solving, Reasoning and
Proof, Communication, Connections, and Representation support the
learning of, and are developed through, the Content Standards. And
learning content involves learning and using mathematics processes.

The mathematics program in prekindergarten through grade 2
should take advantage of technology. Guided work with calculators can
enable students to explore number and pattern, focus on problem-
solving processes, and investigate realistic applications. Through their
experiences and with the teacher’s guidance, students should recognize
when using a calculator is appropriate and when it is more efficient to
compute mentally. Computers also can make powerful and unique
contributions to students’ learning by providing feedback and connec-
tions between representations. They benefit all students and are espe-
cially helpful for learners with physical limitations or those who inter-
act more comfortably with technology than with classmates (Clements
1999a; Wright and Shade 1994).

Young students frequently possess greater knowledge than they are
able to express in writing. Teachers need to determine what students al-
ready know and what they still have to learn. Information from a wide
variety of classroom assessments—classroom routines, conversations,
written work (including pictures), and observations—helps teachers
plan meaningful tasks that offer support for students whose understand-
ings are not yet complete and helps teachers challenge students who are
ready to grapple with new problems and ideas. Teachers must maintain
a balance, helping students develop both conceptual understanding and
procedural facility (skill). Students’ development of number sense
should move through increasingly sophisticated levels of constructing
ideas and skills, of recognizing and using relationships to solve prob-
lems, and of connecting new learning with old. As discussed in the
Learning Principle (chapter 2), skills are most effectively acquired when
understanding is the foundation for learning.

Mathematics learning for students at this level must be active, rich in
natural and mathematical language, and filled with thought-provoking
opportunities. Students respond to the challenge of high expectations,
and mathematics should be taught for understanding rather than
around preconceptions about children’s limitations. This does not mean
abandoning children’s ways of knowing and representing; rather, it is a
clear call to create opportunities for young students to learn new, im-
portant mathematics in ways that make sense to them.

Standards for Pre-K-2: Introduction
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Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand numbers, ways of
representing numbers, relation-
ships among numbers, and number
systems

Understand meanings of operations
and how they relate to one another

Compute fluently and make rea-
sonable estimates
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Grades

In prekindergarten through grade 2 all students should—

* count with understanding and recognize “how many” in sets of objects;

» use multiple models to develop initial understandings of place value and
the base-ten number system;

* develop understanding of the relative position and magnitude of whole
numbers and of ordinal and cardinal numbers and their connections;

* develop a sense of whole numbers and represent and use them in flexible
ways, including relating, composing, and decomposing numbers;

» connect number words and numerals to the quantities they represent,
using various physical models and representations;

* understand and represent commonly used fractions, such as 1/4, 1/3, and
1/2.

* understand various meanings of addition and subtraction of whole
numbers and the relationship between the two operations;

* understand the effects of adding and subtracting whole numbers;

* understand situations that entail multiplication and division, such as equal
groupings of objects and sharing equally.

* develop and use strategies for whole-number computations, with a focus
on addition and subtraction;

* develop fluency with basic number combinations for addition and
subtraction;

* use a variety of methods and tools to compute, including objects, mental
computation, estimation, paper and pencil, and calculators.
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Number and Operations

"The concepts and skills related to number and operations are a major
emphasis of mathematics instruction in prekindergarten through grade 2.
Over this span, the small child who holds up two fingers in response to
the question “How many is two?” grows to become the second grader
who solves sophisticated problems using multidigit computation strate-
gies. In these years, children’s understanding of number develops signif-
icantly. Children come to school with rich and varied informal knowl-
edge of number (Baroody 1992; Fuson 1988; Gelman 1994). During
the early years teachers must help students strengthen their sense of
number, moving from the initial development of basic counting tech-
niques to more-sophisticated understandings of the size of numbers,
number relationships, patterns, operations, and place value.

Students’ work with numbers should be connected to their work with
other mathematics topics. For example, computational fluency (having
and using efficient and accurate methods for computing) can both en-
able and be enabled by students’ investigations of data; a knowledge of
patterns supports the development of skip-counting and algebraic
thinking; and experiences with shape, space, and number help students
develop estimation skills related to quantity and size.

As they work with numbers, students should develop efficient and ac-
curate strategies that they understand, whether they are learning the
basic addition and subtraction number combinations or computing with
multidigit numbers. They should explore numbers into the hundreds
and solve problems with a particular focus on two-digit numbers. Al-
though good judgment must be used about which numbers are impor-
tant for students of a certain age to work with, teachers should be careful
not to underestimate what young students can learn about number. Stu-
dents are often surprisingly adept when they encounter numbers, even
large numbers, in problem contexts. Therefore, teachers should regu-
larly encourage students to demonstrate and deepen their understanding
of numbers and operations by solving interesting, contextualized prob-
lems and by discussing the representations and strategies they use.

Understand numbers, ways of representing numbers,
relationships among numbers, and number systems

Counting is a foundation for students’ early work with number. Young
children are motivated to count everything from the treats they eat to the
stairs they climb, and through their repeated experience with the count-
ing process, they learn many fundamental number concepts. They can
associate number words with small collections of objects and gradually
learn to count and keep track of objects in larger groups. They can estab-
lish one-to-one correspondence by moving, touching, or pointing to
objects as they say the number words. They should learn that counting
objects in a different order does not alter the result, and they may notice
that the next whole number in the counting sequence is one more than
the number just named. Children should learn that the last number
named represents the last object as well as the total number of objects in
the collection. They often solve addition and subtraction problems by
counting concrete objects, and many children invent problem-solving

Standards for Pre-K-2: Number and Operations
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hallmark of number
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strategies based on counting strategies (Ginsburg, Klein, and Starkey
1998; Siegler 1996).

Throughout the early years, teachers should regularly give students
varied opportunities to continue to develop, use, and practice counting
as they quantify collections of objects, measure attributes of shapes,
identify locations, and solve problems. Preschool and kindergarten
teachers, for example, should use naturally occurring opportunities to
help students develop number concepts by posing questions such as,
How many pencils do we need at this table? Shall we count how many
steps to the playground? Who is third in line? Students often use differ-
ent approaches when dealing with smaller numbers versus larger num-
bers. They may look at a small group of objects (about six items or
fewer) and recognize “how many,” but they may need to count a group
of ten or twelve objects to find a total. The ability to recognize at a
glance small groups within a larger group supports the development of
visually grouping objects as a strategy for estimating quantities.

In these early years, students develop the ability to deal with num-
bers mentally and to think about numbers without having a physical
model (Steffe and Cobb 1988). Some students will develop this capacity
before entering school, and others will acquire it during their early
school years. Thus, in a first-grade class where students are asked to tell
how many blocks are hidden when the total number, say, seven, is
known but some, say, three, are covered, students will vary in how they
deal with the covered blocks. Some may be able to note that there are
four visible blocks and then count up from there, saying, “Five, six,
seven. There are three hidden!” But others may not be able to answer
the question unless they see all the objects; they may need to uncover
and point at or touch the blocks as they count them.

As students work with numbers, they gradually develop flexibility in
thinking about numbers, which is a hallmark of number sense. Students
may model twenty-five with beans and bean sticks or with two dimes and
a nickel, or they may say that it is 2 tens and 5 ones, five more than
twenty, or halfway between twenty and thirty. Number sense develops as
students understand the size of numbers, develop multiple ways of think-
ing about and representing numbers, use numbers as referents, and de-
velop accurate perceptions about the effects of operations on numbers
(Sowder 1992). Young students can use number sense to reason with
numbers in complex ways. For example, they may estimate the number of
cubes they can hold in one hand by referring to the number of cubes that
their teacher can hold in one hand. Or if asked whether four plus three is
more or less than ten, they may recognize that the sum is less than ten
because both numbers are less than five and five plus five makes ten.

Concrete models can help students represent numbers and develop
number sense; they can also help bring meaning to students’ use of
written symbols and can be useful in building place-value concepts. But
using materials, especially in a rote manner, does not ensure under-
standing. Teachers should try to uncover students’ thinking as they
work with concrete materials by asking questions that elicit students’
thinking and reasoning. In this way, teachers can watch for students’
misconceptions, such as interpreting the 2 tens and 3 ones in figure 4.1c
merely as five objects. Teachers should also choose interesting tasks that
engage students in mathematical thinking and reasoning, which builds
their understanding of numbers and relationships among numbers.
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Fig. 4.1.

Different ways of representing 23

It is absolutely essential that students develop a solid understanding
of the base-ten numeration system and place-value concepts by the
end of grade 2. Students need many instructional experiences to de-
velop their understanding of the system, including how numbers are
written. They should understand, for example, that multiples of 10
provide bridges when counting (e.g., 38, 39, 40, 41) and that “10” is a
special unit within the base-ten system. They should recognize that
the word ter may represent a single entity (1 ten) and, at the same
time, ten separate units (10 ones) and that these representations are
interchangeable (Cobb and Wheatley 1988). Using concrete materials
can help students learn to group and ungroup by tens. For example,
such materials can help students express “23” as 23 ones (units), 1 ten
and 13 ones, or 2 tens and 3 ones (see fig. 4.1). Of course, students
should also note the ways in which using concrete materials to repre-
sent a number differs from using conventional notation. For example,
when the numeral for the collection shown in figure 4.1 is written,
the arrangement of digits matters—the digit for the tens must be
written to the left of the digit for the units. In contrast, when base-ten
blocks or connecting cubes are used, the value is not affected by the
arrangement of the blocks.

Technology can help students develop number sense, and it may be
especially helpful for those with special needs. For example, students
who may be uncomfortable interacting with groups or who may not be
physically able to represent numbers and display corresponding sym-
bols can use computer manipulatives. The computer simultaneously
links the student’s actions with symbols. When the block arrangement
is changed, the number displayed is automatically changed. As with
connecting cubes, students can break computer base-ten blocks into
ones or join ones together to form tens.

Place-value concepts can be developed and reinforced using calcu-
lators. For example, students can observe values displayed on a calcula-
tor and focus on which digits are changing. If students add 1 repeat-
edly on a calculator, they can observe that the units digit changes every
time, but the tens digit changes less frequently. Through classroom
conversations about such activities and patterns, teachers can help
focus students’ attention on important place-value ideas. Figure 4.2
shows another example—a challenging calculator activity for second
graders—that could be used to strengthen students’ understanding of
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place value. In this activity, students begin at one number and add or
subtract to reach a target number. Since they are not limited in what
they can add or subtract, activities like this allow them to use various
approaches to reach the target numbers. They can decide whether to
add or subtract ones or multiples of 10 or how they might use multiple
steps to arrive at the target. By having students share and discuss the
different strategies employed by members of a class, a teacher can
highlight the ways in which students use place-value concepts in their
strategies.

Fig. 4.2.

A calculator activity to help develop
understanding of place value

Students also develop
understanding of place
value through the
strategies they invent to

compuite.
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Make a New Number

Use a calculator.
Start with 78.

Do not press clear. What numbers did you
Make the next number: | add or subtract?
98

Next make —t—» 48
18
118
119

Students also develop understanding of place value through the
strategies they invent to compute (Fuson et al. 1997). Thus, it is not nec-
essary to wait for students to fully develop place-value understandings
before giving them opportunities to solve problems with two- and three-
digit numbers. When such problems arise in interesting contexts, stu-
dents can often invent ways to solve them that incorporate and deepen
their understanding of place value, especially when students have oppor-
tunities to discuss and explain their invented strategies and approaches.
Teachers emphasize place value by asking appropriate questions and
choosing problems such as finding ten more than or ten less than a
number and helping them contrast the answers with the initial number.
As a result of regular experiences with problems that develop place-value
concepts, second-grade students should be counting into the hundreds,
discovering patterns in the numeration system related to place value, and
composing (creating through different combinations) and decomposing
(breaking apart in different ways) two- and three-digit numbers.

In addition to work with whole numbers, young students should also
have some experience with simple fractions through connections to
everyday situations and meaningful problems, starting with the com-
mon fractions expressed in the language they bring to the classroom,
such as “half.” At this level, it is more important for students to recog-
nize when things are divided into equal parts than to focus on fraction
notation. Second graders should be able to identify three parts out of
four equal parts, or three-fourths of a folded paper that has been
shaded, and to understand that “fourths” means four equal parts of a
whole. Although fractions are not a topic for major emphasis for
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pre-K-2 students, informal experiences at this age will help develop a
foundation for deeper learning in higher grades.

Understand meanings of operations and how they
relate to one another

As students in the early grades work with complex tasks in a variety of
contexts, they also build an understanding of operations on numbers. Ap-
propriate contexts can arise through student-initiated activities, teacher-
created stories, and in many other ways. As students explain their written
work, solutions, and mental processes, teachers gain insight into their
students’ thinking. See the “Communication” section of this chapter for a
more general discussion of these issues and more examples related to the
development of students’ understanding of number and operations.

An understanding of addition and subtraction can be generated when
young students solve “joining” and take-away problems by directly
modeling the situation or by using counting strategies, such as counting
on or counting back (Carpenter and Moser 1984). Students develop
further understandings of addition when they solve missing-addend
problems that arise from stories or real situations. Further understand-
ings of subtraction are conveyed by situations in which two collections
need to be made equal or one collection needs to be made a desired
size. Some problems, such as “Carlos had three cookies. Maria gave
him some more, and now he has eight. How many did she give him?”
can help students see the relationship between addition and subtraction.
As they build an understanding of addition and subtraction of whole
numbers, students also develop a repertoire of representations. For
more discussion, see the section on “Representation” in this chapter.

In developing the meaning of operations, teachers should ensure that
students repeatedly encounter situations in which the same numbers
appear in different contexts. For example, the numbers 3, 4, and 7 may
appear in problem-solving situations that could be represented by 4 + 3,
or3 +4,or7-3,or 7 —4. Although different students may initially use
quite different ways of thinking to solve problems, teachers should help
students recognize that solving one kind of problem is related to solv-
ing another kind. Recognizing the inverse relationship between addi-
tion and subtraction can allow students to be flexible in using strategies
to solve problems. For example, suppose a student solves the problem
27 +[_] =36 by starting at 27 and counting up to 36, keeping track of
the 9 counts. Then, if the student is asked to solve 36 —9 =[], he may
say immediately, “27.” If asked how he knows, he might respond, “Be-
cause we just did it.” This student understands that 27 and 9 are num-
bers in their own right, as well as two parts that make up the whole, 36.
He also understands that subtraction is the inverse of addition (Steffe
and Cobb 1988). Another student, one who does not use the relation-
ship between addition and subtraction, might try to solve the problem
by counting back 9 units from 36, which is a much more difficult strat-
egy to apply correctly.

In developing the meaning of addition and subtraction with whole
numbers, students should also encounter the properties of operations,
such as the commutativity and associativity of addition. Although some
students discover and use properties of operations naturally, teachers can
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need different amounts
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of time.

bring these properties to the forefront through class discussions. For ex-
ample, 6 + 9 + 4 may be easier to solve as 6 + 4 + 9, allowing students to
add 6 and 4 to get 10 and 10 and 9 to get 19. Students notice that adding
and subtracting the same number in a computation is equivalent to
adding 0. For instance, 40 — 10 + 10 = 40 + 0 = 40. Some students recog-
nize that equivalent quantities can be substituted: 8 + 7 =8 + 2 + 5 be-
cause 7 =2 + 5. They may realize that adding the same number (e.g.,
100) to both terms of a difference (e.g., 50 — 10 = 40) does not change
the result (150 — 110 = 40). The use of these properties is a sign of young
students’ growing number sense. Different students, however, need dif-
ferent amounts of time to make these properties their own. What some
students learn in one year may take two or more years for others.

In prekindergarten through grade 2, students should also begin to
develop an understanding of the concepts of multiplication and divi-
sion. Through work in situations involving equal subgroups within a
collection, students can associate multiplication with the repeated join-
ing (addition) of groups of equal size. Similarly, they can investigate di-
vision with real objects and through story problems, usually ones in-
volving the distribution of equal shares. The strategies used to solve
such problems—the repeated joining of, and partitioning into, equal
subgroups—thus become closely associated with the meaning of multi-
plication and division, respectively.

Compute fluently and make reasonable estimates

Young children often initially compute by using objects and count-
ing; however, prekindergarten through grade 2 teachers need to en-
courage them to shift, over time, to solving many computation prob-
lems mentally or with paper and pencil to record their thinking.
Students should develop strategies for knowing basic number combina-
tions (the single-digit addition pairs and their counterparts for subtrac-
tion) that build on their thinking about, and understanding of, num-
bers. Fluency with basic addition and subtraction number combinations
is a goal for the pre-K-2 years. By fluency we mean that students are
able to compute efficiently and accurately with single-digit numbers.
Teachers can help students increase their understanding and skill in
single-digit addition and subtraction by providing tasks that () help
them develop the relationships within subtraction and addition combi-
nations and () elicit counting on for addition and counting up for sub-
traction and unknown-addend situations.

"Teachers should also encourage students to share the strategies they
develop in class discussions. Students can develop and refine strategies as
they hear other students’ descriptions of their thinking about number
combinations. For example, a student might compute 8 + 7 by counting
on from 8: ..., 9,10, 11, 12, 13, 14, 15.” But during a class discussion of
solutions for this problem, she might hear another student’ strategy, in
which he uses knowledge about 10; namely, 8 and 2 make 10, and 5 more
is 15. She may then be able to adapt and apply this strategy later when
she computes 28 + 7 by saying, “28 and 2 make 30, and 5 more is 35.”

Students learn basic number combinations and develop strategies for
computing that make sense to them when they solve problems with in-
teresting and challenging contexts. Through class discussions, they can
compare the ease of use and ease of explanation of various strategies. In
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some cases, their strategies for computing will be close to conventional
algorithms; in other cases, they will be quite different. Many times, stu-
dents’ invented approaches are based on a sound understanding of
numbers and operations, and they can often be used efficiently and ac-
curately. Some sense of the diversity of approaches students use can be
seen in figure 4.3, which shows the ways several students in the same
second-grade class computed 25 + 37. Students 1 and 2 have repre-
sented their thinking fairly completely, the first with words and the sec-
ond with tallies. Both demonstrate an understanding of the meaning of
the numbers involved. Students 3 and 4 have each used a process that
resulted in an accurate answer, but the thinking that underlies the
process is not as apparent in their recordings. Students 5 and 6 both
illustrate a common source of error—treating the digits in ways that do
not reflect their place value and thus generating an unreasonable result.

During a class discussion, other students reported strategies based on
composing and decomposing numbers. One student started with 37 and
used the fact that 25 could be decomposed into 20 plus 3 plus 2 to solve
the problem as follows: 37 + 20 = 57, 57 + 3 = 60, and 60 + 2 = 62. An-
other student used flexible composing and decomposing in other ways
to create an equivalent, easier problem: Take 3 from 25 and use it to
turn 37 into 40. Then add 40 and 22 to get 62.

As students work with larger numbers, their strategies for computing
play an important role in linking less formal knowledge with more-

Fig. 4.3.

Six students’ solutions to 25 + 37
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Research provides
evidence that students
will rely on their own

computational strategies.

sophisticated mathematical thinking. Research provides evidence that
students will rely on their own computational strategies (Cobb et al.
1991). Such inventions contribute to their mathematical development
(Gravemeijer 1994; Steffe 1994). Moreover, students who used invented
strategies before they learned standard algorithms demonstrated a bet-
ter knowledge of base-ten concepts and could better extend their
knowledge to new situations, such as finding how much of $4.00 would
be left after a purchase of $1.86 (Carpenter et al. 1998, p. 9). Thus,
when students compute with strategies they invent or choose because
they are meaningful, their learning tends to be robust—they are able to
remember and apply their knowledge. Children with specific learning
disabilities can actively invent and transfer strategies if given well-
designed tasks that are developmentally appropriate (Baroody 1999).

"Teachers have a very important role to play in helping students de-
velop facility with computation. By allowing students to work in ways
that have meaning for them, teachers can gain insight into students’ de-
veloping understanding and give them guidance. To do this well, teach-
ers need to become familiar with the range of ways that students might
think about numbers and work with them to solve problems. Consider
the following hypothetical story, in which a teacher poses this problem
to a class of second graders:

We have 153 students at our school. There are 273 students at the school
down the street. How many students are in both schools?

As would be expected in most classrooms, the students give a vari-
ety of responses that illustrate a range of understandings. For exam-
ple, Randy models the problem with bean sticks that the class has
made earlier in the year, using hundreds rafts, tens sticks, and loose
beans. He models the numbers and combines the bean sticks, but
he is not certain how to record the results. He draws a picture of
the bean sticks and labels the parts, “3 rafts,” “12 tens,” “6 beans”
(fig. 4.4).

Fig. 4.4.

Randy models 153 and 273 using beans,
bean sticks, and rafts of bean sticks.
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Ana first adds the hundreds, recording 300 as an intermediate
result; then she adds the tens, keeping the answer in her head; she
then adds the ones; and finally she adds the partial results and
writes down the answer. Her written record is shown in figure 4.5.
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Some students use the conventional algorithm (stacking the ad-
dends and then adding the ones, adding the tens and renaming
them as hundreds and tens, and finally adding the hundreds) accu-
rately, but others write 3126 as their answer, demonstrating a lack
of understanding that the teacher needs to address. Becky finds the
answer using mental computation and writes nothing down except
her answer. When asked to explain, she says, “Well, 2 hundreds and
1 hundred are 3 hundreds, and 5 tens and 5 tens are 10 tens, or an-
other hundred, so that’s 4 hundreds. There’s still 2 tens left over,
and 3 and 3 is 6, so it’s 426.”

Meaningful practice is necessary to develop fluency with basic num-
ber combinations and strategies with multidigit numbers. The example
above illustrates that teachers can learn about students’ understanding
and at the same time get information to gauge the need for additional
attention and work. Practice needs to be motivating and systematic if
students are to develop computational fluency, whether mentally, with
manipulative materials, or with paper and pencil. Practice can be con-
ducted in the context of other activities, including games that require
computation as part of score keeping, questions that emerge from chil-
dren’s literature, situations in the classroom, or focused activities that
are part of another mathematical investigation. Practice should be pur-
poseful and should focus on developing thinking strategies and a
knowledge of number relationships rather than drill isolated facts.

The teacher’s responsibility is to gain insight into how students are
thinking about various problems by encouraging them to explain what
they did with the numbers (Carpenter et al. 1989). Teachers also must
decide what new tasks will challenge students and encourage them to
construct strategies that are efficient and accurate and that can be gen-
eralized. Class discussions and interesting tasks help students build di-
rectly on their knowledge and skills while providing opportunities for
invention, practice, and the development of deeper understanding. Stu-
dents’ explanations of solutions permit teachers to assess their develop-
ment of number sense. As in the previous example, different levels of
sophistication in understanding number relationships can be seen in
second graders’ responses (fig. 4.6) to the following problem. Notice
that all the students used their understanding of counting by fives or of
five as a unit in their solutions.

There are 93 students going to the circus. Five students can ride in each
car. How many cars will be needed?

Students can learn to compute accurately and efficiently through
regular experience with meaningful procedures. They benefit from
instruction that blends procedural fluency and conceptual under-
standing (Ginsburg, Klein, and Starkey 1998; Hiebert 1999). This is
true for all students, including those with special educational needs.
Many children with learning disabilities can learn when they receive
high-quality, conceptually oriented instruction. Special instructional
interventions for those who need them often focus narrowly on skills
instead of offering balanced and comprehensive instruction that uses
the child’s abilities to offset weaknesses and provides better long-term
results (Baroody 1996). As students encounter problem situations in
which computations are more cumbersome or tedious, they should be

Standards for Pre-K-2: Number and Operations

Fig. 4.5.

A written record of the computation of
153 + 273 with intermediate results

53 EAY

300 feng +ITens
24370
C}-)é 5%6“\%5

Meaningful practice is

necessary to develop

fluency.

87

4
c
3
o
]
=
Ro
o
]
o
)
=7
o
3
0
=
Q
)
o
=
o
©
o
o
=)
o
o
<
=
©
o}
(2]
c
=
)
=)
®
=
~
O
o
=l
o
>
=}
o
<
0,
n
R0
o
=
o
o
o
o
E
<
o
=
o
o
©
=i
[72]
o
=
3
@
X
©
i}
73
o
3.
=}
@
R0
o
=
o
o
o
(@)
o
=
3
c
2.
o
0
=
o
3
(@)
o)
3
35
®
o
o
o
3
7}
X
(1)
°
o
17}
0}
=
=
[
=¢
o
3




o

Q

S

; I( )

Q

E ( | lm( ; 93 hildvesq
RN RGN 5 10 |5 20 25 %0 35
3 @@@ Yo ¢85 5055 60 £h 70
= — 1] 75 80 85"'}0 3€.X'frq/
) <@ (g Qu :

8 0 @ ”IL;:Q ' cacs

5

§

é fives s '\D

> 5 70 l;}\

= o 3 785 1

% Ikm lm 45205,550 JE 8012

9 y ;

T O s BTk b ¢ B8

2 W%MIGYQ‘QHI%NWM%W. * b 53 @

s 5 9

8 g Ohy, 13Cars iip be Y
E Fo 14 ondd 3y W ride inThe
£ I 1) {§+h <ar

) 6© R AWy

$ 3 1o

E 194 cors

o

S Fig. 4.6.

g Students’ computation strategies | encouraged to use calculators to aid in problem solving. In this way,
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Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand patterns, relations, and
functions

Represent and analyze mathemati-
cal situations and structures using

algebraic symbols

Use mathematical models to repre-
sent and understand quantitative
relationships

Analyze change in various contexts

90

Grades

In prekindergarten through grade 2 all students should—

* sort, classify, and order objects by size, number, and other properties;

* recognize, describe, and extend patterns such as sequences of sounds
and shapes or simple numeric patterns and translate from one
representation to another;

* analyze how both repeating and growing patterns are generated.

* illustrate general principles and properties of operations, such as
commutativity, using specific numbers;

* use concrete, pictorial, and verbal representations to develop an
understanding of invented and conventional symbolic notations.

* model situations that involve the addition and subtraction of whole
numbers, using objects, pictures, and symbols.

* describe qualitative change, such as a student’s growing taller;

* describe quantitative change, such as a student’s growing two inches in
one year.

Principles and Standards for School Mathematics



Algebra

Algebraic concepts can evolve and continue to develop during
prekindergarten through grade 2. They will be manifested through
work with classification, patterns and relations, operations with
whole numbers, explorations of function, and step-by-step processes.
Although the concepts discussed in this Standard are algebraic, this
does not mean that students in the early grades are going to deal with
the symbolism often taught in a traditional high school algebra
course.

Even before formal schooling, children develop beginning concepts
related to patterns, functions, and algebra. They learn repetitive songs,
rhythmic chants, and predictive poems that are based on repeating and

growing patterns. The recognition, comparison, and analysis of pat- Patterns are a way ﬁ)?”
terns are important components of a student’s intellectual development.

When students notice that operations seem to have particular proper- young s tudents to

ties, they are beginning to think algebraically. For example, they realize .

that changing the order in which two numbers are added does not recognize order and to

change the result or that adding zero to a number leaves that number
unchanged. Students’ observations and discussions of how quantities re-
late to one another lead to initial experiences with function relation-
ships, and their representations of mathematical situations using con-
crete objects, pictures, and symbols are the beginnings of mathematical
modeling. Many of the step-by-step processes that students use form
the basis of understanding iteration and recursion.

organize their world.

Understand patterns, relations, and functions

Sorting, classifying, and ordering facilitate work with patterns, geo-
metric shapes, and data. Given a package of assorted stickers, children
quickly notice many differences among the items. They can sort the
stickers into groups having similar traits such as color, size, or design
and order them from smallest to largest. Caregivers and teachers should
elicit from children the criteria they are using as they sort and group
objects. Patterns are a way for young students to recognize order and to O Eexample4l — |
organize their world and are important in all aspects of mathematics at Creating and Predicting
this level. Preschoolers recognize patterns in their environment and, Visual Patterns
through experiences in school, should become more skilled in noticing
patterns in arrangements of objects, shapes, and numbers and in using
patterns to predict what comes next in an arrangement. Students know,
for example, that “first comes breakfast, then school,” and “Monday we
go to art, Tuesday we go to music.” Students who see the digits “0, 1, 2,
3,4,5,6,7,8,9” repeated over and over will see a pattern that helps
them learn to count to 100—a formidable task for students who do not
recognize the pattern.

Teachers should help students develop the ability to form generaliza-
tions by asking such questions as “How could you describe this pat-
tern?” or “How can it be repeated or extended?” or “How are these
patterns alike?” For example, students should recognize that the color
pattern “blue, blue, red, blue, blue, red” is the same in form as “clap,
clap, step, clap, clap, step.” This recognition lays the foundation for the
idea that two very different situations can have the same mathematical
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features and thus are the same in some important ways. Knowing that
each pattern above could be described as having the form AABAAB is
for students an early introduction to the power of algebra.

By encouraging students to explore and model relationships using
language and notation that is meaningful for them, teachers can help
students see different relationships and make conjectures and generaliza-
tions from their experiences with numbers. Teachers can, for instance,
deepen students’ understanding of numbers by asking them to model the
same quantity in many ways—for example, eighteen is nine groups of
two, 1 ten and 8 ones, three groups of six, or six groups of three. Pairing
counting numbers with a repeating pattern of objects can create a func-
tion (see fig. 4.7) that teachers can explore with students: What is the
second shape? To continue the pattern, what shape comes next? What
number comes next when you are counting? What do you notice about
the numbers that are beneath the triangles? What shape would 14 be?

Fig. 4.7.
Pairing counting numbers with a I\ I\ I\ I\ 7
1 2 3 4 5 6 7 ?

repeating pattern

Students should learn to solve problems by identifying specific
processes. For example, when students are skip-counting three, six,
nine, twelve, ..., one way to obtain the next term is to add three to the
previous number. Students can use a similar process to compute how
much to pay for seven balloons if one balloon costs 20¢. If they recog-
nize the sequence 20, 40, 60, ... and continue to add 20, they can find
the cost for seven balloons. Alternatively, students can realize that the

Fig. 4.8.

A vertical chart for recording and
organizing information

Cost of Balloons

NuisEr || st el 2l oans total amount to be paid is determined by the number of balloons
of Balloons in Cents bought and find a way to compute the total directly. Teachers in grades
1 and 2 should provide experiences for students to learn to use charts
1 20 and tables for recording and organizing information in varying formats
2 40 (see figs. 4.8 and 4.9). They also should discuss the different notations
for showing amounts of money. (One balloon costs 20¢, or $0.20, and
3 60 seven balloons cost $1.40.)
4 80 Skip-counting by different numbers can create a variety of patterns
on a hundred chart that students can easily recognize and describe (see
S ? fig. 4.10). Teachers can simultaneously use hundred charts to help stu-
6 2 dents learn about number patterns and to assess students’ understand-
: ing of counting patterns. By asking questions such as “If you count by
7 ? tens beginning at 36, what number would you color next?” and “If you
continued counting by tens, would you color 87?” teachers can observe
whether students understand the correspondence between the visual
pattern formed by the shaded numbers and the counting pattern. Using
a calculator and a hundred chart enables the students to see the same
pattern in two different formats.
Fig. 4.9. Cost of Balloons
A horizontal chart for recording and
organizing information Number of balloons| 1| 2| 3| 4 | 5 | 6 [7
Cost of balloons
in cents 20 (40|60 |80 | ? [ ? |7
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1l2|3|als|e|7]8] 9w 12]|3|als|e|7]8] 9w
11 ) 12 13| 14| 15| 16| 17 ] 18| 19| 20 11|12 13| 14| 15( 16| 17| 18 | 19| 20
21| 22| 23| 24| 25| 26| 27| 28 | 29 | 30 21| 22| 23| 24| 25| 26| 27| 28| 29 | 30
31 (32| 33|34 |35|36|37|38]39]40 31| 32| 33|34 |35|36|37|38]30]40
a1| 42| 43| 44| 45| a6 | 47 | 48| 49 | 50 a1| 42| 43| 44| 45| a6 | 47 | 48| 49 | 50
51| 52| 53|54 5556|5758/ 59|60 51| 52| 53| 5455|5657 58] 59|60
61| 62| 63|64 65|66|67|68]|69]70 61| 62| 63|64 65|66|67|68]|69]70
71| 72| 73| 74| 75| 76 | 77| 78 | 79 | 80 71| 72| 73| 74| 75| 76 | 77| 78 | 79 | 80
81| 82| 83|84|8s|86|878s| 80|00 81| 82| 83|84 85|86|87 838900
91| 92| 93| 94| 95| 96| 97| 98| 99 |100 91| 92| 93| 94| 95| 96|97 98| 99 |100
Counting by threes Counting by sixes
Fig. 4.10.
Represent and analyze mathematical situations and Skip-counting on a hundred chart

structures using algebraic symbols

"Two central themes of algebraic thinking are appropriate for young
students. The first involves making generalizations and using symbols
to represent mathematical ideas, and the second is representing and
solving problems (Carpenter and Levi 1999). For example, adding pairs
of numbers in different orders such as 3 + 5 and 5 + 3 can lead students
to infer that when two numbers are added, the order does not matter.
As students generalize from observations about number and operations,
they are forming the basis of algebraic thinking.

Similarly, when students decompose numbers in order to compute,
they often use the associative property for the computation. For in-
stance, they may compute 8 + 5, saying, “8 + 2 is 10, and 3 more is 13.”
Students often discover and make generalizations about other proper-
ties. Although it is not necessary to introduce vocabulary such as cormz-
mutativity or associativity, teachers must be aware of the algebraic prop-
erties used by students at this age. They should build students’
understanding of the importance of their observations about mathemat-
ical situations and challenge them to investigate whether specific obser-
vations and conjectures hold for all cases.

Teachers should take advantage of their observations of students, as
illustrated in this story drawn from an experience in a kindergarten class.

The teacher had prepared two groups of cards for her students.
In the first group, the number on the front and back of each card
differed by 1. In the second group, these numbers differed by 2.

The teacher showed the students a card with 12 written on it and

explained, “On the back of this card, I've written another number.”
She turned the card over to show the number 13. Then she showed
the students a second card with 15 on the front and 16 on the back.

Standards for Pre-K-2: Algebra
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As she continued showing the students the cards, each time she
asked the students, “What do you think will be on the back?” Soon
the students figured out that she was adding 1 to the number on the
front to get the number on the back of the card.

Then the teacher brought out a second set of cards. These were
also numbered front and back, but the numbers differed by 2, for
example, 33 and 35, 46 and 48, 22 and 24. Again, the teacher
showed the students a sample card and continued with other cards,
encouraging them to predict what number was on the back of each
card. Soon the students figured out that the numbers on the backs
of the cards were 2 more than the numbers on the fronts.

When the set of cards was exhausted, the students wanted to play
again. “But,” said the teacher, “we can’t do that until I make an-
other set of cards.” One student spoke up, “You don’t have to do
that, we can just flip the cards over. The cards will all be minus 2.”

As a follow-up to the discussion, this teacher could have described
what was on each group of cards in a more algebraic manner. The num-
bers on the backs of the cards in the first group could be named as
“front number plus 1” and the second as “front number plus 2.” Fol-
lowing the student’s suggestion, if the cards in the second group were
flipped over, the numbers on the backs could then be described as
“front number minus 2.” Such activities, together with the discussions
and analysis that follow them, build a foundation for understanding the
inverse relationship.

Through classroom discussions of different representations during
the pre-K-2 years, students should develop an increased ability to use
symbols as a means of recording their thinking. In the earliest years,
teachers may provide scaffolding for students by writing for them until
they have the ability to record their ideas. Original representations re-
main important throughout the students’ mathematical study and
should be encouraged. Symbolic representation and manipulation
should be embedded in instructional experiences as another vehicle for
understanding and making sense of mathematics.

Equality is an important algebraic concept that students must en-
counter and begin to understand in the lower grades. A common expla-
nation of the equals sign given by students is that “the answer is coming,”
but they need to recognize that the equals sign indicates a relationship—
that the quantities on each side are equivalent, for example, 10 =4 + 6 or
4+ 6 =5+ 5. In the later years of this grade band, teachers should pro-
vide opportunities for students to make connections from symbolic nota-
tion to the representation of the equation. For example, if a student
records the addition of four 7s as shown on the left in figure 4.11, the
teacher could show a series of additions correctly, as shown on the right,
and use a balance and cubes to demonstrate the equalities.

Fig. 4.11.

A student’s representation of adding
four 7s (left) and a teacher’s correct
representation of the same addition

75{:\\\(';2“7:28 7.7 =14

14+ 2 =2
A+ F=2%
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Use mathematical models to represent and understand
quantitative relationships

Students should learn to make models to represent and solve
problems. For example, a teacher may pose the following problem:

There are six chairs and stools. The chairs have four legs and the stools
have three legs. Altogether there are twenty legs. How many chairs and
how many stools are there?

One student may represent the situation by drawing six circles and
then putting tallies inside to represent the number of legs. Another stu-
dent may represent the situation by using symbols, making a first guess
that the number of stools and chairs is the same and adding 3 +3 + 3 +
4 + 4 + 4. Realizing that the sum is too large, the student might adjust
the number of chairs and stools so that the sum of their legs is 20.

Analyze change in various contexts

Change is an important idea that students encounter early on. When
students measure something over time, they can describe change both
qualitatively (e.g., “Today is colder than yesterday”) and quantitatively
(e.g., “I am two inches taller than I was a year ago”). Some changes are
predictable. For instance, students grow taller, not shorter, as they get
older. The understanding that most things change over time, that many
such changes can be described mathematically, and that many changes
are predictable helps lay a foundation for applying mathematics to
other fields and for understanding the world.

Standards for Pre-K-2: Algebra
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Instructional programs from
prekindergarten through grade 12
should enable all students to—

Analyze characteristics and proper-
ties of two- and three-dimensional
geometric shapes and develop math-
ematical arguments about geometric
relationships

Specify locations and describe
spatial relationships using coordi-
nate geometry and other represen-
tational systems

Apply transformations and use
symmetry to analyze mathematical
situations

Use visualization, spatial reasoning,
and geometric modeling to solve
problems

96

Grades

In prekindergarten through grade 2 all students should—

recognize, name, build, draw, compare, and sort two- and three-
dimensional shapes;

describe attributes and parts of two- and three-dimensional shapes;

investigate and predict the results of putting together and taking apart
two- and three-dimensional shapes.

describe, name, and interpret relative positions in space and apply ideas
about relative position;

describe, name, and interpret direction and distance in navigating space
and apply ideas about direction and distance;

find and name locations with simple relationships such as “near to” and in
coordinate systems such as maps.

recognize and apply slides, flips, and turns;
recognize and create shapes that have symmetry.

create mental images of geometric shapes using spatial memory and
spatial visualization;

recognize and represent shapes from different perspectives;
relate ideas in geometry to ideas in number and measurement;

recognize geometric shapes and structures in the environment and specify
their location.

Principles and Standards for School Mathematics



Geometry

The geometric and spatial knowledge children bring to school should
be expanded by explorations, investigations, and discussions of shapes
and structures in the classroom. Students should use their notions of
geometric ideas to become more proficient in describing, representing,
and navigating their environment. They should learn to represent two-
and three-dimensional shapes through drawings, block constructions,
dramatizations, and words. They should explore shapes by decomposing
them and creating new ones. Their knowledge of direction and position
should be refined through the use of spoken language to locate objects
by giving and following multistep directions.

Geometry offers students an aspect of mathematical thinking that is
different from, but connected to, the world of numbers. As students be-
come familiar with shape, structure, location, and transformations and
as they develop spatial reasoning, they lay the foundation for under-
standing not only their spatial world but also other topics in mathe-
matics and in art, science, and social studies. Some students’ capabilities
with geometric and spatial concepts exceed their numerical skills.
Building on these strengths fosters enthusiasm for mathematics and
provides a context in which to develop number and other mathematical
concepts (Razel and Eylon 1991).

Analyze characteristics and properties of two- and
three-dimensional geometric shapes and develop
mathematical arguments about geometric relationships

Children begin forming concepts of shape long before formal
schooling. The primary grades are an ideal time to help them refine
and extend their understandings. Students first learn to recognize a
shape by its appearance as a whole (van Hiele 1986) or through quali-
ties such as “pointiness” (Lehrer, Jenkins, and Osana 1998). They may
believe that a given figure is a rectangle because “it looks like a door.”

Pre-K-2 geometry begins with describing and naming shapes. Young
students begin by using their own vocabulary to describe objects, talk-
ing about how they are alike and how they are different. Teachers must
help students gradually incorporate conventional terminology into their
descriptions of two- and three-dimensional shapes. However, terminol-
ogy itself should not be the focus of the pre-K-2 geometry program.
The goal is that early experiences with geometry lay the foundation for
more-formal geometry in later grades. Using terminology to focus at-
tention and to clarify ideas during discussions can help students build
that foundation.

"Teachers must provide materials and structure the environment appro-
priately to encourage students to explore shapes and their attributes. For
example, young students can compare and sort building blocks as they
put them away on shelves, identifying their similarities and differences.
They can use commonly available materials such as cereal boxes to ex-
plore attributes of shapes or folded paper to investigate symmetry and
congruence. Students can create shapes on geoboards or dot paper and
represent them in drawings, block constructions, and dramatizations.

Standards for Pre-K-2: Geometry

Geometry offers an
aspect of mathematical
thinking that is
different from, but
connected to, the world

of numbers.

O

E-example 4.2 Kg

Geoboards and Polygons (Part 1)
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Students need to see many examples of shapes that correspond to
the same geometrical concept as well as a variety of shapes that are
nonexamples of the concept. For example, teachers must ensure that
students see collections of triangles in different positions and with dif-
ferent sizes of angles (see fig. 4.12) and shapes that have a resemblance
to triangles (see fig. 4.13) but are not triangles. Through class discus-
sions of such examples and nonexamples, geometric concepts are

Fig. 4.12,

Examples of triangles

developed and refined.

Fig. 4.13.

Examples of nontriangles

Fig. 4.14.

Two triangles can be combined to
make different shapes.

N\

I

Students also learn about geometric properties by combining or cut-
ting apart shapes to form new shapes. For example, second-grade stu-
dents can be challenged to find and record all the different shapes that
can be created with the two triangles shown in figure 4.14. Interactive
computer programs provide a rich environment for activities in which
students put together or take apart (compose and decompose) shapes.
Technology can help all students understand mathematics, and interac-
tive computer programs may give students with special instructional
needs access to mathematics they might not otherwise experience.

Specify locations and describe spatial relationships using
coordinate geometry and other representational systems

Four types of mathematical questions regarding navigation and maps
can help students develop a variety of spatial understandings: direction
(which way?), distance (how far?), location (where?), and representation
(what objects?). In answering these questions, students need to develop
a variety of skills that relate to direction, distance, and position in space.
Students develop the ability to navigate first by noticing landmarks,
then by building knowledge of a route (a connected series of land-
marks), and finally by putting many routes and locations into a kind of
mental map (Clements 1999b).

Teachers should extend young students’ knowledge of relative posi-
tion in space through conversations, demonstrations, and stories. When
students act out the story of the three billy goats and illustrate over and

Principles and Standards for School Mathematics



under, near and far, and between, they are learning about location, space,
and shape. Gradually students should distinguish navigation ideas such
as left and right along with the concepts of distance and measurement.
As they build three-dimensional models and read maps of their own en-
vironments, students can discuss which blocks are used to represent
various objects like a desk or a file cabinet. They can mark paths on the
model, such as from a table to the wastebasket, with masking tape to
emphasize the shape of the path. Teachers should help students relate
their models to other representations by drawing a map of the same
room that includes the path. In similar activities, older students should
develop map skills that include making route maps and using simple co-
ordinates to locate their school on a city map (Liben and Downs 1989).
Computers can help students abstract, generalize, and symbolize
their experiences with navigating. For example, students might “walk
out” objects such as a rectangular-shaped rug and then use a computer

program to make a rectangle on the computer screen. When students O E-example43 — |
measure the rug with footprints and create a computer-generated rec- X
tangle with the same relative dimensions, they are exploring scaling and Navigating Paths and Mazes (Part 1)

similarity. Some computer programs allow students to navigate through
mazes or maps. Teachers should encourage students to move beyond
trial and error as a strategy for moving through desired paths to visual-
izing, describing, and justifying the moves they need to make. Using
these programs, students can learn orientation, direction, and measure-
ment concepts.

Apply transformations and use symmetry to analyze
mathematical situations

Students can naturally use their own physical experiences with shapes
to learn about transformations such as slides (translations), turns (rota-
tions), and flips (reflections). They use these movements intuitively
when they solve puzzles, turning the pieces, flipping them over, and ex-
perimenting with new arrangements. Students using interactive com-
puter programs, with shapes often have to choose a motion to solve a O Eexample4d — |
puzzle. These actions are explorations with transformations and are an
important part of spatial learning. They help students become con-
scious of the motions and encourage them to predict the results of
changing a shape’s position or orientation but not its size or shape.

"Teachers should choose geometric tasks that are accessible to all stu-
dents and sufficiently open-ended to engage students with a range of
interests. For example, a second-grade teacher might instruct the class
to find all the different ways to put five squares together so that one
edge of each square coincides with an edge of at least one other square
(see fig. 4.15). The task should include keeping a record of the pen-
tominoes that are identified and developing a strategy for recognizing
when they are transformations of another pentomino. Teachers can

Tangram Challenges (Part 1)

__ — Fig. 4.15.

Examples of pentominoes and

| nonpentominoes

Pentominoes Not Pentominoes

Standards for Pre-K-2: Geometry 99
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Fig. 4.16.

Symmetries can be found in designs.

Rotational symmetry

Line symmetry

encourage students to develop strategies for being systematic by ask-
ing, “How will you know if each pentomino is different from all the
others? Are you certain you have identified all the possibilities?” They
can challenge students to predict which of their pentominoes, if cut
out of grid paper, would fold into an open box and then verify (or re-
ject) their predictions by cutting them out and trying to fold them into
boxes.

Teachers should guide students to recognize, describe, and infor-
mally prove the symmetric characteristics of designs through the mate-
rials they supply and the questions they ask. Students can use pattern
blocks to create designs with line and rotational symmetry (see fig.
4.16) or use paper cutouts, paper folding, and mirrors to investigate
lines of symmetry.

Use visualization, spatial reasoning, and geometric
modeling to solve problems

Spatial visualization can be developed by building and manipulat-
ing first concrete and then mental representations of shapes, rela-
tionships, and transformations. Teachers should plan instruction so
that students can explore the relationships of different attributes or
change one characteristic of a shape while preserving others. In the
activity in figure 4.17, students are holding a long loop of yarn so
that each student’s hand serves as a vertex of the triangle. In this
arrangement, students experiment with changing a shape by increas-
ing the number of sides while the perimeter is unchanged. Conver-
sations about what they notice and how to change from one shape to
another allow students to hear different points of view and at the
same time give teachers insight into their students’ understanding.
Work with concrete shapes, illustrated in this activity, lays a valuable
foundation for spatial sense. To further develop students’ abilities,
teachers might ask them to see in their “mind’s eye” the shapes that
would result when a shape is flipped or when a square is cut diago-
nally from corner to corner. Thus, many shape and transformation
activities build spatial reasoning if students are asked to imagine,

Fig. 4.17.

Making a string triangle
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predict, experiment, and check the results of the work themselves
(see fig. 4.18).

Classroom activities that enhance visualization, such as asking stu-
dents to recall the configuration of the dots on dominoes and deter-
mine the number of dots without counting, can promote spatial mem-
ory. A teacher could place objects (such as scissors, a pen, a leaf, a paper
clip, and a block) on the overhead projector, show the objects briefly,
and ask students to name the objects they glimpsed. Or the teacher
might have students close their eyes; she could then take one object
away and ask which one was removed.

In another “quick image” activity, students can be briefly shown a
simple configuration such as the one in figure 4.19 projected on a screen
and then asked to reproduce it. The configuration is shown again for a
couple of seconds, and they are encouraged to modify their drawings.
The process may be repeated several times so that they have opportuni-
ties to evaluate and self-correct their work (Yackel and Wheatley 1990).
Asking, “What did you see? How did you decide what to draw?” is likely
to elicit different explanations, such as “three triangles,” “a sailboat sink-
ing,” “a square with two lines through it,” “a y in a box,” and “a sand-
wich that has been cut into three pieces.” Students who can see the con-
figuration in several ways may have more mathematical knowledge and
power than those who are limited to one perspective.

Spatial visualization and reasoning can be fostered in navigation ac-
tivities when teachers ask students to visualize the path they just walked
from the library and describe it by specifying landmarks along the route
or when students talk about how solid geometric shapes look from dif-
ferent perspectives. Teachers should ask students to identify structures
from various viewpoints and to match views of the same structure por-
trayed from different perspectives. Using a variety of magazine pho-
tographs, older students might discuss the location of the photogra-
phers when they took each one.

"Teachers should help students forge links among geometry, measure-
ment, and number by choosing activities that encourage them to use
knowledge from previous lessons to solve new problems. The story of
second graders estimating cranberries to fill a jar, described in the “Con-
nections” section of this chapter, illustrates a lesson in which students use
their understanding of number, measurement, geometry, and data to
complete the tasks. When teachers point out geometric shapes in nature
or in architecture, students’ awareness of geometry in the environment is
increased. When teachers invite students to discover why most fire hy-
drants have pentagonal caps rather than square or hexagonal ones or why
balls can roll in straight lines but cones roll to one side, they are encour-
aging them to apply their geometric understandings. When students are
asked to visualize numbers geometrically by modeling various arrange-
ments of the same number with square tiles, they also are making con-
nections to area. Making and drawing such rectangular arrays of squares
help primary-grades students learn to organize space and shape, which is
important to their later understanding of grids and coordinate systems
(Battista et al. 1998).

Standards for Pre-K-2: Geometry

Fig. 4.18.

Paper cutting can aid spatial visualiza-
tion and reasoning.

_ i
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O E-example 4.2 ’(g

Geoboards and Polygons (Part 2)

Fig. 4.19.

In a quick-image activity, students try
to reproduce this image, which has
briefly been projected on a screen.
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Measurement

Instructional programs from

prekindergarten through grade 12

should enable all students to—

Understand measurable attributes
of objects and the units, systems,
and processes of measurement

Apply appropriate techniques,
tools, and formulas to determine
measurements

102

Grades

Pre-K—

In prekindergarten through grade 2 all students should—

recognize the attributes of length, volume, weight, area, and time;
compare and order objects according to these attributes;
understand how to measure using nonstandard and standard units;
select an appropriate unit and tool for the attribute being measured.

measure with multiple copies of units of the same size, such as paper
clips laid end to end;

use repetition of a single unit to measure something larger than the unit,
for instance, measuring the length of a room with a single meterstick;

use tools to measure;

develop common referents for measures to make comparisons and
estimates.

Principles and Standards for School Mathematics



Measurement

Measurement is one of the most widely used applications of mathe-
matics. It bridges two main areas of school mathematics—geometry and
number. Measurement activities can simultaneously teach important
everyday skills, strengthen students’ knowledge of other important top-
ics in mathematics, and develop measurement concepts and processes
that will be formalized and expanded in later years.

"Teaching that builds on students’ intuitive understandings and infor-
mal measurement experiences helps them understand the attributes to
be measured as well as what it means to measure. A foundation in mea-
surement concepts that enables students to use measurement systems,
tools, and techniques should be established through direct experiences
with comparing objects, counting units, and making connections be-
tween spatial concepts and number.

Understand measurable attributes of objects and the O E-example 4'1K§
units, systems, and processes of measurement Navigating Paths and Mazes (Part 3)

Children should begin to develop an understanding of attributes by
looking at, touching, or directly comparing objects. They can deter-
mine who has more by looking at the size of piles of objects or identify
which of two objects is heavier by picking them up. They can compare
shoes, placing them side by side, to check which is longer. Adults
should help young children recognize attributes through their conver-
sations. “That is a deep hole.” “Let’s put the toys in the /arge box.”
“That is a long piece of rope.” In school, students continue to learn
about attributes as they describe objects, compare them, and order
them by different attributes. Seeing order relationships, such as that the
soccer ball is bigger than the baseball but smaller than the beach ball, is
important in developing measurement concepts.

Teachers should guide students’ experiences by making the resources
for measuring available, planning opportunities to measure, and en-
couraging students to explain the results of their actions. Discourse
builds students’ conceptual and procedural knowledge of measurement
and gives teachers valuable information for reporting progress and
planning next steps. The same conversations and questions that help
students build vocabulary help teachers learn about students’ under- )
standings and misconceptions. For example, when students measure the Measurement is one
length of a desk with rods, the teacher might ask what would happen if .
they used rods that were half as long. Would they need more rods or Of the most wide l)/ used
fewer rods? If students are investigating the height of a table, the S
teacher might ask what measuring tools would be appropriate and why. app lications Of

Although a conceptual foundation for measuring many different at-
tributes should be developed during the early years, linear measure-
ments are the main emphasis. Measurement experiences should include
direct comparisons as well as the use of nonstandard and standard units.
For example, teachers might ask young students to find objects in the
room that are about as long as their foot or to measure the length of a
table with connecting cubes. Later they can supply standard measure-
ment tools, such as rulers, to measure classroom plants and use those
measurements to chart the plants’ growth.

mathematics.
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Students need
opportunities to expand
their beginning
understandings of

attributes.
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Students need opportunities to expand their beginning understand-
ings of attributes other than those related to linear measures and area.
Preschool children learn about volume as they pour sand or water from
one container to another. In the classroom, they should continue to ex-
plore the capacity of various containers by direct comparisons or by
counting the number of scoops or cups required to fill each one. They
also should experiment with filling larger containers with the contents
of smaller ones and conjecture whether a quantity may be too much for
a proposed container.

Young students should also have experiences with weighing objects.
Balances help them understand comparative weights and reinforce the
concept of equality; for example, they can predict that two cubes will
weigh the same as twenty links and then test their prediction. Or they
can measure equal weights of clay for an art project or compare the
weights of different-sized blocks. Scales permit students to assign nu-
merical values to the weights of objects (as rulers allow them to assign
numerical values for linear measures) and allow them to begin using
standard measures in meaningful ways. By the end of second grade, stu-
dents should relate standard measures such as kilograms or pounds to
the attribute “how heavy.”

Another emphasis at this level should be on developing concepts of
time and the ways it is measured. When students use calendars or se-
quence events in stories, they are using measures of time in a real
context. Opportunities arise throughout the school day for teachers to
focus on time and its measurement through short conversations with
their students. A teacher might say, for example, “Look at the clock.
It’s one o’clock—time for gym! It is just like the picture of the clock
on our schedule.” As teachers call attention to the clock, many young
students will learn to tell time. However, this is less important than
their understanding patterns of minutes, hours, days, weeks, and
months.

Principles and Standards for School Mathematics



The measurement process is identical, in principle, for measuring
any attribute: choose a unit, compare that unit to the object, and re-
port the number of units. The number of units can be determined by
iterating the unit (repeatedly laying the unit against the object) and
counting the iterations or by using a measurement tool. For example,
students can tile a space and count the number of tiles to find the
area. For linear measurement, they can record their height by using a

meterstick.

Teachers should provide many hands-on opportunities for students
to choose tools—some with nonstandard and others with standard The measurement
units—for measuring different attributes. Students should learn that o . .
rods and rulers with centimeters and inches may be used to measure process is identical, in

length. They should recognize that different units give different levels
of precision for their measurements. Although for many measurement
tasks students will use nonstandard units, it is appropriate for them to
experiment with and use standard measures such as centimeters and
meters and inches and feet by the end of grade 2.

principle, for measuring

any attribute.

Apply appropriate techniques, tools, and formulas to
determine measurements

If students initially explore measurement with a variety of units, non-
standard as well as standard, they will develop an understanding of the
nature of units. For example, if some students measure the width of a
door using pencils and others use large paper clips, the number of paper
clips will be different from the number of pencils. If some students use
small paper clips, then the width of the door will measure yet a differ-
ent number of units. Similarly, when students cover an area, some using
dominoes and others using square tiles, they will recognize that
“domino measurements” have different values from “tile measure-
ments.” Such experiences and discussions can create an awareness of
the need for standard units and tools and of the fact that different mea-
suring tools will yield different numerical measurements of the same
object.

Standards for Pre-K-2: Measurement 1 05
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Measurement concepts and skills can develop together as students
position multiple copies of the same units without leaving spaces be-
tween them or as they measure by iterating one unit without overlap-
ping or leaving gaps. Both types of experiences are necessary. Similarly,
) ) o using rulers, students learn concepts and procedures, including accurate
Estimation activities alignment (e.g., ignoring the leading edge at the beginning of many
S rulers), starting at zero, and focusing on the lengths of the units rather
are an €ﬂ7’1y ﬂPPhCﬂ Lion than only on the numbers on the ruler. By emphasizing the question
“What are you counting?” teachers help students focus on the meaning
of the measurements they are making.

Teachers cannot assume that students understand measurement fully
even when they are able to tell how long an object is when it is aligned
with a ruler. Using tools accurately and questioning when measure-
ments may not be accurate require concepts and skills that develop over
extended periods through many varied experiences. Consider the fol-
lowing episode drawn from a classroom experience:

of number sense.

A teacher had given her class a list of things to measure; because she
was interested in finding out how the students will approach the
task, she had left the choice of measuring tools up to them. Mari
was using a ruler when the teacher stopped by the desk to observe
her measuring her book. “It’s twelve inches,” Mari said as she wrote
the measurement on the recording sheet. Next she measured her
pencil, which was noticeably shorter than the book. The teacher
observed that Mari’s hand slipped as she was aligning her ruler with
the pencil. Mari made no comment but recorded this measurement
as twelve inches also.

“I notice that you wrote that each of these is twelve inches,” said
the teacher. “I’'m confused. The book looks much longer than the
pencil to me. What do you think?”

Mari pushed both items close together and studied them. “You're
right,” she said. “The book is longer, but they are both twelve
inches.”

In her anecdotal records, the teacher noted what happened in order
to address the issue in future lessons and conversations with Mari
and the class.

Estimation activities are an early application of number sense; they
focus students’ attention on the attributes being measured, the process
of measuring, the sizes of units, and the value of referents. Thus esti-
mating measurements contributes to students’ development of spatial
sense, number concepts, and skills. Because precise measurements are
not always needed to answer questions, students should realize that it is
often appropriate to report a measurement as an estimate.
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Data Analysis and Probability

Grades

Instructional programs from
prekindergarten through grade 12 -— —
should enable all students to—

In prekindergarten through grade 2 all students should—

Formulate questions that can be ad- * pose questions and gather data about themselves and their surroundings;
dressed with data and collect, * sort and classify objects according to their attributes and organize data
organize, and display relevant data about the objects;

to answer them * represent data using concrete objects, pictures, and graphs.

Select and use appropriate statistical * describe parts of the data and the set of data as a whole to determine
methods to analyze data what the data show.

Develop and evaluate inferences and + discuss events related to students’ experiences as likely or unlikely.

predictions that are based on data

Understand and apply basic concepts
of probability

108 Principles and Standards for School Mathematics



Data Analysis and Probability

Informal comparing, classifying, and counting activities can provide
the mathematical beginnings for developing young learners’ under-
standing of data, analysis of data, and statistics. The types of activities
needed and appropriate for kindergartners vary greatly from those for
second graders; however, throughout the pre-K-2 years, students
should pose questions to investigate, organize the responses, and create
representations of their data. Through data investigations, teachers
should encourage students to think clearly and to check new ideas
against what they already know in order to develop concepts for making
informed decisions.

As students’ questions become more sophisticated and their data sets
larger, their use of traditional representations should increase. By the
end of the second grade, students should be able to organize and dis-
play their data through both graphical displays and numerical sum-
maries. They should be using counts, tallies, tables, bar graphs, and line
plots. The titles and labels for their displays should clearly identify what
the data represent. As students work with numerical data, they should
begin to sort out the meaning of the different numbers—those that rep-
resent values (“I have four people in my family”) and those that repre-
sent how often a value occurs in a data set (frequency) (“Nine children
have four people in their families”). They should discuss when conclu-
sions about data from one population might or might not apply to data
from another population. Considerations like these are the precursors
to understanding the notion of inferences from samples.

Ideas about probability at this level should be informal and focus on
judgments that children make because of their experiences. Activities
that underlie experimental probability, such as tossing number cubes or
dice, should occur at this level, but the primary purpose for these activi-
ties is focused on other strands, such as number.

Formulate questions that can be addressed with data and
collect, organize, and display relevant data to answer them

The main purpose of collecting data is to answer questions when the
answers are not immediately obvious. Students’ natural inclination to
ask questions must be nurtured. At the same time, teachers should help
them develop ways to gather information to answer these questions so
that they learn when and how to make decisions on the basis of data. As
children enter school and their interests extend from their immediate
surroundings to include other environments, they must learn how to
keep track of multiple responses to their questions and those posed by
others. Students also should begin to refine their questions to get the
information they need.

Organizing data into categories should begin with informal sorting
experiences, such as helping to put away groceries. These experiences
and the conversations that accompany them focus children’s attention
on the attributes of objects and help develop an understanding of
“things that go together,” while building a vocabulary for describing at-
tributes and for classifying according to criteria. Young students should
continue activities that focus on attributes of objects and data so that by

Standards for Pre-K-2: Data Analysis and Probability

The main purpose of
collecting data is to
answer questions when
the answers are not

immediately obvious.
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the second grade, they can sort and classify simultaneously, using more
than one attribute.

Students should learn through multiple experiences that how data
are gathered and organized depends on the questions they are trying to
answer. For example, when students are asked to put a counter into a
bowl to indicate whether they vote for a class trip to the zoo or to the
museum, the responses are organized as the data are gathered (see fig.
4.20). To address a particular question such as “What is your favorite
beverage served in the school cafeteria?” real objects such as containers
for chocolate milk, plain milk, or juice can be collected, organized, and
displayed. At other times, pictures of objects, counters, name cards, or
tallies can be contributed by students, organized, and then displayed to
indicate preferences.

Fig. 4.20.

Students can contribute counters to
bowls to vote.
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Place one cube in a bowl
to vote for our class trip.
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Methods used by students in different grades to investigate the num-
ber of pockets in their clothing provide an example of students’ growth
in data investigations during the period through grade 2. Younger stu-
dents might count pockets (Burns 1996). They could survey their class-
mates and gather data by listing names, asking how many pockets, and
noting that number beside each name. Together the class could create
one large graph to show the data about all the students by coloring a
bar on the graph to represent the number of pockets for each student
(see fig. 4.21). In the second grade, however, students might decide to
count the number of classmates who have various numbers of pockets
(see fig. 4.22). Their methods of gathering the information, organizing
it, and displaying the data are likely to be different because they are
grouping the data—three students have two pockets, five students have
four pockets, and so on. They will have to think carefully about the
meaning of all the numbers—some represent the value of a piece of
data and some represent how many times that value occurs.

Students do not automatically refine their questions, consider alter-
native ways of collecting information, or choose the most appropriate
way to organize and display data; these skills are acquired through expe-
rience, class discussions, and teachers’ guidance. Take, for example, the
following episode drawn from a classroom experience:
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The students had become interested in the question of whether
more families had cars with two doors or four doors. As they
planned, the students had to decide if trucks should be included.
What about vans with four doors or station wagons with five doors?
After the class had settled on common categories, different groups
of students kept track of the data in different ways. One group put
cubes in different cups that represented the different categories.
Another group recorded the data using tallies. A third group of stu-
dents made a list of families with cars with two doors and those with
cars with four doors without attempting to organize the informa-
tion or agree on the results of their data collection. The teacher
used the students’ work for a class discussion about which groups
were able to answer the question they had posed.

Students’ representations should be discussed, shared with class-
mates, and valued because they reflect the students’ understandings.
These representations afford teachers opportunities to assess students’
understandings and to initiate class discussions about important issues
related to representing data. Misconceptions that arise because of stu-
dents’ representations of data offer situations for new learning and in-
struction. A teacher asked first-grade students to fold a piece of paper in
half and cut out a heart (adapted from University of North Carolina
Mathematics and Science Education Network [1997, p. 19]). When the
students sorted their hearts into three columns according to size (see
fig. 4.23a), some of them stated that the large hearts represented the
most popular choice because that column was the tallest. A teacher
could use a class discussion of the difference between the sizes and the
numbers of hearts as an early experience with scale and as an opportu-
nity for the students to plan how to revise the graph to convey the data
more accurately. By pasting their hearts on equal-sized pieces of paper,
the students could create a new graph, shown in figure 4.23b.

Fig. 4.23.
A misleading data display and its What Size Heart Did You Make?
subsequent revision (source of (a):
University of North Carolina ®
Mathematics and Science Education
1997, p. 19)
\Z \J
Small Medium Large © ’ '
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Select and use appropriate statistical methods to §
analyze data g
=

Through their data investigations, young students should develop F
the idea that data, charts, and graphs give information. When data are =
displayed in an organized manner, class discussions should focus on 3
what the graph or other representation conveys and whether the data =2
help answer the specific questions that were posed. Teachers should en- 3
courage students to compare parts of the data (“The same number of =
children have dogs as have cats”) and make statements about the data as g
a whole (“Most students in the class have lost only two teeth”). —
By the end of grade 2, students should begin to question inappropri- E
ate statements about data, as illustrated in this classroom conversation: o
Two students, interested in how many of their classmates watched a 2
particular television show, surveyed only their friends and reported -
their results to the class. “You didn’t ask me and I watched it!” one girl 3
complained. Another student said, “Wait a minute, you didn’t ask me S
and I didn’t watch it. I bet most kids didn’t watch it.” -
Data investigations can encourage students to wrestle with counting S
issues that are fundamental to all data collection: Whom do I count? 3
How can I be certain I have counted each piece of data once and only =
once? =
The concept of sample is difficult for young students. Most of their S
data gathering is for full populations, such as their own class. With =
guidance, students can begin to recognize when conclusions about one §
population cannot be applied to another, as demonstrated in the follow- 2
ing hypothetical example: A teacher reads a book about whistling to a §'
first-grade class. The students decide to survey the class and discover -
that eight students can whistle and nineteen cannot. When the teacher o
asks the class to title the chart they have created, the students agree that 3
&

Standards for Pre-K-2: Data Analysis and Probability 113 %
g

=]




n
[=
S
2
©
S
(]
o
o
-}
)
Q
Q
E
=)
P4
©
S
Q2
(V)
o
<
>
=
Q
£
o
Q
0}
et
c
(7]
£
(0]
S
3
n
©
()
=
=y
=
©
Qo
o
o
L]
o
0
>
©
[=
<
(2]
]
]
Q
[e)]
£
>
(]
(7]
£
o
Q
o
S
o
Y
o
o
S
o
L}
()]
£
(=
o
n
©
(]
o
[ =
S
2
o
9
c
3
E
£
o]
o
n
[ =
S
=
[$]
Q
(=
=
]
o
[
S
=
©
s
[=
Q
0
()]
S
[
(V)
o

Teachers should

address the beginnings of
probability through

informal activities.
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an appropriate title would be “Most Children Cannot Whistle.” The
teacher then asks, “What do you think would happen if we asked the
fourth graders?” The students repeat the survey and discover that al-

most every fourth grader can whistle, so they decide to retitle the graph
“Number of Students in Our Class Who Can Whistle.”

Develop and evaluate inferences and predictions that
are based on data

Inference and prediction are more-advanced aspects of this Stan-
dard. The development of these concepts requires work with sampling
that begins in the next grade band. As appropriate beginnings for these
concepts, however, teachers should encourage informal discussions
about whether or not students in other classes would reach a similar
conclusion.

Understand and apply basic concepts of probability

At this level, probability experiences should be informal and often
take the form of answering questions about the likelihood of events,
using such vocabulary as more likely or less likely. Young students enjoy
thinking about impossible events and often encounter them in the
books they are learning to read. Questions about more and less likely
events should come from the students’ experiences, and the answers will
often depend on the community and its location. During the winter, the
question “Is it likely to snow tomorrow?” has quite different answers in
"Toronto and San Diego.

"Teachers should address the beginnings of probability through infor-
mal activities with spinners or number cubes that reinforce conceptions
in other Standards, primarily number. For example, as students repeat-
edly toss two dice or number cubes and add the results of each toss,
they may begin to keep track of the results. They will realize that a sum
of 1 is impossible, that a sum of 2 or 12 is rare, and that the sums 6, 7,
and 8 are fairly common. Through discussion, they may realize that
their observations have something to do with the number of ways to get
a particular sum from two dice, but the exact calculation of the proba-
bilities should occur in higher grades.

Principles and Standards for School Mathematics
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Grades

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Build new mathematical knowledge Problem solving is a hallmark of mathematical activity and a major
through problem solving means of developing mathematical knowledge. It is finding a way to
reach a goal that is not immediately attainable. Problem solving is nat-
ural to young children because the world is new to them, and they ex-
Solve problems that arise in mathe- hibit curiosity, intelligence, and flexibility as they face new situations.
matics and in other contexts The challenge at this level is to build on children’s innate problem-
solving inclinations and to preserve and encourage a disposition that
values problem solving. Teachers should encourage students to use the
Apply and adapt a variety of appro- new mathematics they are learning to develop a broad range of prob-
priate strategies to solve problems lem-solving strategies, to pose (formulate) challenging problems, and
to learn to monitor and reflect on their own ideas in solving problems.

Monitor and reflect on the process _ . _
of mathematical problem solving What should problem solving look like in

prekindergarten through grade 27?

Problem solving in the early years should involve a variety of con-
texts, from problems related to daily routines to mathematical situa-
tions arising from stories. Students in the same classroom are likely to
have very different mathematical understandings and skills; the same
situation that is a problem for one student may elicit an automatic re-
sponse from another. For instance, when first-grade students were
working in small groups to create models of animals with geometric
solids, some had difficulty seeing the parts of animals as geometric
shapes. Other students readily saw that they could use seven rectangular
prisms to make a giraffe (see figure 4.24). Similarly, the question “How
many books would there be on the shelf if Marita put six books on it
and Al put three more on it?” may not be a problem for the student
who knows the basic number combination 6 and 3 and its connection
with the question. For the student who has not yet learned the number
combination and may not yet know how to represent the task symboli-
cally, this problem presents an opportunity to learn the skills needed to
solve similar problems.

Solving problems gives students opportunities to use and extend their
knowledge of concepts in each of the Content Standards. For example,
many problems relate to classification, shape, or space: Which blocks
will fit on this shelf? Will this puzzle piece fit in the space that remains?
How are these figures alike and how are they different? In answering

116 Principles and Standards for School Mathematics



these questions, students are using spatial-visualization skills and their
knowledge of transformations. Other problems support students’ devel-
opment of number sense and understanding of operations: How many
more days until school vacation? There are 43 cards in this group; how
many packets of 10 can we make? If there are 26 students in our class
and 21 are here today, how many are absent? When young students
solve problems that involve comparing and completing collections by
using counting strategies, they develop a better understanding of addi-
tion and subtraction and the relationship between these operations.

Posing problems, that is, generating new questions in a problem con-
text, is a mathematical disposition that teachers should nurture and de-
velop. Through asking questions and identifying what information is
essential, students can organize their thoughts, as the following episode
drawn from classroom observations demonstrates:

Lei wanted to know all the ways to cover the yellow hexagon using
pattern blocks. At first she worked with the blocks using fairly undi-
rected trial and error. Gradually she became more methodical and
placed the various arrangements in rows. The teacher showed her a
pattern-block program on the class computer and how to “glue”

the pattern-block designs together on the screen. Lei organized the
arrangements by the numbers of blocks used and began predicting
which attempts would be transformations of other arrangements
even before she completed the hexagons (see fig. 4.25). The next
challenge Lei set for herself was to see if she could create a hexago-
nal figure using only the orange squares. She had experimented with
square blocks and could not make a hexagon. “But,” she explained to
her teacher, “it might be different on the computer,” indicating that
she felt the computer was a powerful problem-solving tool.

Fig. 4.24.

A block giraffe made from seven rec-
tangular prisms (Adapted from Russell,
Clements, and Sarama [1998, p. 115])

Kyle was certain that he could find more arrangements for hexa-
gons than Lei had found. Other students joined the discussions be-
tween Lei and Kyle. When this activity created a great demand for
“turns” with the pattern blocks and the computer, the teacher took
advantage of the class’s interest by having students discuss how they

would know when an arrangement of blocks was a duplicate and
how they might keep a written record of their work.

Kyle’s participation illustrates that students are persistent when prob-
lems are interesting and challenging. Their interest also stimulates cu-
riosity in other students.

Standards for Pre-K-2: Problem Solving

Fig. 4.25.

Organizing arrangements that make
hexagons
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Sharing gives students
opportunities to hear
new ideas and compare

them with their own.
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Students working together often begin to solve problems one way
and, before reaching a solution, change their strategies. In addition, as
they create and modify their strategies, students often recognize the
need to learn more mathematics. The following episode, drawn from
classroom observation, illustrates how teachers can make a problem
mathematically rich.

Several first-grade classes in the same school were planting a garden
in the school courtyard. The students wanted each class to have the
same amount of space for planting; thus, how to divide the area into
three equal parts was greatly debated. A walkway, two shade trees,
and several benches complicated the discussions. The students
began to list all their concerns and the questions they needed to an-
swer before dividing the area for the garden: How big can the gar-
den be? Do the three sections have to be the same shape? How can
we be sure each class has the same amount of space?

The teachers drew a large map for each class and indicated the ap-
proximate location and amount of space taken by trees, walkway,
and benches. In one class the students decided they wanted rectan-
gular gardens and needed to measure the courtyard to figure out
how large the rectangles could be. After many measurements and
much debate, they cut out three rectangles that were four feet by
nine feet to show how big each garden could be. When they were
not certain how to use this information on their map, the teacher
showed them a scale on a road map and how map scales are used.
She suggested appropriate dimensions for the three rectangles,
which they cut and glued to their map.

The second class began with a discussion of what “the same area”
means. They used large-grid paper squares and taped them to their
map to allocate the maximum space for gardening, counting care-
fully to be certain each class had the same number of squares even
though the shapes of the regions were different. This group also
needed to learn about scale to actually make a plan for marking off
the gardens outside.

Before voting on how to mark off the gardens, the two groups pre-
sented their plans to all the classes.

Deciding how to share land for a garden is an example of a class-
room-based problem that facilitates students’ development of problem-
solving strategies. The task was complex. The students struggled with
how to share the area equally, how to measure, and how to communi-
cate their ideas. However, the project was rich with proposed strategies,
counterproposals, and opportunities for the teachers to introduce new
mathematics.

Children’s literature is helpful in setting a context for both student-
generated and teacher-posed problems. For example, after reading
I Hunter (Hutchins 1982) to her class, a second-grade teacher asked
students to figure out how many animals, including the hunter, were
in the story. Figure 4.26 illustrates several approaches used by the
students.

Sharing gives students opportunities to hear new ideas and compare
them with their own and to justify their thinking. As students struggle
with problems, seeing a variety of successful solutions improves their

Principles and Standards for School Mathematics
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chance of learning useful strategies and allows them to determine if

some strategies are more flexible and efficient. When the teacher in- 2 (o
vited the students to explain their solutions to the I Hunter problem, 3=
several of them discovered their counting or computational errors and bid= 1o
made corrections during the presentations. Explaining their pictorial
and written solutions helped them articulate their thinking and make it l0+5=i5
precise. lS+l,=2]

, . . QL4 =2%
What should be the teacher’s role in developing
problem solving in prekindergarten through grade 27 LBHE=30

The decisions that teachers make about problem-solving opportuni- e+9Q= Y5

ties influence the depth and breadth of students’ mathematics learning. 45+ 10:=55 animals

"Teachers must be clear about the mathematics they want their students
to accomplish as they structure situations that are both problematic and
attainable for a wide range of students. They make important decisions
about when to probe, when to give feedback that affirms what is correct Determining the number of animals in
and identifies what is incorrect, when to withhold comments and plan Rty
similar tasks, and when to use class discussions to advance the students’
mathematical thinking. By allowing time for thinking, believing that
young students can solve problems, listening carefully to their explana-
tions, and structuring an environment that values the work that stu-
dents do, teachers promote problem solving and help students make
their strategies explicit.

Instead of teaching problem solving separately, teachers should

Fig. 4.26.

embed problems in the mathematics-content curriculum. When teach- O - Eexample43 —— |
ers integrate problem solving into the context of mathematical situa-
tions, students recognize the usefulness of strategies. Teachers should Navigating Paths and Mazes (Part 2)

choose specific problems because they are likely to prompt particular
strategies and allow for the development of certain mathematical ideas.
For example, the problem “I have pennies, dimes, and nickels in my
pocket. If I take three coins out of my pocket, how much money could I
have taken?” can help children learn to think and record their work.
Assessing students’ abilities to solve problems is more difficult than
evaluating computational skills. However, it is imperative that teachers
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gather evidence in a variety of ways, such as through students’ work
and conversations, and use that information to plan how to help indi-
vidual students in a whole-class context. Knowing students’ interests
allows teachers to formulate problems that extend the mathematical
thinking of some students and that also reinforce the concepts learned
by other students who have not yet reached the same understandings.
Classrooms in which students have ready access to materials such as
counters, calculators, and computers and in which they are encouraged
to use a wide variety of strategies support thinking that results in mul-
tiple levels of understanding.

Two examples illustrate how conversations with students give teach-
ers useful information about students’ thinking. Both examples have
been drawn from observations of students.

Katie, a kindergarten student, said that her sister in third grade had
taught her to multiply. “Give me a problem,” she said. The teacher
asked, “How much is three times four?” There was a long pause before
Katie replied, “Iwelve!” When the teacher asked how she knew, Katie
responded, “I counted ducks in my head—three groups with four
ducks.” Katie, while demonstrating an additive understanding of multi-
plication by counting the ducks in each group, was also exhibiting an
interest in, and readiness for, mathematics that is traditionally a focus in
the higher grades. Luis, a second grader, demonstrated fluency with
composing and decomposing numbers when he announced that he
could figure out multiplication. His teacher asked, “Can you tell me
four times seven?” Luis was quiet for a few moments, and then he gave
the answer twenty-eight. When the teacher asked how he got twenty-
eight, Luis replied, “Seven plus three is ten, and four more is fourteen;
six more is twenty and one more is twenty-one; seven more is twenty-
eight.” Luis’s approach also built on additive thinking but with a far
more sophisticated use of number relationships. He added 7 + 7 + 7 + 7
mentally by breaking the sevens into parts to complete tens along the
way.

Students are intrigued with calculators and computers and can be
challenged by the mathematics that technology makes available to
them, as shown in the following episode, adapted from Riedesel (1980,
pp. 74-75):

Erik, a very capable kindergarten student, observed his teacher using
a calculator and asked how it worked. The teacher showed him how
to compute simple additions. Erik took the calculator to the math
corner and a few minutes later loudly proclaimed, “Five plus four
equals nine. Hey, this thing got it right!” A few minutes later, he
walked over to the teacher and they had the following conversation:

Erik: What does this button mean?

Teacher: That’s called the “square root.” It’s a pretty difficult idea in
math

Erik: OK. (He wanders away, but not for long.) But this is a
disaster! I pressed 2, then the square-root key, and I got a
whole lot of numbers.

Teacher: "Try using 1. (Erik tries this.)
Erik: That just gives 1 back.

Principles and Standards for School Mathematics



Teacher: "Try 4. (Erik notes that the result is 2 and asks why. The teacher
tells him to get the square tiles and put out one.) Is that a
square? (Erik nods.) Try to add more tiles beside this one
until it is a square again. (Erik adds one tile.) Is that a
square?

Erik: No, it’s a rectangle. (The teacher asks how he could make it
into a square, and Erik adds two more tiles.)

Teacher: How many tiles are there in all? (Erik responds that there are
four.) Good. Press 4 on the calculator. How long is the
bottom of the square?

Erik: "Two.

Teacher: And here at the left side?
Erik: Two there, too.

Teacher: Press the square-root key.
Erik: Hey, it comes out 2!

The teacher challenged Erik to add more tiles until he made an-
other square. Erik built a 3 x 3 array, counted the total tiles, entered Teachers should ask
this number into the calculator, and pressed the square-root key. He
found that the result was the number of rows and also the number students to re ﬂe ct omn,
of tiles in each row. Erik kept building squares until ata 9 x 9 array . . .
he said his eyes hurt. The teacher asked him what he had found out. exp lai n, a nd Jus tl]ﬁ/ their

Erik: Well, if you make a square, then all you have to do is count answers.
the tiles and press that number and the square-root key
and the calculator tells you how many tiles there are on
each side.

Teacher: Good work! What else does that number mean?

Erik: It means that there are that many rows and that many
tiles in each row. (The teacher congratulates Erik on figuring
this out.) Yeah, I guess if you want to learn something re-
ally bad, you can. Tomorrow, I’'m going to go up to one

hundred!

Teachers should ask students to reflect on, explain, and justify their
answers so that problem solving both leads to and confirms students’
understanding of mathematical concepts. For example, following an
estimation activity in a first-grade class, students learned that there
were eighty-three marbles in a jar. There were twenty-five students in
the class, so the teacher asked how many marbles each child could get.
Graham said, “Three.” When the teacher asked how he knew, Graham
replied, “Eighty-three is just a little more than seventy-five, so we only
get three. There are four quarters in a dollar. There are three quarters
in seventy-five cents. So we can only get three.”

Teachers must make certain that problem solving is not reserved for
older students or those who have “got the basics.” Young students can
engage in substantive problem solving and in doing so develop basic
skills, higher-order-thinking skills, and problem-solving strategies
(Cobb et al. 1991; Trafton and Hartman 1997).
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Grades

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Young students are just forming their store of mathematical knowl-
edge, but even the youngest can reason from their own experiences
(Bransford, Brown, and Cocking 1999). Although young children are
working from a small knowledge base, their logical reasoning begins
before school and is continually modified by their experiences. Teachers
should maintain an environment that respects, nurtures, and encour-

Recognize reasoning and proof as
fundamental aspects of mathematics

Make and investigate mathematical

conjectures . - . -
ages students so that they do not give up their belief that the world, in-
cluding mathematics, is supposed to make sense.

Develop and evaluate mathematical Although they have yet to develop all the tools used in mathematical

arguments and proofs reasoning, young students have their own ways of finding mathematical
results and convincing themselves that they are true. Two important el-
ements of reasoning for students in the early grades are pattern-recog-

Select and use various types of nition and classification skills. They use a combination of ways of justi-

reasoning and methods of proof fying their answers—perception, empirical evidence, and short chains

of deductive reasoning grounded in previously accepted facts. They
make conjectures and reach conclusions that are logical and defensible
from their perspective. Even when they are struggling, their responses
reveal the sense they are making of mathematical situations.

Young students naturally generalize from examples (Carpenter and
Levi 1999), so teachers should guide them to use examples and coun-
terexamples to test whether their generalizations are appropriate. By
the end of second grade, students should be using this method for test-
ing their conjectures and those of others.

What should reasoning and proof look like in
prekindergarten through grade 27?

The ability to reason systematically and carefully develops when stu-
dents are encouraged to make conjectures, are given time to search for
evidence to prove or disprove them, and are expected to explain and
justify their ideas. In the beginning, perception may be the predomi-
nant method of determining truth: nine markers spread far apart may
be seen as “more” than eleven markers placed close together. Later, as
students develop their mathematical tools, they should use empirical
approaches such as matching the collections, which leads to the use of
more-abstract methods such as counting to compare the collections.
Maturity, experiences, and increased mathematical knowledge together
promote the development of reasoning throughout the early years.
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Creating and describing patterns offer important opportunities for
students to make conjectures and give reasons for their validity, as the
following episode drawn from classroom experience demonstrates.

The student who created the pattern shown in figure 4.27 proudly
announced to her teacher that she had made four patterns in one.
“Look,” she said, “there’s triangle, triangle, circle, circle, square,
square. That’s one pattern. Then there’s small, large, small, large,
small, large. That’s the second pattern. Then there’s thin, thick,
thin, thick, thin, thick. That’s the third pattern. The fourth pattern
is blue, blue, red, red, yellow, yellow.”

Her friend studied the row of blocks and then said, “I think there
are just two patterns. See, the shapes and colors are an AABBCC
pattern. The sizes are an ABABAB pattern. Thick and thin is an
ABABAB pattern, too. So you really only have two different pat-
terns.” The first student considered her friend’s argument and
replied, “I guess you’re right—but so am I!”

1A @

Being able to explain one’s thinking by stating reasons is an impor-
tant skill for formal reasoning that begins at this level.

Finding patterns on a hundred board allows students to link visual
patterns with number patterns and to make and investigate conjectures.

Fig. 4.27.

Four patterns in one

L A

Teachers extend students’ thinking by probing beyond their initial ob- O ——— E-example 4.5 kg
servations. Students frequently describe the changes in numbers or the

. Calculators and Hundred Boards
visual patterns as they move down columns or across rows. For exam- (Part 2)

ple, asked to color every third number beginning with 3 (see figure
4.28), different students are likely to see different patterns: “Some rows
have three and some have four,” or “The pattern goes sideways to the
left.” Some students, seeing the diagonals in the pattern, will no longer Fig. 4.28.
count by threes in order to complete the pattern. Teachers need to ask
these students to explain to their classmates how they know what to
color without counting. Teachers also extend students’ mathematical
reasoning by posing new questions and asking for arguments to support
their answers. “You found patterns when counting by twos, threes,
fours, fives, and tens on the hundred board. Do you think there will be
patterns if you count by sixes, sevens, eights, or nines? What about
counting by elevens or fifteens or by any numbers?” With calculators,
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Students’ reasoning about classification varies during the early years. 61| 6263l 54| 65 68| 67 | 65 ['8a| 70

For instance, when kindergarten students sort shapes, one student may
pick up a big triangular shape and say, “This one is big,” and then put it
with other large shapes. A friend may pick up another big triangular
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it with other triangles. Both of these students are focusing on only one
property, or attribute. By second grade, however, students are aware
that shapes have multiple properties and should suggest ways of classi-
fying that will include multiple properties.

By the end of second grade, students also should use properties to
reason about numbers. For example, a teacher might ask, “Which
number does not belong and why: 3, 12, 16, 30?” Confronted with
this question, a student might argue that 3 does not belong because it
is the only single-digit number or is the only odd number. Another
student might say that 16 does not belong because “you do not say it
when counting by threes.” A third student might have yet another
idea and state that 30 is the only number “you say when counting by
tens.”

Students must explain their chains of reasoning in order to see them
clearly and use them more effectively; at the same time, teachers should
model mathematical language that the students may not yet have con-
nected with their ideas. Consider the following episode, adapted from
Andrews (1999, pp. 322-23):

One student reported to the teacher that he had discovered “that a
triangle equals a square.” When the teacher asked him to explain,
the student went to the block corner and took two half-unit
(square) blocks, two half-unit triangular (triangle) blocks, and one
unit (rectangle) block (shown in fig. 4.29). He said, “If these two
[square half-units] are the same as this one unit and these two [tri-
angular half-units] are the same as this one [unit], then this square
has to be the same as this triangle!”

Even though the student’s wording—that shapes were “equal”—was
not correct, he was demonstrating powerful reasoning as he used the
blocks to justify his idea. In situations such as this, teachers could point
to the faces of the two smaller blocks and respond, “You discovered that

Fig. 4.29.

A student’s explanation of the
equal areas of square and triangular

block faces
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the area of this square equals the area of this triangle because each of
them is half the area of the same larger rectangle.”

What should be the teacher’s role in developing
reasoning and proof in prekindergarten through grade 27

Teachers should create learning environments that help students rec-
ognize that all mathematics can and should be understood and that they
are expected to understand it. Classrooms at this level should be
stocked with physical materials so that students have many opportuni-
ties to manipulate objects, identify how they are alike or different, and
state generalizations about them. In this environment, students can dis-
cover and demonstrate general mathematical truths using specific ex-
amples. Depending on the context in which events such as the one illus-
trated by figure 4.29 take place, teachers might focus on different
aspects of students’ reasoning and continue conversations with different
students in different ways. Rather than restate the student’s discovery in
more-precise language, a teacher might pose several questions to deter-
mine whether the student was thinking about equal areas of the faces of
the blocks, or about equal volumes. Often students’ responses to in-
quiries that focus their thinking help them phrase conclusions in more-
precise terms and help the teacher decide which line of mathematical
content to pursue.

Teachers should prompt students to make and investigate mathemat-
ical conjectures by asking questions that encourage them to build on
what they already know. In the example of investigating patterns on a
hundred board, for instance, teachers could challenge students to con-
sider other ideas and make arguments to support their statements: “If
we extended the hundred board by adding more rows until we had a
thousand board, how would the skip-counting patterns look?” or “If we
made charts with rows of six squares or rows of fifteen squares to count
to a hundred, would there be patterns if we skip-counted by twos or
fives or by any numbers?”

Through discussion, teachers help students understand the role of
nonexamples as well as examples in informal proof, as demonstrated in
a study of young students (Carpenter and Levi 1999, p. 8). The stu-
dents seemed to understand that number sentences like 0 + 5869 = 5869
were always true. The teacher asked them to state a rule. Ann said,
“Anything with a zero can be the right answer.” Mike offered a coun-
terexample: “No. Because if it was 100 + 100 that’s 200.” Ann under-
stood that this invalidated her rule, so she rephrased it, “I said, umm, if
you have a zero in it, it can’t be like 100, because you want just plain
zero like 0+ 7 =7."

The students in the study could form rules on the basis of examples.
Many of them demonstrated the understanding that a single example
was not enough and that counterexamples could be used to disprove a
conjecture. However, most students experienced difficulty in giving jus-
tifications other than examples.

From the very beginning, students should have experiences that help
them develop clear and precise thought processes. This development of
reasoning is closely related to students’ language development and is
dependent on their abilities to explain their reasoning rather than just

Standards for Pre-K-2: Reasoning and Proof
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give the answer. As students learn language, they acquire basic logic
words, including not, and, or, all, some, if...then, and because. Teachers
should help students gain familiarity with the language of logic by using
such words frequently. For example, a teacher could say, “You may
choose an apple or a banana for your snack” or “If you hurry and put on
your jacket, then you will have time to swing.” Later, students should
use the words modeled for them to describe mathematical situations:
“If six green pattern blocks cover a yellow hexagon, then three blues
also will cover it, because two greens cover one blue.”

Sometimes students reach conclusions that may seem odd to adults,
not because their reasoning is faulty, but because they have different
underlying beliefs. Teachers can understand students’ thinking when
they listen carefully to students’ explanations. For example, on hearing
that he would be “Star of the Week” in half a week, Ben protested, “You
can’t have half a week.” When asked why, Ben said, “Seven can’t go into
equal parts.” Ben had the idea that to divide 7 by 2, there could be two
groups of 3, with a remainder of 1, but at that point Ben believed that
the number 1 could not be divided.

Teachers should encourage students to make conjectures and to jus-
tify their thinking empirically or with reasonable arguments. Most im-
portant, teachers need to foster ways of justifying that are within the
reach of students, that do not rely on authority, and that gradually in-
corporate mathematical properties and relationships as the basis for the
argument. When students make a discovery or determine a fact, rather
than tell them whether it holds for all numbers or if it is correct, the
teacher should help the students make that determination themselves.
"Teachers should ask such questions as “How do you know it is true?”
and should also model ways that students can verify or disprove their
conjectures. In this way, students gradually develop the abilities to de-
termine whether an assertion is true, a generalization valid, or an an-
swer correct and to do it on their own instead of depending on the au-

thority of the teacher or the book.
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Instructional programs from
prekindergarten through grade 12
should enable all students to—

Organize and consolidate their
mathematical thinking through
communication

Communicate their mathematical
thinking coherently and clearly to
peers, teachers, and others

Analyze and evaluate the mathe-
matical thinking and strategies of
others

Use the language of mathematics
to express mathematical ideas
precisely
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Grades

Language, whether used to express ideas or to receive them, is a very
powerful tool and should be used to foster the learning of mathematics.
Communicating about mathematical ideas is a way for students to articu-
late, clarify, organize, and consolidate their thinking. Students, like adults,
exchange thoughts and ideas in many ways—orally; with gestures; and
with pictures, objects, and symbols. By listening carefully to others, stu-
dents can become aware of alternative perspectives and strategies. By
writing and talking with others, they learn to use more-precise mathemat-
ical language and, gradually, conventional symbols to express their mathe-
matical ideas. Communication makes mathematical thinking observable
and therefore facilitates further development of that thought. It encour-
ages students to reflect on their own knowledge and their own ways of
solving problems. Throughout the early years, students should have daily
opportunities to talk and write about mathematics. They should become
increasingly effective in communicating what they understand through
their own notation and language as well as in conventional ways.

What should communication look like during
prekindergarten through grade 27?

Children begin to communicate mathematically very early in their
lives. They want mzore milk, a different toy, or three books. The com-
munication abilities of most children have developed tremendously be-
fore they enter kindergarten. This growth is determined to a large ex-
tent by the children’s maturity, how language is modeled for them, and
their opportunities and experiences. Verbal interaction with families and
caregivers is a primary means for promoting the development of early
mathematical vocabulary.

Language is as important to learning mathematics as it is to learning
to read. As students enter school, their opportunities to communicate
are expanded by new learning resources, enriched uses of language, and
experiences with classmates and teachers. Students’ developing commu-
nication skills can be used to organize and consolidate their mathemati-
cal thinking. Teachers should help students learn how to talk about
mathematics, to explain their answers, and to describe their strategies.
Teachers can encourage students to reflect on class conversations and to
“talk about talking about mathematics” (Cobb, Wood, and Yackel 1994).

Principles and Standards for School Mathematics



An important step in communicating mathematical thinking to oth-
ers is organizing and clarifying one’s ideas. When students struggle to
communicate ideas clearly, they develop a better understanding of their
own thinking. Working in pairs or small groups enables students to
hear different ways of thinking and refine the ways in which they ex-
plain their own ideas. Having students share the results of their small-
group findings gives teachers opportunities to ask questions for clarifi-
cation and to model mathematical language. Students in prekinder-
garten through grade 2 should be encouraged to listen attentively to
each other, to question others’ strategies and results, and to ask for clar-
ification so that their mathematical learning advances.

Adequate time and interesting mathematical problems and materials,
including calculators and computer applications, encourage conversa-
tion and learning among young students, as demonstrated in the fol-
lowing episode, drawn from a classroom experience:

Rosalinda, usually a quiet child, was very excited to learn how to
skip-count to 100 on the calculator. However, she was puzzled
when counting to 100 by threes. “It always goes over 100!” she ex-
claimed. The teacher encouraged Rosalinda and her partner to in-
vestigate the phenomenon. Over several days, the students talked
together about why the calculator did not display 100 when they
counted by threes. They used the hundred board and counters
along with their calculator and concluded that equal groups of twos
could be made with 100 counters but not equal groups of threes.
The investigation resulted in a chart that Rosalinda and her partner
made to explain to the class what they had figured out and how the
calculator had supported their conclusions.

Experiences such as this help students see themselves as problem posers
and also see how tools such as calculators can be used to support their
mathematical investigations.

Manipulating objects and drawing pictures are natural ways that stu-
dents communicate in prekindergarten through grade 2, but they also
learn to explain their answers in writing, to use diagrams and charts,

Standards for Pre-K-2: Communication
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Teachers must be

diligent in providing

experiences that allow
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varied forms of

COMTNUNICATION.

and to express ideas with mathematical symbols. Their language should
become more precise as they use words such as angles and faces instead
of corners and sides. Opportunities to express their ideas encourage stu-
dents to organize and consolidate their mathematical thinking.

Young students’ abilities to talk and listen are usually more advanced
than their abilities to read and write, especially in the early years of this
grade band. Therefore, teachers must be diligent in providing experi-
ences that allow varied forms of communication as a natural component
of mathematics class, as the following episode, adapted from Andrews
(1996, p. 293), demonstrates:

A kindergarten teacher read a story about a family’s journey across
the country. She asked the students to make maps to show the route
taken by the family. As they worked in groups, some students incor-
porated letters or other symbols into the work. One group drew
pictures of each landmark. Another group asked the teacher to help
them label parts of their map and numbered each step along the
way. As each group shared its work with the class, the teacher asked
what changes they would make next time that might improve their
work. The maps were hung in the hall, giving the teacher opportu-
nities to question the students about the mathematical ideas of
space and navigation they had used in creating the maps.

What should be the teacher’s role in developing
communication in prekindergarten through grade 27

Teachers can create and structure mathematically rich environments
for students in a number of ways. They should present problems that
challenge students mathematically, but they should also let students
know they believe that the students can solve them. They should expect
students to explain their thinking and should give students many oppor-
tunities to talk with, and listen to, their peers. Teachers should recognize
that learning to analyze and reflect on what is said by others is essential
in developing an understanding of both content and process. When it is
difficult for young learners to follow the reasoning of a classmate, teach-
ers can help by guiding students to rephrase their reasoning in words
that are easier for themselves and others to understand. Teachers should
model appropriate conventional vocabulary and help students build such
vocabulary on the basis of shared knowledge and processes.

"Teachers should support students’ mathematics learning through the
languages that they bring to school; they should also help them develop
standard English vocabulary and mathematical terms that will enable
them to communicate better with others. Students should be encour-
aged and respected when they use their native language as well as Eng-
lish in their mathematical communications. If possible, the mathemati-
cal terms should be displayed in both English and the native languages.
Students who are not yet proficient in English can be paired with other
students who speak the same language and with bilingual students or
community volunteers, who can support the communication of ideas to
the teacher and the rest of the class.

"Teachers also need to be aware that the patterns of communication
between students and adults in the school may not necessarily match the
patterns of communication in students’ homes. For example, patterns of

Principles and Standards for School Mathematics
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:

questioning can be very different. In some cultures, adults generally do N
not ask questions when the answer is known; they ask questions primar- Le)
ily to seek information that they do not have. In school, however, teach- e
ers frequently ask questions to which the answer is known. Students who 5
are not accustomed to such questions can be bewildered, since it is obvi- Teachers should model @
ous that the teacher already knows the answers. Similarly, in some cul- . . -
tures, people routinely interrupt one another in conversations, whereas appropriate conventi onal ]
in others, interruptions are considered extremely rude. Students from ) S
the first group may unduly dominate class discussions. In other cultures, vocabula 7y =
children are expected not to ask questions but to learn by observation. A rf;?
student from such a group may be uncomfortable asking questions in 3
class (Bransford, Brown, and Cocking 1999). Teachers need to be aware g
of the cultural patterns in their students’ communities in order to pro- =
vide equitable opportunities for them to communicate about mathemati- §
cal thinking. @
Building a community of learners, where students exchange mathe- g
matical ideas not only with the teacher but also with one another, e
should be a goal in every classroom. Consider the following example, =
which has been drawn from a classroom experience: s
A teacher asked, “How many books do I need to return to the ;
library if I have three nonfiction and four fiction books?” A 2
student who seldom shared his answers with the class voluntarily &
responded, “Seven.” In the past, if the teacher asked him how he =
figured out a problem, the student just shrugged his shoulders. S
This time, however, the teacher decided to involve another student 2
and asked her, “How do you think Maury figured it out?” The E
second student held up three fingers as she answered, “I think he —

did it this way. I know there are three, so I just put up four more 3
fingers and then count them all.” This prompted Maury to respond, s

“I did it a different way. I just knew that three and three make six 3:
and then I counted one more.” <
The teacher thus set the stage for two students to explain their meth- @
ods and for all their classmates to hear and discuss the two ways of -
thinking about the same problem. g
Just as teachers accept multiple forms of communication from their S
students, so they should also communicate with the students in a variety =
of ways to ensure maximum success for all. For example, because not all =
children at this level are able to follow written instructions, teachers g
could decide to read instructions or to draw pictures to represent the =
sequence and contents of a task. )
It is the responsibility of the teacher to recognize appropriate times Fig. 4.30. =
to make connections between invented symbols and standard notation. A child’s notation for 10 1/2 ‘3
When students present their own representations of their mathematical &
knowledge, the presentations are often unique and creative. For in- 5
stance, figure 4.30 is a kindergartner’s notation to remember that a jar =
held ten and a half scoops. Teachers must seek to understand what stu- 9
dents are trying to communicate and use that information to advance 3
individual students’ learning and that of the class as a whole. The use of 8
mathematical symbols should follow, not precede, other ways of com- %
municating mathematical ideas. In this way, teachers help young stu- —
dents relate their everyday language to mathematical language and 1
symbols in a meaningful way. §
o
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Grades

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize and use connections The most important connection for early mathematics development

among mathematical ideas is between the intuitive, informal mathematics that students have
learned through their own experiences and the mathematics they are
learning in school. All other connections—between one mathematical

Understand how mathematical concept and another, between different mathematics topics, between
ideas interconnect and build on one mathematics and other fields of knowledge, and between mathematics
another to produce a coherent and everyday life—are supported by the link between the students’ in-
whole formal experiences and more-formal mathematics. Students’ abilities to

experience mathematics as a meaningful endeavor that makes sense
rests on these connections.

Recognize and apply mathematics When young students use the relationships in and among mathemat-

in contexts outside of mathematics ical content and processes, they advance their knowledge of mathe-
matics and extend their ability to apply concepts and skills more effec-
tively. Understanding connections eliminates the barriers that separate
the mathematics learned in school from the mathematics learned else-
where. It helps students realize the beauty of mathematics and its func-
tion as a means of more clearly observing, representing, and interpret-
ing the world around them.

Teachers can facilitate these connections in several ways: They
should spotlight the many situations in which young students encounter
mathematics in and out of school. They should make explicit the con-
nections between and among the mathematical ideas students are devel-
oping, such as subtraction with addition, measurement with number
and geometry, or representations with algebra and problem solving.
They should plan lessons so that skills and concepts are taught not as
isolated topics but rather as valued, connected, and useful parts of stu-
dents’ experiences.

What should connections look like in prekindergarten
through grade 27

Young children often connect new mathematical ideas with old ones
by using concrete objects. When a preschool child holds up three fin-
gers and asks an adult, “Am I this many years old?” he is trying to con-
nect the word zhree with the number that represents his age through a
set of concrete objects, his fingers. Teachers should encourage students
to use their own strategies to make connections among mathematical

132 Principles and Standards for School Mathematics



ideas, the vocabulary associated with the ideas, and the ways the ideas
are represented. For example, students frequently use objects and
counting strategies as they develop their understanding of addition and
subtraction and connect the two operations.

Students can better understand relationships among the many as-
pects of mathematics as they engage in purposeful activities. Often ac-
tivities that include making estimates provide links among concepts in
multiple Standards (Roche 1996). Consider the following example:

In a second-grade class in which students were investigating filling
jars with scoops of cranberries, the teacher had students first esti-
mate the number of scoops needed. They organized the estimates
into a graph and talked about the range of numbers. After pouring
some scoops into one jar as a referent, the students refined their es-
timates and talked about how and why the range was narrowed.
Throughout the lesson, which included several more activities, stu-
dents worked in groups and repeatedly came back to whole-class
discussions that involved mathematics expectations about number
and operations, data analysis, and connections.

In another example, the process of making a string of cubes by using
only two colors of connecting cubes helps students understand addi-
tion. It also involves pattern and relates ideas from number and geom-
etry. As students try to find different ways of building a string of four
cubes, if order does not matter and there are only two different colors,
they may discover that only five different solutions are possible. Fur-
ther investigation can reveal that there are six ways to build a string of
five cubes (see fig. 4.31). Using this knowledge, some students may
generalize and predict that a string of six cubes can be built in seven
different ways.

Mathematics is embedded in many activities that young students do
throughout the day. For example, in physical education class, children
may count the number of times they can jump rope successfully. They
may measure and compare the amount of time the members of a team
take to sprint from one end of the gym to the other. Concepts involving
geometric shapes are reinforced as children form a circle to play a
game, take their places around the outer edge of a parachute, or assume
their positions to play a game on the field. Students explore symmetry
in art class as they make hearts by folding and cutting paper. They clas-
sify leaves collected on a nature walk in science lessons. In music, they
sing songs rich in patterns.

In one first-grade classroom, children used the mathematics of pat-
terns to investigate and quantify syllables in names, as related in this
episode drawn from a classroom experience:

The teacher clapped out a student’s name (one clap for each sylla-
ble) and asked the students if they could figure out whose name she
was clapping. They realized that her clapping matched the names of
several students. When the class began to try to determine which
students had the same number of claps in their names, the teacher
drew the chart shown in figure 4.32 on the board. She added stu-
dents’ names as the class identified the number of beats in a name.

One student stated that he could not find a name with seven beats.
Another student disagreed and illustrated seven beats by including

Standards for Pre-K-2: Connections
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Cranberries (video vignette)

Fig. 4.31.

Building a string of five cubes by using
only two colors

Five red

Four red and one yellow

Three red and two yellow

Two red and three yellow

One red and four yellow

Five yellow
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Fig. 4.32.

chart showing the number of beats
in students’ names

Fig. 4.33.

Recording name-beat patterns
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3 beats f beats 5 beats 6 beats
John Gosha Sarah Andrews Bobby Erickson | Sylvia McPherson
Timmy Simms Carlos Sanchez Anisha Johnson Alyssa Huerrero

the beats in her middle name in her total. Other students then
began to experiment with middle names and nicknames to match
the number of beats in other names. One student looked at the
chart and questioned whether John Gosha and Timmy Simms were
actually “beat twins.” Even though the number of beats was the
same, the names sounded different. This encouraged the students
to record their name-beat patterns in a more specific way using the
number of syllables in each word to help them write different equa-
tions with the same sums (see fig. 4.33).

As the students determined the best ways to describe name beats
through number, they also were reinforcing their arithmetic skills.
They were also actually creating a function that assigned a number to
each student’s name. Such interplay, in which mathematics illuminates a
situation and the situation illuminates mathematics, is an important as-
pect of mathematical connections.

Seeing the usefulness of mathematics contributes to students’ success
in situations requiring mathematical solutions. When students measure
the field for the hundred-yard relay, they truly know the purpose of
learning to measure. Determining when they have saved enough al-
lowance money to purchase a prized toy helps students realize the use-
fulness and importance of the knowledge of counting, of addition, and
of the value of coins. Pointing to the hexagonal pattern in a honeycomb
illustrates the use of mathematical ideas in describing nature. Surveying
friends and family members about a favorite vacation site gives meaning
and purpose to data collection. Observing the patterns on the fences in
town demonstrates how mathematics is used in construction. These
associations add purpose and pleasure to the learning of mathematics.

What should be the teacher’s role in developing
connections in prekindergarten through grade 2%

In classrooms where connecting mathematical ideas is a focus,
lessons are fluid and take many different formats. Teachers should en-
sure that links are made between routine school activities and mathe-
matics by asking questions that emphasize the mathematical aspects of
situations. They should plan tasks in new contexts that revisit topics
previously taught, enabling students to forge new links between previ-
ously learned mathematical concepts and procedures and new applica-
tions, always with an eye on their mathematics goals. When teachers
help students make explicit connections—mathematics to other mathe-
matics and mathematics to other content areas—they are helping stu-
dents learn to think mathematically.

Often connections are best made when students are challenged to
apply mathematics learning in extended projects and investigations. As

Principles and Standards for School Mathematics



they formulate questions and design inquiries, students decide on meth-
ods of gathering and recording information and plan representations to
communicate the data and help them make reasonable conjectures and
interpretations.

Teachers can find in the way a child interprets mathematical situa-
tions clues to that child’s understanding. They should listen to students
in order to assess the connections students bring to their situation, and
they should use this information to plan activities that will further stu-
dents’ mathematical knowledge and skills and establish new and differ-
ent connections. A teacher can, for example, notice the different under-
standings represented by different students’ comments or questions
about pattern blocks: one student may ask the teacher to name a pattern-
block shape; a second student might build a pattern-block design and
direct the teacher’ attention to its symmetry; a third student may ex-
plain to the teacher that two pattern-block trapezoids together make a
hexagon.

It is the responsibility of the teacher to help students see and experi-
ence the interrelation of mathematical topics, the relationships between
mathematics and other subjects, and the way that mathematics is em-
bedded in the students’ world. Teachers should capitalize on unex-
pected learning opportunities, such as the lesson in which syllables in
students’ names were recorded as equations. They should ask questions
that direct students’ thinking and present tasks that help students see
how ideas are related.

Standards for Pre-K-2: Connections

Teachers should
capitalize on unexpected

learning opportunities.
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Instructional programs from
prekindergarten through grade 12
should enable all students to—

Create and use representations to
organize, record, and communicate
mathematical ideas

Select, apply, and translate among
mathematical representations to
solve problems

Use representations to model and
interpret physical, social, and
mathematical phenomena
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Grades

Young students use many varied representations to build new under-
standings and express mathematical ideas. Representing ideas and con-
necting the representations to mathematics lies at the heart of under-
standing mathematics. Teachers should analyze students’ representations
and carefully listen to their discussions to gain insights into the develop-
ment of mathematical thinking and to enable them to provide support as
students connect their languages to the conventional language of mathe-
matics. The goals of the Communication Standard are closely linked
with those of this Standard, with each set contributing to and supporting
the other.

Students in prekindergarten through grade 2 represent their
thoughts about, and understanding of, mathematical ideas through oral
and written language, physical gestures, drawings, and invented and
conventional symbols (Edwards, Gandini, and Forman 1993). These
representations are methods for communicating as well as powerful
tools for thinking. The process of linking different representations, in-
cluding technological ones, deepens students’ understanding of mathe-
matics because of the connections they make between ideas and the
ways the ideas can be expressed. Teachers can gain insight into students’
thinking and their grasp of mathematical concepts by examining, ques-
tioning, and interpreting their representations. Although a striking as-
pect of children’s mathematical development in the pre-K-2 years is
their growth in using standard mathematical symbols, teachers at this
level should encourage students to use multiple representations, and
they should assess the level of mathematical understanding conveyed by
those representations.

What should representation look like in prekindergarten
through grade 27

Young students represent their mathematical ideas and procedures in
many ways. They use physical objects such as their own fingers, natural
language, drawings, diagrams, physical gestures, and symbols. Through
interactions with these representations, other students, and the teacher,
students develop their own mental images of mathematical ideas. Al-
though the representations that children use may not be those tradi-
tionally used by adults, students’ representations provide a record of
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their efforts to understand mathematics and also make their under-

standing available to others.

Representations make mathematical ideas more concrete and avail-

Fig. 4.34.

Three students’ representations for
the numbers of animals that went off

able for reflection. Students can represent ideas with objects that can to see the world

be moved and rearranged. Such concrete representations lay the foun-
dation for the later use of symbols. Students’ representations are often

insightful and many times resemble more-conventional representa- 5 ‘P '3

tions. For example, a second grader working with place-value mats and
base-ten blocks can represent 103. The student might point to the

blocks and tap at the empty column, explaining, “One hundred, (tap), t3 -
three.” The tap helps the student connect the zero with the empty tens 2 4
column. *2 cats
The following account of a lesson, drawn from a classroom experi- ,’_;“ resth

ence, illustrates that what children do and say as they find answers and —'E 7~
represent their thinking gives teachers information about their levels of -2
understanding. To

When a first-grade teacher read Rooster’s Off to See the World (Carle e

1971), the students’ representations of the number of animals going S

off to see the world varied (see fig. 4.34). Two cats, then three frogs, o

four turtles, and five fish joined the rooster for a total of fifteen ani- 2,

mals. To find how many went on the trip, some students drew the 72_
animals and numbered them. Two students modeled the animals ol

with counters, counted, and wrote “15” on their papers. Other stu- 3

dents used more traditional notations, although their representa-
tions revealed different ways of thinking. One student declared the
answer to be zero, because all the animals had gone home when it

got dark.

Student 2

Standards for Pre-K-2: Representation
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Fig. 4.35.

A student’s representation of the

number of animals that went off to see

the world

Seez'ng similarities in

the ways to represent

different situations is an

important step toward
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abstraction.

The teacher was puzzled, however, by the student whose answer
was 21 (see fig. 4.35). The teacher asked the student to explain. The
student responded that she had noticed that there were fireflies in
the story on the page where the animals decided to turn around and
go home. She couldn’t count how many, but she thought there were
six because that was the pattern, so she drew the animals and added.
The teacher asked about the list at the top right of the student’s
paper, and she responded that she had made the tallies to show how
many, and there were 21.

Representations help students recognize the common mathematical
nature of different situations. Students might represent the following
three scenarios by writing 5 — 3 = 2. The first problem is to determine
the number of objects left after three objects have been taken from a
collection of five. The second problem is, How much taller is a tower of
five cubes than a tower of three cubes? The third problem asks the
number of balls that must be put into a box if it is to have five balls and
there are already three in the box. Students could also represent the sit-
uations as 3 +[_] = 5. Seeing similarities in the ways to represent differ-
ent situations is an important step toward abstraction.

Students use representations to organize their thinking. Representa-
tions can carry some of the burden of remembering by letting students
record intermediate steps in a process. For example, a student trying to
find the number of wheels in four bicycles and three tricycles drew the
picture shown in figure 4.36. In the first row, the student represented
the number of wheels on the bicycles and in the second, the number of
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Fig. 4.36.

A student’s representation of the num-
ber of wheels on four bicycles and
three tricycles (Adapted from Flores
[1997, p. 86.])

wheels on the tricycles. Thus the student was able to compute the sums
separately and add them together. The representation served as a place-
holder for thoughts that were not yet internalized.

Understanding and using mathematical concepts and procedures is
enhanced when students can translate between different representations
of the same idea. In doing so, students appreciate that some representa-
tions highlight features of the problem in a better way or make it easier
to understand certain properties. For example, a student who represents
three groups of four squares as an array and uses skip-counting (4, 8,
12), repeated addition (4 + 4 + 4), and oral language to describe the rep-
resentation as three rows of four squares is laying the groundwork for
understanding multiplication and its properties as well as the area of a
rectangle.

What should be the teacher’s role in developing
representation in prekindergarten through grade 27

A major responsibility of teachers is to create a learning environment
in which students’ use of multiple representations is encouraged, sup-
ported, and accepted by their peers and adults. Teachers should guide
students to develop and use multiple representations effectively. Stu-
dents will thus develop their own perceptions, create their own evi-
dence, structure their own analytical processes, and become confident
and competent in their use of mathematics.

"Teachers at this level need to listen to what students say, thoughtfully
observe their mathematical activities, analyze their recordings, and re-
flect on the implications of the observations and analyses. Using repre-
sentations helps students remember what they did and explain their rea-
soning. Representations furnish a record of students’ thinking that
shows both the answer and the process, and they assist teachers in for-
mulating questions that can help students reflect on their processes and
products and advance their understanding of concepts and procedures.
The information gathered from these multiple sources makes possible a
clearer assessment of what students understand and what mathematical
ideas are still developing.

Students should be encouraged to share their different representa-
tions to help them consider other perspectives and ways of explaining
their thinking. Teachers can model conventional ways of representing
mathematical situations, but it is important for students to use repre-
sentations that are meaningful to them. Transitions to conventional

Standards for Pre-K-2: Representation

A major responsibility of
teachers is to create a
learning environment in
which students’ use of
multiple representations

is encoumged.
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notations should be connected to the methods and thinking of the
students. For example, when students use blocks or mental computa-
tion to solve a problem like “Find the sum of 17 + 25,” they fre-
quently add the tens first. Teachers can write the intermediate steps
for students as 10 + 20 =30, 7 + 5 =12, and 30 + 12 = 42. Students
should see their method recorded both horizontally and vertically and
should develop their own ways of keeping track of their work that are

Fig. 4.37.

Recording a method to find 17 + 25 in
two different ways

It is important for
students to use
representations that are

meaningful to them.
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clear to them (see fig. 4.37).
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Through class discussions of students’ ways of thinking and record-
ing, teachers can lay foundations for students’ understanding of con-
ventional ways of representing the process of adding numbers. Equally
important, students’ work and conversations about their representations
can reveal the extent to which they understand their use of symbols.

Written work often does not reveal a student’s entire thinking, as the
following hypothetical story about Armando demonstrates:

Armando does not show marks to cross out any digits or write a
small “1” to represent “borrowing” with paper-and-pencil subtrac-
tion, but he consistently writes correct answers (see fig. 4.38).
When the teacher probes, Armando explains that he has learned a
different way to subtract at home. The teacher asks him to explain
his method. “From 8 to 14—that is 6, and we need to add 1 to the 2
because we used 14 instead of 4.” He writes 6 in the units place and
continues, “From 3 to 7 is 4,” and he writes 4 in the tens column.
The teacher rephrases the second part of the method, emphasizing
place value: “So, you add 10 to the 20 and then subtract 70 — 30.”
Realizing that the method is based on a property the class has re-
cently discussed, that the same number can be added to both terms
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of a difference and the result does not change, she invites the class
to talk about the process Armando is using. After some discussion,
one student explains, “You are adding 10 to 74 because you really
did 14 - 8, and you also added 10 to 28 because you did 70 — 30. So
the answer is the same.”

"Teachers should help students understand that representations are
tools to model and interpret phenomena of a mathematical nature that
are found in different contexts. Teachers should help students represent
aspects of situations in mathematical terms, possibly by using more
than one representation. Technology may help students who are chal-
lenged by oral or written communication find greater success. The pro-
cessing schema required in some computer programs can aid students
in showing what they know. For example, when a student changes the
representation of a number with base-ten blocks on the screen, the
computer shows how the corresponding symbols change.

It is important that teachers realize and teach students that any rep-
resentations, not only those created by students, are subject to multiple
interpretations. Drawings, charts, graphs, and diagrams, for instance,
can be read in different ways. Therefore, teachers should not assume
that students understand a diagram or equation the same way adults do.
Communicating the intended meaning and using alternative represen-
tations can enhance understanding by students and teachers alike.

Standards for Pre-K-2: Representation

Fig. 4.38.
Finding 74 — 28 without “borrowing”
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Nearly three-quarters of U.S. fourth graders

report liking mathematics.

Instruction at this level must be active

and intellectually stimulating.



CHAPTER

Standards for
Grades 3-5

Most students enter grade 3 with enthusiasm for, and interest in, learn-
ing mathematics. In fact, nearly three-quarters of U.S. fourth graders re-
port liking mathematics (Silver, Strutchens, and Zawojewski 1997). They
find it practical and believe that what they are learning is important. If the
mathematics studied in grades 3-5 is interesting and understandable, the
increasingly sophisticated mathematical ideas at this level can maintain stu-
dents’ engagement and enthusiasm. But if their learning becomes a process
of simply mimicking and memorizing, they can soon begin to lose interest.
Instruction at this level must be active and intellectually stimulating and
must help students make sense of mathematics.

"This chapter presents a challenging set of mathematical content and
processes that students in grades 3—5 can and should learn. It also empha-
sizes teaching that fosters and builds on students’ mathematical under-
standing and thinking. The Content and Process Standards described
here form the basis for a significant and interconnected mathematics cur-
riculum. Interwoven through these Standards are three central mathemat-
ical themes—multiplicative reasoning, equivalence, and computational
fluency. They are briefly discussed here and elaborated on throughout the
chapter.

Students entering grade 3 should have a good grasp of, and much experi-
ence with, additive reasoning. Their understanding of whole numbers is
often based on an additive model—a sequence of numbers used to count in
different ways—and their computing strategies usually involve counting on
or counting back. In grades 3-5, multiplicative reasoning should become a
focus. Multiplicative reasoning is more than just doing multiplication or di-
vision. It is about understanding situations in which multiplication or divi-
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Three central
mathematical themes are
discussed— multiplicative

reasoning, equivalence,

and computational

fluency.

Mathematics learning
is both about making
sense of mathematical
ideas and about
acquiring skills and
insights to solve

problems.
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sion is an appropriate operation. It involves a way of viewing situations
and thinking about them (Thompson forthcoming). For example, to es-
timate the height of an adult, students might use their own heights as a
benchmark and then think of the situation from an additive perspective
(the adult is about 50 centimeters taller than the student) or a multi-
plicative perspective (the adult is one quarter again as tall as the student).

In grades 3-5, multiplicative reasoning emerges and should be dis-
cussed and developed through the study of many different mathematical
topics. Students’ understanding of the base-ten number system is deep-
ened as they come to understand its multiplicative structure. That is,
484 is 4 x 100 plus 8 x 10 plus 4 x 1 as well as a collection of 484 indi-
vidual objects. Multiplicative reasoning is further developed as students
use a geometric model of multiplication, such as a rectangular array, and
adapt this model for computing the area of shapes and the volume of
solids. They also begin to reason algebraically with multiplication, look-
ing for general patterns. For example, they explore problems such as,
What is the effect of doubling one factor and halving the other in a mul-
tiplication problem? The focus on multiplicative reasoning in grades
3-5 provides foundational knowledge that can be built on as students
move to an emphasis on proportional reasoning in the middle grades.

Equivalence should be another central idea in grades 3-5. Students’
ability to recognize, create, and use equivalent representations of num-
bers and geometric objects should expand. For example, 3/4 can be
thought of as a half and a fourth, as 6/8, or as 0.75; a parallelogram can
be transformed into a rectangle with equal area by cutting and pasting;
8 x 25 can be thought of as 8 x 5 x 5 or as 4 x 50; and three feet is the
same as thirty-six inches, or one yard. Students should extend their use
of equivalent forms of numbers as they develop new strategies for com-
puting and should recognize that different representations of numbers
are helpful for different purposes. Likewise, they should explore when
and how shapes can be decomposed and reassembled and what features
of the shapes remain unchanged. Equivalence also takes center stage as
students study fractions and as they relate fractions, decimals and per-
cents. Examining equivalences provides a way to explore algebraic
ideas, including properties such as commutativity and associativity.

A major goal in grades 3-5 is the development of computational flu-
ency with whole numbers. Fluency refers to having efficient, accurate,
and generalizable methods (algorithms) for computing that are based
on well-understood properties and number relationships. Some of
these methods are performed mentally, and others are carried out using
paper and pencil to facilitate the recording of thinking. Students should
come to view algorithms as tools for solving problems rather than as
the goal of mathematics study. As students develop computational algo-
rithms, teachers should evaluate their work, help them recognize effi-
cient algorithms, and provide sufficient and appropriate practice so that
they become fluent and flexible in computing. Students in these grades
should also develop computational-estimation strategies for situations
that call for an estimate and as a tool for judging the reasonableness of
solutions.

"This set of Standards reinforces the dual goals that mathematics
learning is both about making sense of mathematical ideas and about ac-
quiring skills and insights to solve problems. The calculator is an impor-
tant tool in reaching these goals in grades 3-5 (Groves 1994). However,
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calculators do not replace fluency with basic number combinations,
conceptual understanding, or the ability to formulate and use efficient
and accurate methods for computing. Rather, the calculator should sup-
port these goals by enhancing and stimulating learning. As a student
works on problems involving many or complex computations, the calcu-
lator is an efficient computational tool for applying the strategies deter-
mined by the student. The calculator serves as a tool for enabling stu-
dents to focus on the problem-solving process. Calculators can also
provide a means for highlighting mathematical patterns and relation-
ships. For example, using the calculator to skip-count by tenths or hun-
dredths highlights relationships among decimal numbers. For example,
4 is one-tenth more that 3.9, or 2.49 is one-hundredth less than 2.5. Stu-
dents at this age should begin to develop good decision-making habits
about when it is useful and appropriate to use other computational
methods, rather than reach for a calculator. Teachers should create op-
portunities for these decisions as well as make judgments about when
and how calculators can be used to support learning.

Teachers in grades 3—5 make decisions every day that influence their
students’ opportunities to learn and the quality of that learning. The
classroom environment they create, the attention to various topics of
mathematics, and the tools they and their students use to explore math-
ematical ideas are all important in helping students in grades 3—5 gain
increased mathematical maturity. In these grades teachers should help
students learn to work together as part of building a mathematical com-
munity of learners. In such a community, students’ ideas are valued and
serve as a source of learning, mistakes are seen not as dead ends but
rather as potential avenues for learning, and ideas are valued because
they are mathematically sound rather than because they are argued
strongly or proposed by a particular individual (Hiebert et al. 1997). A
classroom environment that would support the learning of mathematics
with meaning should have several characteristics: students feel comfort-
able making and correcting mistakes; rewards are given for sustained ef-
fort and progress, not the number of problems completed; and students
think through and explain their solutions instead of seeking or trying to
recollect the “right” answer or method (Cobb et al. 1988). Creating a
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classroom environment that fosters mathematics as sense making re-
quires the careful attention of the teacher. The teacher establishes the
model for classroom discussion, making explicit what counts as a con-
vincing mathematical argument. The teacher also lays the groundwork
for students to be respectful listeners, valuing and learning from one
another’ ideas even when they disagree with them.

Because of the increasing mathematical sophistication of the curricu-
) lum in grades 3-5, the development of teachers’ expertise is particularly
Teachers in gmdes 3-5 important. Teachers need to understand both the mathematical content
for teaching and students’ mathematical thinking. However, teachers at
Oﬁe n must seek ways to this level are usually called on to teach a variety of disciplines in addi-
tion to mathematics. Many elementary teacher preparation programs
require minimal attention to mathematics content knowledge. Given
their primary role in shaping the mathematics learning of their stu-
dents, teachers in grades 3—5 often must seek ways to advance their own
understanding.

Many different professional development models emphasize the en-
hancement of teachers’ mathematical knowledge. Likewise, schools and
districts have developed strategies for strengthening the mathematical
expertise in their instructional programs. For example, some elemen-
tary schools identify a mathematics teacher-leader (someone who has
particular interest and expertise in mathematics) and then support that
teacher’s continuing development and create a role for him or her to
organize professional development events for colleagues. Such activities
can include grade-level mathematics study groups, seminars and work-
shops, and coaching and modeling in the classroom. Other schools use
mathematics specialists in the upper elementary grades. These are ele-
mentary school teachers with particular interest and expertise in mathe-
matics who assume primary responsibility for teaching mathematics to a
group of students—for example, all the fourth graders in a school. This
strategy allows some teachers to focus on a particular content area
rather than to attempt being an expert in all areas.

Ensuring that the mathematics outlined in this chapter is learned by
all students in grades 3-5 requires a commitment of effort by teachers
to continue to be mathematical learners. It also implies that districts,
schools, and teacher preparation programs will develop strategies to
identify current and prospective elementary school teachers for special-
ized mathematics preparation and assignment. Each of the models out-
lined here—mathematics teacher-leaders and mathematics specialists—
should be explored as ways to develop and enhance students’
mathematics education experience. For successful implementation of
these Standards, it is essential that the mathematical expertise of teach-
ers be developed, whatever model is used.

advance their own

understandin g.
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Number and Operations

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand numbers, ways of rep-
resenting numbers, relationships
among numbers, and number
systems

Understand meanings of operations
and how they relate to one another

Compute fluently and make reason-
able estimates
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Grades

3—0

In grades 3-5 all students should—

* understand the place-value structure of the base-ten number system and be
able to represent and compare whole numbers and decimals;

* recognize equivalent representations for the same number and generate
them by decomposing and composing numbers;

* develop understanding of fractions as parts of unit wholes, as parts of a
collection, as locations on number lines, and as divisions of whole numbers;

* use models, benchmarks, and equivalent forms to judge the size of
fractions;

* recognize and generate equivalent forms of commonly used fractions,
decimals, and percents;

* explore numbers less than O by extending the number line and through
familiar applications;

* describe classes of numbers according to characteristics such as the
nature of their factors.

* understand various meanings of multiplication and division;

* understand the effects of multiplying and dividing whole numbers;

* identify and use relationships between operations, such as division as the
inverse of multiplication, to solve problems;

* understand and use properties of operations, such as the distributivity of
multiplication over addition.

* develop fluency with basic number combinations for multiplication and
division and use these combinations to mentally compute related problems,
such as 30 x 50;

* develop fluency in adding, subtracting, multiplying, and dividing whole
numbers;

* develop and use strategies to estimate the results of whole-number
computations and to judge the reasonableness of such results;

* develop and use strategies to estimate computations involving fractions and
decimals in situations relevant to students’ experience;

* use visual models, benchmarks, and equivalent forms to add and subtract
commonly used fractions and decimals;

* select appropriate methods and tools for computing with whole numbers
from among mental computation, estimation, calculators, and paper and
pencil according to the context and nature of the computation and use the
selected method or tool.



Number and Operations

In grades 3-5, students’ development of number sense should con-
tinue, with a focus on multiplication and division. Their understanding
of the meanings of these operations should grow deeper as they
encounter a range of representations and problem situations, learn
about the properties of these operations, and develop fluency in whole-
number computation. An understanding of the base-ten number system
should be extended through continued work with larger numbers as
well as with decimals. Through the study of various meanings and mod-
els of fractions—how fractions are related to each other and to the unit
whole and how they are represented—students can gain facility in
comparing fractions, often by using benchmarks such as 1/2 or 1. They
also should consider numbers less than zero through familiar models
such as a thermometer or a number line.

When students leave grade 5, they should be able to solve problems
involving whole-number computation and should recognize that each
operation will help them solve many different types of problems. They
should be able to solve many problems mentally, to estimate a reason-
able result for a problem, to efficiently recall or derive the basic number
combinations for each operation, and to compute fluently with multi-
digit whole numbers. They should understand the equivalence of frac-
tions, decimals, and percents and the information each type of repre-
sentation conveys. With these understandings and skills, they should be
able to develop strategies for computing with familiar fractions and
decimals.

Understand numbers, ways of representing numbers,
relationships among numbers, and number systems

In grades 3-5, students’ study and use of numbers should be ex-
tended to include larger numbers, fractions, and decimals. They need
to develop strategies for judging the relative sizes of numbers. They
should understand more deeply the multiplicative nature of the number
system, including the structure of 786 as 7 x 100 plus 8 x 10 plus 6 x 1.
They should also learn about the position of this number in the base-
ten number system and its relationship to benchmarks such as 500, 750,
800, and 1000. They should explore the effects of operating on num-
bers with particular numbers, such as adding or subtracting 10 or 100
and multiplying or dividing by a power of 10. In order to develop these
understandings, students should explore whole numbers using a variety
of models and contexts. For example, a third-grade class might explore
the size of 1000 by skip-counting to 1000, building a model of 1000
using ten hundred charts, gathering 1000 items such as paper clips and
developing efficient ways to count them, or using strips that are 10 or
100 centimeters long to show the length of 1000 centimeters.

Students who understand the structure of numbers and the relation-
ships among numbers can work with them flexibly (Fuson 1992). They
recognize and can generate equivalent representations for the same
number. For example, 36 can be thought of as 30 + 6, 20 + 16, 9 x 4,

40 — 4, three dozen, or the square of 6. Each form is useful for a partic-
ular situation. Thinking of 36 as 30 + 6 may be useful when multiplying
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by 36, whereas thinking of it as 6 sixes or 9 fours is helpful when con-
sidering equal shares. Students need to have many experiences decom-
posing and composing numbers in order to solve problems flexibly.

During grades 3-5, students should build their understanding of
fractions as parts of a whole and as division. They will need to see and
explore a variety of models of fractions, focusing primarily on familiar
fractions such as halves, thirds, fourths, fifths, sixths, eighths, and
tenths. By using an area model in which part of a region is shaded, stu-
dents can see how fractions are related to a unit whole, compare frac-
tional parts of a whole, and find equivalent fractions. They should de-
velop strategies for ordering and comparing fractions, often using
benchmarks such as 1/2 and 1. For example, fifth graders can compare
fractions such as 2/5 and 5/8 by comparing each with 1/2—one is a
little less than 1/2 and the other is a little more. By using parallel num-
ber lines, each showing a unit fraction and its multiples (see fig. 5.1),
students can see fractions as numbers, note their relationship to 1, and
see relationships among fractions, including equivalence. They should
also begin to understand that between any two fractions, there is always
another fraction.

Fig. 5.1.

Parallel number lines with unit frac-
tions and their multiples

O == E-example 5.1'&%

Communication through Games
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Students in these grades should use models and other strategies to
represent and study decimal numbers. For example, they should count
by tenths (one-tenth, two-tenths, three-tenths, ...) verbally or use a cal-
culator to link and relate whole numbers with decimal numbers. As stu-
dents continue to count orally from nine-tenths to ten-tenths to eleven-
tenths and see the display change from 0.9 to 1.0 to 1.1, they see that
ten-tenths is the same as one and also how it relates to 0.9 and 1.1.
They should also investigate the relationship between fractions and
decimals, focusing on equivalence. Through a variety of activities, they
should understand that a fraction such as 1/2 is equivalent to 5/10 and
that it has a decimal representation (0.5). As they encounter a new
meaning of a fraction—as a quotient of two whole numbers (1/2 =1 + 2
= 0.5)—they can also see another way to arrive at this equivalence. By
using the calculator to carry out the indicated division of familiar frac-
tions like 174, 1/3, 2/5, 1/2, and 3/4, they can learn common fraction-
decimal equivalents. They can also learn that some fractions can be ex-
pressed as terminating decimals but others cannot.

Students should understand the meaning of a percent as part of a
whole and use common percents such as 10 percent, 33 1/3 percent, or
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50 percent as benchmarks in interpreting situations they encounter. For
example, if a label indicates that 36 percent of a product is water, stu-
dents can think of this as about a third of the product. By studying frac-
tions, decimals, and percents simultaneously, students can learn to
move among equivalent forms, choosing and using an appropriate and
convenient form to solve problems and express quantities.

Negative integers should be introduced at this level through the use
of familiar models such as temperature or owing money. The number
line is also an appropriate and helpful model, and students should rec-
ognize that points to the left of 0 on a horizontal number line can be
represented by numbers less than 0.

Throughout their study of numbers, students in grades 3-5 should
identify classes of numbers and examine their properties. For example,
integers that are divisible by 2 are called even numbers and numbers that
are produced by multiplying a number by itself are called square num-
bers. Students should recognize that different types of numbers have
particular characteristics; for example, square numbers have an odd
number of factors and prime numbers have only two factors.

Understand meanings of operations and how they
relate to one another

In grades 3-5, students should focus on the meanings of, and rela-
tionship between, multiplication and division. It is important that stu-
dents understand what each number in a multiplication or division ex-
pression represents. For example, in multiplication, unlike addition, the
factors in the problem can refer to different units. If students are solv-
ing the problem 29 x 4 to find out how many legs there are on 29 cats,
29 is the number of cats (or number of groups), 4 is the number of legs
on each cat (or number of items in each group), and 116 is the total
number of legs on all the cats. Modeling multiplication problems with
pictures, diagrams, or concrete materials helps students learn what the
factors and their product represent in various contexts.

Students should consider and discuss different types of problems that
can be solved using multiplication and division. For example, if there
are 112 people traveling by bus and each bus can hold 28 people, how
many buses are needed? In this case, 112 + 28 indicates the number of
groups (buses), where the total number of people (112) and the size of
each group (28 people in each bus) are known. In a different problem,
students might know the number of groups and need to find how many
items are in each group. If 112 people divide themselves evenly among
four buses, how many people are on each bus? In this case, 112 + 4 indi-
cates the number of people on each bus, where the total number of
people and the number of groups (buses) are known. Students need to
recognize both types of problems as division situations, should be able
to model and solve each type of problem, and should know the units of
the result: Is it 28 buses or 28 people per bus? Students in these grades
will also encounter situations where the result of division includes a re-
mainder. They should learn the meaning of a remainder by modeling
division problems and exploring the size of remainders given a particu-
lar divisor. For example, when dividing groups of counters into sets of
4, what remainders could there be for groups of different sizes?

Standards for Grades 3-5: Number and Operations
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Fig. 5.2.

Three strategies for computing 7 % 28
using the distributive property

I'thought seven
25 's—that's | 75.
Then I need Seven 3's
or 21. 8o the answer js
1754912 196
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Students can extend their understanding of multiplication and divi-
sion as they consider the inverse relationship between the two opera-
tions. Another way their knowledge can grow is through new multi-
plicative situations such as rates (3 candy bars for 59 cents each),
comparisons (the book weighs 4 times as much as the tablet), and com-
binations (the number of outfits possible from 3 shirts and 2 pairs of
shorts). Examining the effect of multiplying or dividing numbers can
also lead to a deeper understanding of these operations. For example,
dividing 28 by 14 and comparing the result to dividing 28 by 7 can lead
to the conjecture that the smaller the divisor, the larger the quotient.
With models or calculators, students can explore dividing by numbers
between 0 and 1, such as 1/2, and find that the quotient is larger than
the original number. Explorations such as these help dispel common,
but incorrect, generalizations such as “division always makes things
smaller.”

Further meaning for multiplication should develop as students build
and describe area models, showing how a product is related to its fac-
tors. The area model is important because it helps students develop an
understanding of multiplication properties (Graeber and Campbell
1993). Using area models, properties of operations such as the commu-
tativity of multiplication become more apparent. Other relationships
can be seen by decomposing and composing area models. For example,
a model for 20 x 6 can be split in half and the halves rearranged to form
a 10 x 12 rectangle, showing the equivalence of 10 x 12 and 20 x 6. The
distributive property is particularly powerful as the basis of many effi-
cient multiplication algorithms. For example, figure 5.2 shows the
strategies three students might use to compute 7 x 28—all involving
the distributive property.

Compute fluently and make reasonable estimates

By the end of this grade band, students should be computing fluently
with whole numbers. Computational fluency refers to having efficient and
accurate methods for computing. Students exhibit computational flu-
ency when they demonstrate flexibility in the computational methods
they choose, understand and can explain these methods, and produce
accurate answers efficiently. The computational methods that a student
uses should be based on mathematical ideas that the student under-
stands well, including the structure of the base-ten number system,
properties of multiplication and division, and number relationships.

A significant amount of instructional time should be devoted to ra-
tional numbers in grades 3-5. The focus should be on developing stu-
dents’ conceptual understanding of fractions and decimals—what they
are, how they are represented, and how they are related to whole num-
bers—rather than on developing computational fluency with rational
numbers. Fluency in rational-number computation will be a major
focus of grades 6-8.

Fluency with whole-number computation depends, in large part, on
fluency with basic number combinations—the single-digit addition and
multiplication pairs and their counterparts for subtraction and division.
Fluency with the basic number combinations develops from well-
understood meanings for the four operations and from a focus on
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thinking strategies (Thornton 1990; Isaacs and Carroll 1999). By work-
ing on many multiplication problems with a variety of models for mul-
tiplication, students should initially learn and become fluent with some
of the “easier” combinations. For example, many students will readily
learn basic number combinations such as 3 X 2 or 4 x 5 or the squares
of numbers, such as 4 x 4 or 5 x 5. Through skip-counting, using area
models, and relating unknown combinations to known ones, students
will learn and become fluent with unfamiliar combinations. For exam-
ple, 3 x 4 is the same as 4 x 3; 6 x 5 is 5 more than 5 x 5; 6 x 8 is double
3 x 8. Because division is the inverse of multiplication, students can use
the multiplication combinations to learn division combinations. For ex-
ample, 24 + 6 can be thought of as 6 x ? = 24. If by the end of the fourth
grade, students are not able to use multiplication and division strategies
efficiently, then they must either develop strategies so that they are flu-
ent with these combinations or memorize the remaining “harder” com-
binations. Students should also learn to apply the single-digit basic
number combinations to related problems, for example, using 5 x 6 to
compute 50 X 6 or 5000 x 600.

Research suggests that by solving problems that require calculation,
students develop methods for computing and also learn more about
operations and properties (McClain, Cobb, and Bowers 1998; Schifter
1999). As students develop methods to solve multidigit computation
problems, they should be encouraged to record and share their meth-
ods. As they do so, they can learn from one another, analyze the effi-
ciency and generalizability of various approaches, and try one another’s
methods. In the past, common school practice has been to present a
single algorithm for each operation. However, more than one efficient
and accurate computational algorithm exists for each arithmetic opera-
tion. In addition, if given the opportunity, students naturally invent
methods to compute that make sense to them (Fuson forthcoming;
Madell 1985). The following episode, drawn from unpublished class-
room observation notes, illustrates how one teacher helped students an-
alyze and compare their computational procedures for division:

Students in Ms. Spark’s fifth-grade class were sharing their solutions
to a homework problem, 728 + 34. Ms. Sparks asked several students
to put their work on the board to be discussed. She deliberately
chose students who had approached the problem in several different
ways. As the students put their work on the board, Ms. Sparks circu-
lated among the other students, checking their homework.

Henry had written his solution:

34x10=-34Ho
24 x20=0680

(%0 728
v 34 _7/4

i

Henry explained to the class, “Twenty 34s plus one more is 21. 1
knew I was pretty close. I didn’t think I could add any more 34s, so I
subtracted 714 from 728 and got 14. Then I had 21 remainder 14.”

k]
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Michaela showed her solution: 2.\
%L\ 11L.D
6o
/‘*?\5\
o
Michaela says, “34 goes into 72 two times and that’s 68. You gotta
minus that, bring down the 8, then 34 goes into 48 one time.”

Ricky: I don’t know how to do that.

Michaela: You divide, then you multiply, you subtract, then you
bring down.

Ricky: 1still don’t get it.
Ms. Sparks: Does anyone see any parts of Michaela’s and Henry’s
work that are similar?
Christy: They both did 728 divided by 34.

Ms. Sparks: Right, they both did the same problem. Do you see any
parts of the ways they solved the problem that look
similar?

Fanshen: (Hesitantly) Well, there’s a 680 in Henry’s and a 68 in
Michaela’s.

M. Sparks: So, what is that 68, Michaela?
Michaela: Um, it’s the 2 x 34.

Ms. Sparks: Oh, is that 2 x 34? (Ms. Sparks waits. Lots of silence.) So,
I don’t get what you’re saying about 2 times 34. What
does this 2 up here in the 21 represent?

Samir: It’s 20.
Henry: But 20 times 34 is 680, not 68.

Ms. Sparks: So what if I wrote a 0 here to show that this is 6807
Does that help you see any more similarities?

2.\
ke
24 3%
/\_‘g
al
\\
Maya: They both did twenty 34s first.

Rita: 1 get it. Then Michaela did, like, how many more are
left, and it was 48, and then she could do one more 34.

Ms. Sparks saw relationships between the two methods described by
students, but she doubted that any of her students would initially see
these relationships. Through her questioning, she helped students focus
on the ways in which both Michaela’s and Henry’s methods used multi-
plication to find the total number of 34s in 728 and helped students
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clarify what quantities were represented by the notation in Michaela’s
solution. As the class continues their study of division, Ms. Sparks
should encourage this type of explanation and discussion in order to
help the students understand, explain, and justify their computational
strategies.

As students move from third to fifth grade, they should consolidate
and practice a small number of computational algorithms for addition,
subtraction, multiplication, and division that they understand well and
can use routinely. Many students enter grade 3 with methods for adding
and subtracting numbers. In grades 3-5 they should extend these meth-
ods to adding and subtracting larger numbers and learn to record their
work systematically and clearly. Having access to more than one
method for each operation allows students to choose an approach that
best fits the numbers in a particular problem. For example, 298 x 42
can be thought of as (300 x 42) — (2 x 42), whereas 41 x 16 can be com-
puted by multiplying 41 x 8 to get 328 and then doubling 328 to get
656. Although the expectation is that students develop fluency in com-
puting with whole numbers, frequently they should use calculators to
solve complex computations involving large numbers or as part of an
extended problem.

Many students are likely to develop and use methods that are not the
same as the conventional algorithms (those widely taught in the United
States). For example, many students and adults use multiplication to
solve division problems or add starting with the largest place rather
than with the smallest. The conventional algorithms for multiplication
and division should be investigated in grades 3—-5 as one efficient way to
calculate. Regardless of the particular algorithm used, students should
be able to explain their method and should understand that many meth-
ods exist. They should also recognize the need to develop efficient and
accurate methods.

As students acquire conceptual grounding related to rational num-
bers, they should begin to solve problems using strategies they develop
or adapt from their whole-number work. At these grades, the emphasis
should not be on developing general procedures to solve all decimal
and fraction problems. Rather, students should generate solutions that
are based on number sense and properties of the operations and that
use a variety of models or representations. For example, in a fourth-
grade class, students might work on this problem:

Jamal invited seven of his friends to lunch on Saturday. He thinks that
each of the eight people (his seven guests and himself) will eat one and a
half sandwiches. How many sandwiches should he make?

Students might draw a picture and count up the number of sandwiches,
or they might use reasoning based on their knowledge of number and
operations—for example, “That would be eight whole sandwiches and
eight half sandwiches; since two halves make a whole sandwich, the
eight halves will make four more sandwiches, so Jamal needs to make
twelve sandwiches.”

Estimation serves as an important companion to computation. It
provides a tool for judging the reasonableness of calculator, mental, and
paper-and-pencil computations. However, being able to compute exact
answers does not automatically lead to an ability to estimate or judge
the reasonableness of answers, as Reys and Yang (1998) found in their

Standards for Grades 3-5: Number and Operations
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The teacher plays an
important role in
helping students develop
and select an
appropriate

computational tool.
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work with sixth and eighth graders. Students in grades 3-5 will need to
be encouraged to routinely reflect on the size of an anticipated solution.
Will 7 x 18 be smaller or larger than 100? If 3/8 of a cup of sugar is
needed for a recipe and the recipe is doubled, will more than or less
than one cup of sugar be needed? Instructional attention and frequent
modeling by the teacher can help students develop a range of computa-
tional estimation strategies including flexible rounding, the use of
benchmarks, and front-end strategies. Students should be encouraged
to frequently explain their thinking as they estimate. As with exact com-
putation, sharing estimation strategies allows students access to others’
thinking and provides many opportunities for rich class discussions.

The teacher plays an important role in helping students develop and
select an appropriate computational tool (calculator, paper-and-pencil
algorithm, or mental strategy). If a teacher models the choices she
makes and thinks aloud about them, students can learn to make good
choices. For example, determining the cost of four notebooks priced at
$0.75 is an easy mental problem (two notebooks cost $1.50, so four
notebooks cost $3.00). Adding the cost of all the school supplies pur-
chased by the class is a problem in which using a calculator makes sense
because of the amount of data. Dividing the cost of the class pizza party
($45) by the number of students (25) is an appropriate time to make an
estimate (a little less than $2 each) or to use a paper-and-pencil algo-
rithm or a calculator if a more precise answer is needed.
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Algebra

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand patterns, relations, and
functions

Represent and analyze mathemati-
cal situations and structures using
algebraic symbols

Use mathematical models to repre-
sent and understand quantitative
relationships

Analyze change in various contexts

158

Grades

3—0

In grades 3-5 all students should—

* describe, extend, and make generalizations about geometric and numeric
patterns;

* represent and analyze patterns and functions, using words, tables, and
graphs.

* identify such properties as commutativity, associativity, and distributivity and
use them to compute with whole numbers;

* represent the idea of a variable as an unknown quantity using a letter or a
symbol;

* express mathematical relationships using equations.

* model problem situations with objects and use representations such as
graphs, tables, and equations to draw conclusions.

* investigate how a change in one variable relates to a change in a second
variable;

* identify and describe situations with constant or varying rates of change
and compare them.

Principles and Standards for School Mathematics



Algebra

Although algebra is a word that has not commonly been heard in
grades 3-5 classrooms, the mathematical investigations and conversa-
tions of students in these grades frequently include elements of alge-
braic reasoning. These experiences and conversations provide rich con-
texts for advancing mathematical understanding and are also an
important precursor to the more formalized study of algebra in the
middle and secondary grades. In grades 3-5, algebraic ideas should
emerge and be investigated as students—

¢ identify or build numerical and geometric patterns;

* describe patterns verbally and represent them with tables or
symbols;

* look for and apply relationships between varying quantities to
make predictions;

* make and explain generalizations that seem to always work in
particular situations;

* use graphs to describe patterns and make predictions;
¢ explore number properties;

* use invented notation, standard symbols, and variables to
express a pattern, generalization, or situation.

Understand patterns, relations, and functions

In grades 3-5, students should investigate numerical and geometric
patterns and express them mathematically in words or symbols. They
should analyze the structure of the pattern and how it grows or
changes, organize this information systematically, and use their analysis
to develop generalizations about the mathematical relationships in the
pattern. For example, a teacher might ask students to describe patterns
they see in the “growing squares” display (see fig. 5.3) and express the
patterns in mathematical sentences. Students should be encouraged to
explain these patterns verbally and to make predictions about what will
happen if the sequence is continued.

Fig. 5.3.

Expressing “growing squares” in
mathematical sentences (Adapted
from Burton et al. 1992, p. 6)

1 1+3=H 1+3+5=9 1+3+5+7=16 1+3+5+7+9=25

In this example, one student might notice that the area changes in a
predictable way—it increases by the next odd number with each new
square. Another student might notice that the previous square always fits
into the “corner” of the next-larger square. This observation might lead
to a description of the area of a square as equal to the area of the previ-
ous square plus “its two sides and one more.” A student might represent

his thinking as in figure 5.4.
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Fig. 5.4.

A possible student observation about
the area of the 5 X 5 square in the
“growing squares” pattern

Gv\lbk o%m 545 squne, =0Xea %Ov M Squan 4 et

Fig. 5.5.

Finding surface areas of towers of
cubes

What is the surface area of each
tower of cubes (include the bottom)?
As the towers get taller, how

does the surface area change?

O

E-example SIZKE

Function Simulation

Fig. 5.6.
A table used in the “tower of cubes”
problem
Number of Surface area in
cubes (N) square units (S)

1 6

L 10

) 4

Y [%

Examples like this one give the teacher important opportunities to
engage students in thinking about how to articulate and express a gen-
eralization—“How can we talk about how this pattern works for a
square of any size?” Students in grade 3 should be able to predict the
next element in a sequence by examining a specific set of examples. By
the end of fifth grade, students should be able to make generalizations
by reasoning about the structure of the pattern. For example, a fifth-
grade student might explain that “if you add the first » odd numbers,
the sum is the same as 7 x 7.”

As they study ways to measure geometric objects, students will have
opportunities to make generalizations based on patterns. For example,
consider the problem in figure 5.5. Fourth graders might make a table
(see fig. 5.6) and note the iterative nature of the pattern. That is, there
is a consistent relationship between the surface area of one tower and
the next-bigger tower: “You add four to the previous number.” Fifth
graders could be challenged to justify a general rule with reference to
the geometric model, for example, “The surface area is always four
times the number of cubes plus two more because there are always four
square units around each cube and one extra on each end of the tower.”
Once a relationship is established, students should be able to use it to
answer questions like, “What is the surface area of a tower with fifty
cubes?” or “How many cubes would there be in a tower with a surface
area of 242 square units?”

In this example, some students may use a table to organize and order
their data, and others may use connecting cubes to model the growth of
an arithmetic sequence. Some students may use words, but others may
use numbers and symbols to express their ideas about the functional re-
lationship. Students should have many experiences organizing data and
examining different representations. Computer simulations are an in-
teractive way to explore functional relationships and the various ways
they are represented. In a simulation of two runners along a track, stu-
dents can control the speed and starting point of the runners and can
view the results by watching the race and examining a table and graph
of the time-versus-distance relationship. Students need to feel comfort-
able using various techniques for organizing and expressing ideas about
relationships and functions.

Represent and analyze mathematical situations and
structures using algebraic symbols

In grades 3-5, students can investigate properties such as commuta-
tivity, associativity, and distributivity of multiplication over addition. Is
3 x5 the same as 5 X 3? Is 15 x 27 equal to 27 x 15? Will reversing the
factors always result in the same product? What if one of the factors is a
decimal number (e.g., 1.5 x 6)? An area model can help students see
that two factors in either order have equal products, as represented by
congruent rectangles with different orientations (see fig. 5.7).

Principles and Standards for School Mathematics



An area model can also be used to investigate the distributive prop-
erty. For example, the representation in figure 5.8 shows how 8 x 14
can be decomposed into 8 x 10 and 8 x 4.

Fig. 5.7.

Area models illustrating the commu-
tative property of multiplication

10 4

8 8 x 10 8 x4

80 +32=112

Fig. 5.8.

Area model showing the distributive
property of multiplication

As students learn about the meaning of multiplication and develop
strategies to solve multiplication problems, they will begin to use prop-
erties such as distributivity naturally (Schifter 1999). However, discus-
sion about the properties themselves, as well as how they serve as tools
for solving a range of problems, is important if students are to add
strength to their intuitive notions and advance their understanding of
multiplicative structures. For example, students might explore ques-
tions such as these: Why can’t 24 x 32 be solved by adding the results of
20 x 30 and 4 x 2? If a number is tripled, then tripled again, what is the
relationship of the result to the original number? Analyzing the proper-
ties of operations gives students opportunities to extend their thinking
and to build a foundation for applying these understandings to other
situations.

At this grade band the idea and usefulness of a variable (represented
by a box, letter, or symbol) should also be emerging and developing
more fully. As students explore patterns and note relationships, they
should be encouraged to represent their thinking. In the example show-
ing the sequence of squares that grow (fig. 5.3), students are beginning
to use the idea of a variable as they think about how to describe a rule
for finding the area of any square from the pattern they have observed.
As students become more experienced in investigating, articulating, and
justifying generalizations, they can begin to use variable notation and
equations to represent their thinking. Teachers will need to model how
to represent thinking in the form of equations. In this way, they can

Standards for Grades 3-5: Algebra
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Students in grades
3-5 develop the idea
that a mathematical

model has both
descriptive and

predictive power:

help students connect the ways they are describing their findings to
mathematical notation. For example, a student’s description of the sur-
face area of a cube tower of any size (“You get the surface area by multi-
plying the number of cubes by 4 and adding 2”) can be recorded by the
teacher as S =4 x 7 + 2. Students should also understand the use of a
variable as a placeholder in an expression or equation. For example,
they should explore the role of 7 in the equation 80 x 15 = 40 X zand
be able to find the value of z that makes the equation true.

Use mathematical models to represent and understand
quantitative relationships

Historically, much of the mathematics used today was developed to
model real-world situations, with the goal of making predictions about
those situations. As patterns are identified, they can be expressed nu-
merically, graphically, or symbolically and used to predict how the pat-
tern will continue. Students in grades 3—5 develop the idea that a math-
ematical model has both descriptive and predictive power.

Students in these grades can model a variety of situations, includ-
ing geometric patterns, real-world situations, and scientific experi-
ments. Sometimes they will use their model to predict the next ele-
ment in a pattern, as students did when they described the area of a
square in terms of the previous smaller square (see fig. 5.3). At other
times, students will be able to make a general statement about how
one variable is related to another variable: If a sandwich costs $3, you
can figure out how many dollars any number of sandwiches costs by
multiplying that number by 3 (two sandwiches cost $6, three sand-
wiches cost $9, and so forth). In this case, students have developed a
model of a proportional relationship: the value of one variable (total
cost, C) is always three times the value of the other (number of sand-
wiches, S),or C=3 - S.

In modeling situations that involve real-world data, students need to
know that their predictions will not always match observed outcomes
for a variety of reasons. For example, data often contain measurement
error, experiments are influenced by many factors that cause fluctua-
tions, and some models may hold only for a certain range of values.
However, predictions based on good models should be reasonably close
to what actually happens.

Students in grades 3—5 should begin to understand that different
models for the same situation can give the same results. For example, as
a group of students investigates the relationship between the number of
cubes in a tower and its surface area, several models emerge. One stu-
dent thinks about each side of the tower as having the same number of
units of surface area as the number of cubes (z). There are four sides
and an extra unit on each end of the tower, so the surface area is four
times the number of cubes plus two (4 + z + 2). Another student thinks
about how much surface area is contributed by each cube in the tower:
each end cube contributes five units of surface area and each “middle”
cube contributes four units of surface area. Algebraically, the surface
area would be 2 + 5 + (n — 2) - 4. For a tower of twelve cubes, the first
student thinks, “4 times 12, that’s 48, plus 2 is 50.” The second student
thinks, “The two end cubes each have 5, so that’s 10. There are 10

Principles and Standards for School Mathematics



more cubes. They each have 4, so that’s 40. 40 plus 10 is 50.” Students
in this grade band may not be able to show how these solutions are
algebraically equivalent, but they can recognize that these different
models lead to the same solution.

Analyze change in various contexts

Change is an important mathematical idea that can be studied using
the tools of algebra. For example, as part of a science project, students
might plant seeds and record the growth of a plant. Using the data rep-
resented in the table and graph (fig. 5.9), students can describe how the
rate of growth varies over time. For example, a student might express
the rate of growth in this way: “My plant didn’t grow for the first four
days, then it grew slowly for the next two days, then it started to grow
faster, then it slowed down again.” In this situation, students are focus-
ing not simply on the height of the plant each day, but on what has hap-
pened between the recorded heights. This work is a precursor to later,
more focused attention on what the slope of a line represents, that is,
what the steepness of the line shows about the rate of change. Students
should have opportunities to study situations that display different pat-
terns of change—change that occurs at a constant rate, such as someone
walking at a constant speed, and rates of change that increase or
decrease, as in the growing-plant example.

Fig. 5.9.

A table and graph showing growth of
a plant

Plant Growth
Time Height Change 10
(days) (cm) (cm) 9
o o
0 0 8
2 0 0 )
4 0 0 !
6 1 1 ’g 6 °
8 2 1 = 5
10 4 2 .%
4
12 6 2 I *
14 7.5 1.5 3
16 8.5 1 5 ®
18 8.5 0 L .
20 9 0.5
oe—eo—eo

o 2 4 6 8 10 12 14 16 18 20 22 24

Time (days)
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(GGeometry

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Analyze characteristics and proper-
ties of two- and three-dimensional
geometric shapes and develop
mathematical arguments about
geometric relationships

Specify locations and describe
spatial relationships using coordi-
nate geometry and other represen-
tational systems

Apply transformations and use
symmetry to analyze mathematical
situations

Use visualization, spatial reasoning,
and geometric modeling to solve
problems

164

Grades

3—0

In grades 3-5 all students should—

* identify, compare, and analyze attributes of two- and three-dimensional
shapes and develop vocabulary to describe the attributes;

* classify two- and three-dimensional shapes according to their properties and
develop definitions of classes of shapes such as triangles and pyramids;

* investigate, describe, and reason about the results of subdividing,
combining, and transforming shapes;

* explore congruence and similarity;

* make and test conjectures about geometric properties and relationships
and develop logical arguments to justify conclusions.

* describe location and movement using common language and geometric
vocabulary;

* make and use coordinate systems to specify locations and to describe paths;

* find the distance between points along horizontal and vertical lines of a
coordinate system.

* predict and describe the results of sliding, flipping, and turning two-
dimensional shapes;

* describe a motion or a series of motions that will show that two shapes are
congruent;

* identify and describe line and rotational symmetry in two- and three-
dimensional shapes and designs.

* build and draw geometric objects;

» create and describe mental images of objects, patterns, and paths;

* identify and build a three-dimensional object from two-dimensional
representations of that object;

* identify and build a two-dimensional representation of a three-dimensional
object;

* use geometric models to solve problems in other areas of mathematics,
such as number and measurement;

* recognize geometric ideas and relationships and apply them to other
disciplines and to problems that arise in the classroom or in everyday life.



Geometry

The reasoning skills that students develop in grades 3-5 allow them
to investigate geometric problems of increasing complexity and to study
geometric properties. As they move from grade 3 to grade 5, they
should develop clarity and precision in describing the properties of geo-
metric objects and then classifying them by these properties into cate-
gories such as rectangle, triangle, pyramid, or prism. They can develop
knowledge about how geometric shapes are related to one another and
begin to articulate geometric arguments about the properties of these
shapes. They should also explore motion, location, and orientation by,
for example, creating paths on a coordinate grid or defining a series of
flips and turns to demonstrate that two shapes are congruent. As stu-
dents investigate geometric properties and relationships, their work can
be closely connected with other mathematical topics, especially mea-
surement and number.

The study of geometry in grades 3—5 requires thinking #nd doing. As
students sort, build, draw, model, trace, measure, and construct, their
capacity to visualize geometric relationships will develop. At the same
time they are learning to reason and to make, test, and justify conjec-
tures about these relationships. This exploration requires access to a va-
riety of tools, such as graph paper, rulers, pattern blocks, geoboards,
and geometric solids, and is greatly enhanced by electronic tools that
support exploration, such as dynamic geometry software.

Analyze characteristics and properties of two- and
three-dimensional geometric shapes and develop
mathematical arguments about geometric relationships

In the early grades, students will have classified and sorted geometric
objects such as triangles or cylinders by noting general characteristics. In
grades 3-5, they should develop more-precise ways to describe shapes,
focusing on identifying and describing the shape’s properties and learn-
ing specialized vocabulary associated with these shapes and properties.
"To consolidate their ideas, students should draw and construct shapes,
compare and discuss their attributes, classify them, and develop and con-
sider definitions on the basis of a shape’s properties, such as that a rec-
tangle has four straight sides and four square corners. For example,
many students in these grades will easily name the first two shapes in fig-
ure 5.10 as rectangles but will need to spend more time discussing why
the third one is also a rectangle—indeed, a special kind of rectangle.

In grades 3-5, teachers should emphasize the development of mathe-
matical arguments. As students’ ideas about shapes evolve, they should

As students sort, build,
draw, model, trace,
measure, and construct,
their capacity to
visualize geometric
relationships will

develop.

Standards for Grades 3-5: Geometry

Fig. 5.10.

Examples of rectangles
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Fig. 5.11.

The relationship between the areas of
a rectangle and a nonrectangular
parallelogram with equal bases and
heights

Fig. 5.12.

Right triangles with two sides of
equal length
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formulate conjectures about geometric properties and relationships.
Using drawings, concrete materials, and geometry software to develop
and test their ideas, they can articulate clear mathematical arguments
about why geometric relationships are true. For example: “You can’t
possibly make a triangle with two right angles because if you start with
one side of the triangle across the bottom, the other two sides go
straight up. They’re parallel, so they can’t possibly ever meet, so you
can’t get it to be a triangle.”

When students subdivide, combine, and transform shapes, they are
investigating relationships among shapes. For example, a fourth-grade
class might investigate the relationship between a rectangle and a non-
rectangular parallelogram with equal bases and heights (see fig. 5.11) by
asking, “Does one of these shapes have a larger area than the other?”
One student might cut the region formed by the parallelogram as
shown in figure 5.11 and then rearrange the pieces so that the parallelo-
gram visually matches the rectangle. This work can lead to developing a
general conjecture about the relationship between the areas of rectan-
gles and parallelograms with the same base and height. The notion that
shapes that look different can have equal areas is a powerful one that
leads eventually to the development of general methods (formulas) for
finding the area of a particular shape, such as a parallelogram. In this
investigation, students are building their ideas about the properties of
classes of shapes, formulating conjectures about geometric relation-
ships, exploring how geometry and measurement are related, and inves-
tigating the shapes with equal area.

An understanding of congruence and similarity will develop as stu-
dents explore shapes that in some way look alike. They should come to
understand congruent shapes as those that exactly match and similar
shapes as those that are related by “magnifying” or “shrinking.” For ex-
ample, consider the following problem involving the creation of shapes
with a particular set of properties:

Make a triangle with one right angle and two sides of equal length. Can
you make more than one triangle with this set of properties? If so, what is
the relationship of the triangles to one another?

As students make triangles with the stipulated properties (see fig. 5.12),
they will see that although these triangles share a common set of charac-
teristics (one right angle and a pair of sides of equal length), they are not
all the same size. However, they are all related in that they look alike; that
is, one is just a smaller or larger version of the other. The triangles are
similar. Although students will not develop a full understanding of simi-
larity until the middle grades, when they focus on proportionality, in
grades 35 they can begin to think about similarity in terms of figures
that are related by the transformations of magnifying or shrinking.

When discussing shapes, students in grades 3—5 should be expanding
their mathematical vocabulary by hearing terms used repeatedly in con-
text. As they describe shapes, they should hear, understand, and use
mathematical terms such as parallel, perpendicular, face, edge, vertex, angle,
trapezoid, prism, and so forth, to communicate geometric ideas with
greater precision. For example, as students develop a more sophisticated
understanding of how geometric shapes can be the same or different, the
everyday meaning of same is no longer sufficient, and they begin to need
words such as congruent and similar to explain their thinking.

Principles and Standards for School Mathematics



Specify locations and describe spatial relationships using
coordinate geometry and other representational systems

In grades 3-5, the ideas about location, direction, and distance that
were introduced in prekindergarten through grade 2 can be developed
further. For instance, students can give directions for moving from one
location to another in their classroom, school, or neighborhood; use
maps and grids; and learn to locate points, create paths, and measure
distances within a coordinate system. Students can first navigate on
grids by using landmarks. For example, the map in figure 5.13 can be
used to explore questions like these: What is the shortest possible route
from the school to the park along the streets (horizontal and vertical
lines of the grid)? How do you know? Can there be several different
“shortest paths,” each of which is equal in length? If so, how many dif-
ferent “shortest paths” are there? What if you need to start at the
school, go to the park to pick up your little sister, stop at the store, and
visit the library—in what order should you visit these locations to mini-
mize the distance traveled? In this activity, students are using grids and
developing fundamental ideas and strategies for navigating them, an
important component of discrete mathematics.

Store

Library @

© Park

School

Students at this level also should learn how to use two numbers to
name points on a coordinate grid and should realize that a pair of num-
bers corresponds to a particular point on the grid. Using coordinates,
they can specify paths between locations and examine the symmetry, con-
gruence, and similarity of shapes drawn on the grid. They can also ex-
plore methods for measuring the distance between locations on the grid.
As students’ ideas about the number system expand to include negative
numbers, they can work in all four quadrants of the Cartesian plane.

Apply transformations and use symmetry to analyze
mathematical situations

Students in grades 3—5 should consider three important kinds of
transformations: reflections, translations, and rotations (flips, slides, and
turns). Younger students generally “prove” (convince themselves) that
two shapes are congruent by physically fitting one on top of the other,
but students in grades 3—5 can develop greater precision as they de-
scribe the motions needed to show congruence (“turn it 90°” or “flip it
vertically, then rotate it 180°”). They should also be able to visualize

Standards for Grades 3-5: Geometry

Fig. 5.13.

A map for exploring questions about
navigation
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what will happen when a shape is rotated or reflected and predict the
result.

Students in grades 3—5 can explore shapes with more than one line of
symmetry. For example:

In how many ways can you place a mirror on a square so that what you see in
the mirror looks exactly like the original square? Is this true for all squares?
Can you make a quadrilateral with exactly two lines of symmetry? One
line of symmetry? No lines of symmetry? If so, in each case, what kind of
quadrilateral is it?

Although younger students often create figures with rotational sym-
metry with, for example, pattern blocks, they have difficulty describing
the regularity they see. In grades 3-5, they should be using language
about turns and angles to describe designs such as the one in figure
5.14: “If you turn it 180 degrees about the center, it’s exactly the same”
or “It would take six equal small turns to get back to where you started,
but you can’t tell where you started unless you mark it because it looks
the same after each small turn.”

Fig. 5.14.

Pattern with rotational symmetry
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Use visualization, spatial reasoning, and geometric
modeling to solve problems

Students in grades 3—5 should examine the properties of two- and
three-dimensional shapes and the relationships among shapes. They
should be encouraged to reason about these properties by using spatial
relationships. For instance, they might reason about the area of a triangle
by visualizing its relationship to a corresponding rectangle or other cor-
responding parallelogram. In addition to studying physical models of
these geometric shapes, they should also develop and use mental images.
Students at this age are ready to mentally manipulate shapes, and they
can benefit from experiences that challenge them and that can also be
verified physically. For example, “Draw a star in the upper right-hand
corner of a piece of paper. If you flip the paper horizontally and then turn
it 180°, where will the star be?”

Much of the work students do with three-dimensional shapes in-
volves visualization. By representing three-dimensional shapes in two
dimensions and constructing three-dimensional shapes from two-

Principles and Standards for School Mathematics



dimensional representations, students learn about the characteristics of
shapes. For example, in order to determine if the two-dimensional
shape in figure 5.15 is a net that can be folded into a cube, students
need to pay attention to the number, shape, and relative positions of its
faces.

Students should become experienced in using a variety of representa-
tions for three-dimensional shapes, for example, making a freehand draw-
ing of a cylinder or cone or constructing a building out of cubes froma | }-.......
set of views (i.e., front, top, and side) like those shown in figure 5.16.

"Technology affords additional opportunities for students to expand
their spatial reasoning ability. Software such as Logo enables students | ———--------
to draw objects with specified attributes and to test and modify the re-
sults. Computer games such as Tetris (Pajithov 1996) can help develop
spatial orientation and eye-hand coordination. Dynamic geometry soft-
ware provides an environment in which students can explore relation-
ships and make and test conjectures.

Students should have the opportunity to apply geometric ideas and
relationships to other areas of mathematics, to other disciplines, and to
problems that arise from their everyday experiences. There are many
ways to make these connections. For example, measurement and geom-
etry are closely linked, as illustrated in the problem in figure 5.11,
where geometric properties are used to relate the areas of two figures of
different shapes. Geometric models are also important in investigating
number relationships. Number lines, arrays, and many manipulatives

Fig. 5.15.

A task relating a two-dimensional
shape to a three-dimensional shape

)

used for modeling number concepts are geometric realizations of arith- O == E-example 5.3, —=
metic relationships. In algebra, students in grades 3—-5 often work with X
geometric problems to explore patterns and functions (see, for example, Exploring Rectangles and

; Farallelograms
the “tower of cubes” problem in fig. 5.5). Parallelograms

In addition to its utility in exploring and understanding other areas
of mathematics, geometry is closely associated with other subjects, such
as art, science, and social studies. For example, students’ work on sym-
metry can enhance their creation and appreciation of art, and their
work on coordinate geometry is related to the maps they create or use

in their study of the world. The study of geometry promotes a deeper Fie 516

understanding of many aspects of mathematics, improves students’ ab- e

stract reasoning, and highlights relationships between mathematics and Views of a three-dimensional object

the sci & ghig p (Adapted from Battista and Clements
€ sciences. 1995’ p. 61)

Make a building out of ten cubes by looking at the three pictures of it below.

Front view Top view Right side view
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Measurement

Grades

Instructional programs from
prekindergarten through grade 12 e—
should enable all students to—

In grades 3-5 all students should—

Understand measurable attributes » understand such attributes as length, area, weight, volume, and size of
of objects and the units, systems, angle and select the appropriate type of unit for measuring each attribute;
and processes of measurement * understand the need for measuring with standard units and become familiar

with standard units in the customary and metric systems;

* carry out simple unit conversions, such as from centimeters to meters,
within a system of measurement;

* understand that measurements are approximations and understand
how differences in units affect precision;

» explore what happens to measurements of a two-dimensional shape such
as its perimeter and area when the shape is changed in some way.

Apply appropriate techniques, * develop strategies for estimating the perimeters, areas, and volumes of
tools, and formulas to determine irregular shapes;
measurements * select and apply appropriate standard units and tools to measure length,

area, volume, weight, time, temperature, and the size of angles;
* select and use benchmarks to estimate measurements;

* develop, understand, and use formulas to find the area of rectangles and
related triangles and parallelograms;

* develop strategies to determine the surface areas and volumes of
rectangular solids.
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Measurement is a process that students in grades 3—5 use every day %r’.
as they explore questions related to their school or home environment. 2
For example, how much catsup is used in the school cafeteria each day? —
What is the distance from my house to the school? What is the range of Measurement lyelps &
heights of players on the basketball team? Such questions require stu- ) C &
dents to use concepts and tools of measurement to collect data and to connect ideas within =
describe and quantify their world. In grades 3—5, measurement helps b . o
connect ideas within areas of mathematics and between mathematics areas Of matbematics S
and other disciplines. It can serve as a context to help students under- db e
. . . . an etween <

stand important mathematical concepts such as fractions, geometric =
shapes‘, and ways of describing data. mathematics and other =
Prior to grade 3, students should have begun to develop an under- 2
standing of what it means to measure an object, that is, identifying an di SCZ‘p lines. 5
attribute to be measured, choosing an appropriate unit, and comparing 3
that unit to the object being measured. They should have had many ~
experiences with measuring length and should also have explored ways =
to measure liquid volume, weight, and time. In grades 3-5, students B
should deepen and expand their understanding and use of measure- >
ment. For example, they should measure other attributes such as area s
and angle. They need to begin paying closer attention to the degree of 7
accuracy when measuring and use a wider variety of measurement 5
tools. They should also begin to develop and use formulas for the mea- S
surement of certain attributes, such as area. &
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In learning about measurement and learning how to measure, stu- -
dents should be actively involved, drawing on familiar and accessible 9
contexts. For example, students in grades 3—5 should measure objects 5
and space in their classroom or use maps to determine locations and dis- Q
tances around their community. They should determine an appropriate §
unit and use it to measure the area of their classroom’s floor, estimate —
the time it takes to do various tasks, and measure and represent change é"
in the size of attributes, such as their height. g
(]
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Students in gmdes

3-S5 should encounter

the notion that

measurements in the

172

real world are

approximate.

Understand measurable attributes of objects and the
units, systems, and processes of measurement

Students in grades 3—5 should measure the attributes of a variety of
physical objects and extend their work to measuring more complex at-
tributes, including area, volume, and angle. They will learn that length
measurements in particular contexts are given specific names, such as
perimeter, width, height, circumference, and distance. They can begin to
establish some benchmarks by which to estimate or judge the size of ob-
jects. For example, they learn that a “square corner” is called a right angle
and establish this as a benchmark for estimating the size of other angles.

Students in grades 3-5 should be able to recognize the need to select
units appropriate to the attribute being measured. Different kinds of units
are needed for measuring area than for measuring length. At first they
might use convenient nonstandard units such as lima beans to estimate
area and then come to recognize the need for a standard unit such as a
unit square. Likewise, the need for a standard three-dimensional unit to
measure volume grows out of initial experiences filling containers with
items such as rice or packing pieces. As students find that there are spaces
between the units, that the units are not easy to count, or that the units are
not of a uniform size, they will appreciate the need for a standard unit.

In these grades, more emphasis should be placed on the standard
units that are used to communicate in the United States (the customary
units) and around the world (the metric system). Students should be-
come familiar with the common units in these systems and establish
mental images or benchmarks for judging and comparing size. For ex-
ample, they may know that a paper clip weighs about a gram, the width
of their forefinger is about a centimeter, or the distance from their
elbow to their fingertip is about a foot.

Students should gain facility in expressing measurements in equiva-
lent forms. They use their knowledge of relationships between units
and their understanding of multiplicative situations to make conver-
sions, such as expressing 150 centimeters as 1.5 meters or 3 feet as 36
inches. Since students in the United States encounter two systems of
measurement, they should also have convenient referents for compar-
ing units in different systems—for example, 2 centimeters is a little less
than an inch, a quart is a little less than a liter, a kilogram is about two
pounds. However, they do not need to make formal conversions be-
tween the two systems at this level.

Students in grades 3—5 should encounter the notion that measure-
ments in the real world are approximate, in part because of the instru-
ments used and because of human error in reading the scales of these
instruments. For example, figure 5.17 describes a measurement task and
summarizes results typical of what groups of students obtain. Such an
exercise provides a context in which the teacher can raise, and the class
can consider, the idea of measurement as an estimation process.

Each pair of students will find slightly different measurements, even
though they are measuring the same object using the same kind of mea-
surement tools. The teacher should ask students to discuss the factors
that may lead to different measurements. Students’ responses will vary
according to their experience, but by grade 5 they should recognize fac-
tors that affect precision. These include the limitations of the measure-
ment tool, how precisely students read the scale on the measuring

Principles and Standards for School Mathematics



Measure and compare:

Work in pairs and use your rulers to measure the items indicated on
the chart. Record your measurements for each object on the chart.

Objects
Height of Circumference Length
Teacher’s Desk | of Clockface |of Classroom
Jo and Rustin 10cm 9% cm §O m
UJh;‘ME)( ard efh|  (Bem 9 cyn .Em
%en nd Bnna (N 9o §1 m

Fig. 5.17.

A measurement task and typical
student results

instrument (was the scale marked and read in centimeters or millime-
ters?), and the students’ perceived need for accuracy. The discussion
might lead to considering the importance of measuring precisely in cer-
tain contexts. For instance, carpenters often measure twice and use spe-
cial instruments in order to minimize the waste of materials, but an esti-
mate might be quite adequate in other instances (e.g., the scout troop
hiked about 2.5 miles).

Students in grades 3—5 should explore how measurements are af-
fected when one attribute to be measured is held constant and the other
is changed. For example, consider the area of four tiles joined along ad-
jacent sides (see fig. 5.18). The area of each tile is a square unit. When
joined, the area of the resulting polygon is always four square units, but
the perimeter varies from eight to ten units, depending on how the tiles
are arranged. Or suppose students are given twenty toothpicks with
which to build a rectangle. How many different rectangles are possible
if all twenty toothpicks are used? This activity provides an opportunity
to discuss the relationship of area to perimeter. It also highlights the
importance of organizing solutions systematically.

Apply appropriate techniques, tools, and formulas to
determine measurements

In grades 3-5, an expanded number of tools and range of measure-
ment techniques should be available to students. When using conven-
tional tools such as rulers and tape measures for measuring length, stu-
dents will need instruction to learn to use these tools properly. For
example, they will need to recognize and understand the markings on a
ruler, including where the “0,” or beginning point, is located. When
standard measurement tools are difficult to use in a particular situation,
they must learn to adapt their tools or invent techniques that will work.
In the earlier example (fig. 5.17) measuring the circumference of a clock
face with a rigid ruler presented a particular challenge. Using string or
some other flexible object to outline the clock face and then measuring
the string would have been a good strategy. Students should be chal-
lenged to develop measurement techniques as needed in order to mea-
sure complex figures or objects. For example, they might measure the

Standards for Grades 3-5: Measurement

Fig. 5.18.

Polygons with the same area and
different perimeters
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Measuring the areas of a set of rectan-
gles using a transparent grid

Fig. 5.19.

area of an irregular polygon or a leaf by covering it with transparent
grid paper and counting units or by breaking it apart into regular
shapes that they can measure.

Students in grades 3—5 should develop strategies to estimate mea-
surements. For example, to estimate the length of the classroom, they
might estimate the length of one floor tile and then count the number
of tiles across the room and multiply the length by the number of tiles.
Another strategy for estimating measurements is to compare the item
to be measured against some benchmark. For example, a student might
estimate the teacher’s height by noting that it is about one and a quarter
times the student’s own height. This particular strategy highlights the
use of multiplicative reasoning, an important indication of advancing

understanding.

Strategies for estimating measurements are varied and often depend on
the particular situation. By sharing strategies, students can compare and
evaluate different approaches. Students also need experience in judging
what degree of accuracy is required in a given situation and whether an
underestimate or overestimate is more desirable. For example, in estimat-
ing the time needed to get up in the morning, eat breakfast, and walk or
drive to school, an overestimate makes sense. However, an underestimate

of the time needed to cook

vegetables on the grill might be considered

appropriate, since more time can always be added to the cooking process

but not taken away from it.

As students have opportunities to look for patterns in the results of
their measurements, they recognize that their methods for measuring
the area and volume of particular objects can be generalized as formu-

las. For example, the table

in figure 5.19 is typical of what groups of

third graders might produce when using a transparent grid to deter-

e
e (T
=R aus]

Rectangle | Length (cm) | Width (cm)
A 5 2
B 4 3
C 1 6 6 ‘
D 2 3 6
E 4 4 16
B

174
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mine the areas of a set of rectangles. As they begin generating the table,
they realize that counting all the squares is not necessary once the
length (L) and width (J) of the rectangle are determined with the grid.
They test their conjecture that Area = L x I, and it appears to work for
each rectangle in the set. Later, their teacher challenges them to think
about whether and why their formula will work for big rectangles as
well as small ones.

Students in grades 3—5 should develop strategies for determining
surface area and volume on the basis of concrete experiences. They
should measure various rectangular solids using objects such as tiles and
cubes, organize the information, look for patterns, and then make gen-
eralizations. For example, the “tower of cubes” problem in figure 5.5
highlights the kind of activity that builds from concrete experiences and
leads to generalizations, including the development of general formulas
for measuring surface area and volume. These concrete experiences are
essential in helping students understand the relationship between the
measurement of an object and the succinct formula that produces the
measurement.

Standards for Grades 3-5: Measurement
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Data Analysis and Probability

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Formulate questions that can be
addressed with data and collect,
organize, and display relevant data
to answer them

Select and use appropriate statisti-
cal methods to analyze data

Develop and evaluate inferences and
predictions that are based on data

Understand and apply basic
concepts of probability

176

Grades

3—0

In grades 3-5 all students should—

design investigations to address a question and consider how data-
collection methods affect the nature of the data set;

collect data using observations, surveys, and experiments;

represent data using tables and graphs such as line plots, bar graphs, and
line graphs;

recognize the differences in representing categorical and numerical data.

describe the shape and important features of a set of data and compare
related data sets, with an emphasis on how the data are distributed;

use measures of center, focusing on the median, and understand what each
does and does not indicate about the data set;

compare different representations of the same data and evaluate how well
each representation shows important aspects of the data.

propose and justify conclusions and predictions that are based on data and
design studies to further investigate the conclusions or predictions.

describe events as likely or unlikely and discuss the degree of likelihood
using such words as certain, equally likely, and impossible;

predict the probability of outcomes of simple experiments and test the
predictions;

understand that the measure of the likelihood of an event can be
represented by a number from 0O to 1.
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Data Analysis and Probability

In prekindergarten through grade 2, students will have learned that
data can give them information about aspects of their world. They

should know how to organize and represent data sets and be able to no- Invest: g&ll’iOTlS involvin g
tice individual aspects of the data—where their own data are on the
graph, for instance, or what value occurs most frequently in the data data should lﬂﬂppé’ n

set. In grades 3-5, students should move toward seeing a set of data as a
whole, describing its shape, and using statistical characteristics of the
data such as range and measures of center to compare data sets. Much
of this work emphasizes the comparison of related data sets. As students
learn to describe the similarities and differences between data sets, they
will have an opportunity to develop clear descriptions of the data and to
formulate conclusions and arguments based on the data. They should
consider how the data sets they collect are samples from larger popula-
tions and should learn how to use language and symbols to describe
simple situations involving probability.

Investigations involving data should happen frequently during
grades 3-5. These can range from quick class surveys to projects that
take several days. Frequent work with brief surveys (How many broth-
ers and sisters do people in our class have? What’s the farthest you
have ever been from home?) can acquaint students with particular as-
pects of collecting, representing, summarizing, comparing, and inter-
preting data. More extended projects can engage students in a cycle of
data analysis—formulating questions, collecting and representing the
data, and considering whether their data are giving them the informa-
tion they need to answer their question. Students in these grades are
also becoming more aware of the world beyond themselves and are
ready to address some questions that have the potential to influence
decisions. For example, one class that studied playground injuries at
their school gathered evidence that led to the conclusion that the bars
on one piece of playground equipment were too large for the hands of
most students below third grade. This finding resulted in a new policy
for playground safety.

frequently during
grades 3-5.

Formulate questions that can be addressed with data and
collect, organize, and display relevant data to answer them

At these grade levels, students should pose questions about them-
selves and their environment, issues in their school or community, and

content they are studying in different subject areas: How do fourth 0O = E-example 5.4 ——
graders spend their time after school? Do automobiles stop at the stop X
signs in our neighborhood? How can the amount of water used for com- Investigating Web Data

mon daily activities be decreased? Once a question is posed, students can
develop a plan to collect information to address the question. They may
collect their own data, use data already collected by their school or town,
or use other existing data sets such as the census or weather data accessi-
ble on the Internet to examine particular questions. If students collect
their own data, they need to decide whether it is appropriate to conduct
a survey or to use observations or measurements. As part of their plan,
they often need to refine their question and to consider aspects of data
collection such as how to word questions, whom to ask, what and when
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to observe, what and how to measure, and how to record their data.
When they use existing data, they still need to consider and evaluate the
ways in which the data were collected.

Students should become familiar with a variety of representations
such as tables, line plots, bar graphs, and line graphs by creating them,
watching their teacher create them, and observing those representa-
tions found in their environment (e.g., in newspapers, on cereal boxes,
etc.). In order to select and interpret appropriate representations, stu-
dents in grades 3—5 need to understand the nature of different kinds of
data: categorical data (data that can be categorized, such as types of
lunch foods) and numerical data (data that can be ordered numerically,
such as heights of students in a class). Students should examine classifi-
cations of categorical data that produce different views. For example, in
a study of which cafeteria foods are eaten and which are thrown out,
different classifications of the types of foods may highlight different
aspects of the data.

As students construct graphs of ordered numerical data, teachers
need to help them understand what the values along the horizontal and
vertical axes represent. Using experience with a variety of graphs,
teachers should make sure that students encounter and discuss issues
such as why the scale on the horizontal axis needs to include values
that are not in the data set and how to represent zero on a graph. Stu-
dents should also use computer software that helps them organize and
represent their data, including graphing software and spreadsheets.
Spreadsheets allow students to organize and order a large set of data
and create a variety of graphs (see fig. 5.20).

Fig. 5.20.

Spreadsheet with weather data
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A~ [ s [ ¢ [ b
Daily Precipitation and

Temperatures for San Francisco,

. California

2

3 Precipitation Temperature (°F)

4 Date (inches) | Hi Low

5 1/1 0.01 58 48

6 112 0.88 60 51

7 1/3 0.43 58 50

8 1/4 0.25 56 44

9 1/5 0 51 40

10 1/6 0.25 53-' 54 40

11 117 0.09 50 47

12 1/8 0 51 47

When students are ready to present their data to an audience, they
need to consider aspects of their representations that will help people
understand them: the type of representation they choose, the scales
used in a graph, and headings and titles. Comparing different represen-
tations helps students learn to evaluate how well important aspects of
the data are shown.
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Select and use appropriate statistical methods to
analyze data

In prekindergarten through grade 2, students are often most inter-
ested in individual pieces of data, especially their own, or which value is
“the most” on a graph. A reasonable objective for upper elementary and
middle-grades students is that they begin to regard a set of data as a
whole that can be described as a set and compared to other data sets
(Konold forthcoming). As students examine a set of ordered numerical
data, teachers should help them learn to pay attention to important
characteristics of the data set: where data are concentrated or clumped,
values for which there are no data, or data points that appear to have
unusual values. For example, in figure 5.21 consider the line plot of the
heights of fast-growing plants grown in a fourth-grade classroom
(adapted from Clement et al. [1997, p. 10]). Students describing these
data might mention that the shortest plant measures about 14 centime-
ters and the tallest plant about 41 centimeters; most of the data are con-
centrated from 20 to 23 centimeters; and the plant that grew to a height
of 41 centimeters is very unusual (an outlier), far removed from the rest
of the data. As teachers guide students to focus on the shape of the data
and how the data are spread across the range of values, the students Fig. 5.21.
should learn statistical terms such as range and outlier that help them
describe the set of data.

Plant height data from a fourth-
grade class

Plant Height Data

Height (in cm) [ Number of Plants

15 |

20 1]\

22 ) ! ' "

23 M ‘ \ 0 5 10 15

40 |

Number of
plants
X X X X X X X

X X

25 30 35

1+ X
B+ xxxx

N
o"><

Plant Height in Centimeters

Much of students’ work with data in grades 3-5 should involve com-
paring related data sets. Noting the similarities and differences between
two data sets requires students to become more precise in their descrip-
tions of the data. In this context, students gradually develop the idea of a
“typical,” or average, value. Building on their informal understanding of
“the most” and “the middle,” students can learn about three measures of
center—mode, median, and, informally, the mean. Students need to
learn more than simply how to identify the mode or median in a data
set. They need to build an understanding of what, for example, the me-
dian tells them about the data, and they need to see this value in the con-
text of other characteristics of the data. Figure 5.22 shows the results of
plant growth in a third-grade classroom (adapted from Clement et al.
[1997, p. 10]). Students should compare the two sets of data from the
fourth- and third-grade classrooms. They may note that the median of
the fourth-grade data is 23 centimeters and the median of the third-
grade data is 28 centimeters. This comparison provides information
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Fig. 5.22.

Plant height data from a third-grade
class
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Plant Height Data é "
m R
Height (in cm) [ Number of Plants ‘ED K X X
En X X X X
9 / z X X X XX XXXXXXXXX X XX
14 | 0 5 10 15 20 25 30 35 40
17 I
29 | Plant Height in Centimeters
23 |
25 | that, overall, the set of third-grade plants grew taller than the set of
26 | fourth-grade plants. But it is also important to look at the distributions
of the data, which tell an even more dramatic story: Although the ranges
el [ of the two data sets are about the same, most of the third graders’ plants
28 l grew taller than all but a few of the fourth graders’ plants.
29 ' In grade 5, once students are experienced using the mode and me-
’ dian as part of their data descriptions, they can begin to conceptually
30 | explore the role of the mean as a balance point for the data set, using
31 |1/ small data sets. The idea of a mean value—what it is, what information
it gives about the data, and how it must be interpreted in the context of
32 \ .. . . ) .
other characteristics of the data—is a complex one, which will continue
33 [ to be developed in later grades.
35 \
39 I Develop and evaluate inferences and predictions that
0 ‘ are based on data

Data can be used for developing arguments that are based on evi-
dence and for continued problem posing. As students discuss data gath-
ered to address a particular question, they should begin to distinguish
between what the data show and what might account for the results.
For example, a fourth-grade class investigating the sleep patterns of
first graders and fifth graders found that first graders were heavier
sleepers than fifth graders, as shown in the graphs in figure 5.23 (Rus-
sell, Schifter, and Bastable 1999). They had predicted that first graders
would be lighter sleepers and were surprised by their results. After de-
scribing their data, they developed a hypothesis: First graders have a
higher activity level because they play outside more, and this higher ac-
tivity level leads to deeper sleep. They realized they would need to col-
lect data about a typical day for first and fifth graders in order to inves-
tigate their hypothesis. This example demonstrates how students can be
encouraged to develop conjectures, show how these are based on the
data, consider alternative explanations, and design further studies to ex-
amine their conjectures.

With appropriate experiences, students should begin to understand
that many data sets are samples of larger populations. They can look at
several samples drawn from the same population, such as different
classrooms in their school, or compare statistics about their own sample
to known parameters for a larger population, for example, how the me-
dian family size for their class compares with the median family size re-
ported for their town. They can think about the issues that affect the
representativeness of a sample—how well it represents the population
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from which it is drawn—and begin to notice how samples from the %
same population can vary. g
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Understand and apply basic concepts of probability 3
Students in grades 3—5 should begin to learn about probability as a )
measurement of the likelihood of events. In previous grades, they will o
. . . . . o
have begun to describe events as certain, likely, or impossible, but now =
they can begin to learn how to quantify likelihood. For instance, what is @
the likelihood of seeing a commercial when you turn on the television? -
"To estimate this probability, students could collect data about the num- o
ber of minutes of commercials in an hour. el
Students should also explore probability through experiments that =
have only a few outcomes, such as using game spinners with certain s
portions shaded and considering how likely it is that the spinner will g
land on a particular color. They should come to understand and use 0 -
to represent the probability of an impossible event and 1 to represent o
.. . o
the probability of a certain event, and they should use common frac- 3
tions to represent the probability of events that are neither certain nor =
. . . . 3
impossible. Through these experiences, students encounter the idea &
that although they cannot determine an individual outcome, such as &
which color the spinner will land on next, they can predict the fre- =
quency of various outcomes. o
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Problem Solving

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Build new mathematical knowledge
through problem solving

Solve problems that arise in mathe-
matics and in other contexts

Apply and adapt a variety of appro-
priate strategies to solve problems

Monitor and reflect on the process
of mathematical problem solving

182

Grades

3—0

Problem solving is the cornerstone of school mathematics. Without
the ability to solve problems, the usefulness and power of mathematical
ideas, knowledge, and skills are severely limited. Students who can effi-
ciently and accurately multiply but who cannot identify situations that
call for multiplication are not well prepared. Students who can both de-
velop and carry out a plan to solve a mathematical problem are exhibit-
ing knowledge that is much deeper and more useful than simply carry-
ing out a computation. Unless students can solve problems, the facts,
concepts, and procedures they know are of little use. The goal of school
mathematics should be for all students to become increasingly able and
willing to engage with and solve problems.

Problem solving is also important because it can serve as a vehicle for
learning new mathematical ideas and skills (Schroeder and Lester
1989). A problem-centered approach to teaching mathematics uses in-
teresting and well-selected problems to launch mathematical lessons
and engage students. In this way, new ideas, techniques, and mathemat-
ical relationships emerge and become the focus of discussion. Good
problems can inspire the exploration of important mathematical ideas,
nurture persistence, and reinforce the need to understand and use vari-
ous strategies, mathematical properties, and relationships.

What should problem solving look like in grades 3-57%

Students in grades 3-5 should have frequent experiences with prob-
lems that interest, challenge, and engage them in thinking about impor-
tant mathematics. Problem solving is not a distinct topic, but a process
that should permeate the study of mathematics and provide a context in
which concepts and skills are learned. For instance, in the following hy-
pothetical example, a teacher poses these questions to her students:

If you roll two number cubes (both with the numbers 1-6 on their faces)
and subtract the smaller number from the larger or subtract one number
from the other if they are the same, what are the possible outcomes? If
you did this twenty times and created a chart and line plot of the results,
what do you think the line plot would look like? Is one particular differ-
ence more likely than any other differences?

Initially, the students predict that they will roll as many of one dif-
ference as of another. As they begin rolling the cubes and making a
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list of the differences, some are surprised that the numbers in their
lists range only from 0 to 5. They organize their results in a chart
and continue to mark the differences they roll (see fig. 5.24). After
the students have worked for a few minutes, the teacher calls for a
class discussion and asks the students to summarize their results and
reflect on their predictions. Some notice that they are getting only a
few 0%s and 5’ but many 1’ and 2. This prompts the class to gener-
ate a list of rolls that produce each difference. Others list combina-
tions that produce a difference of 2 and find many possibilities. The
teacher helps students express this probability and questions them
about the likelihood of rolling other differences, such as 0, 3, and 5.

The questions posed in this episode were “problems” for the students
in that the answers were not immediately obvious. They had to generate
and organize information and then evaluate and explain the results. The
teacher was able to introduce notions of probability such as predicting
and describing the likelihood of an event, and the problem was accessible
and engaging for every student. It also provided a context for encourag-
ing students to formulate a new set of questions. For example: Could we
create a table that would make it easy to compute the probabilities of
each value? Suppose we use a set of number cubes with the numbers 4-9
on the faces. How will the results be similar? How will they be different?
What if we change the rules to allow for negative numbers?

Good problems and problem-solving tasks encourage reflection and
communication and can emerge from the students’ environment or
from purely mathematical contexts. They generally serve multiple pur-
poses, such as challenging students to develop and apply strategies, in-
troducing them to new concepts, and providing a context for using
skills. They should lead somewhere, mathematically. In the following
episode drawn from an unpublished classroom experience, a fourth-
grade teacher asked students to work on the following task:

Show all the rectangular regions you can make using 24 tiles

(1-inch squares). You need to use all the tiles. Count and keep a record
of the area and perimeter of each rectangle and then look for and de-
scribe any relationships you notice.

When the students were ready to discuss their results, the teacher
asked if anyone had a rectangle with a length of 1, of 2, of 3, and so
on, and modeled a way to organize the information (see fig. 5.25).

The teacher asked if anyone had tried to form a rectangle of length
5 and, if so, what had happened. The students were encouraged
work with partners to make observations about the information in
the chart and their rectangular models. They noticed that the
numbers in the first two columns of any row could be multiplied to
get 24 (the area). The teacher noted their observation by writing
“L x W =24" and used the term factors of 24 as another way, in ad-
dition to length and width, to describe the numbers in the first two
columns. Some students noticed that as the numbers for one di-
mension increased, those for the other dimension decreased. Still
others noted that the perimeters were always even. One student
asked if the rectangles at the bottom of the chart were the same as
the ones at the top, just turned different ways. This observation
prompted the teacher to remind the students that they had talked

Standards for Grades 3-5: Problem Solving

Fig. 5.24.

A chart of the frequency of the differ-
ences between the numbers on the
faces of two dice rolled simultaneously
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about this idea as a property of multiplication—the commutative
property—and as congruence of figures.

The teacher then asked the students to describe the rectangles with
the greatest and smallest perimeters. They pointed out that the
long “skinny” rectangles had greater perimeters than the “fatter”
rectangles. The teacher modeled this by taking the 1-unit-by-24-
unit rectangle of perimeter 50, splitting it in half, and connecting
the halves to form the 2-unit-by-12-unit rectangle (see fig. 5.26). As
she moved the tiles, she explained that some tile edges on the out-
side boundary of the skinny rectangle were moved to the inside of
the wider rectangle. Because there were fewer edges on the outside,
the perimeter of the rectangle decreased.

Fig. 5.25.

The dimensions of the rectangular Length (L) | Width (W) |Area (A) |Perimeter (P)

regions made with 24 one-inch (units) (units) (sq. units) (units)
square tiles

24

24

50

)
2 12 | 24| 28
3 3 | 24| 22
H G | 24| 20
& Al 24| 20
=] 3| 24| 22
|2 2 | 24| 23
o 24 | 24| so
£
)
2 e [(TTTTTTT I ITIITTI ]
-§ Forming a 2 X 12 rectangle from a 1 x
a 24 rectangle 1x24
[TTTTTTTTITTIT]
2x12
The “24 tiles” problem provides opportunities for students to con-
sider the relationship between area and perimeter, to model the commu-
tative property of multiplication, to use particular vocabulary ( factor and
multiple), to record data in an organized way, and to review basic num-
ber combinations. It reinforces the relationship L x W = A. It also allows
the teacher to help students with different needs focus on different
184
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aspects of the problem—building all the rectangles, organizing the data,
looking for patterns, or making and justifying conjectures.

Reflecting on different ways of thinking about and representing a
problem solution allows comparisons of strategies and consideration of
different representations. For example, students might be asked to find
several ways to determine the number of dots on the boundary of the
square in figure 5.27 and then to represent their solutions as equations
(Burns and Mclaughlin 1990).

Students will likely see different patterns. Several possibilities are
shown in figure 5.28. The teacher should ask each student to relate the
drawings to the numbers in their equations. When several different
strategies have been presented, the teacher can ask students to examine
the various ways of solving the problem and to notice how they are
alike and how they are different. This problem offers a natural way to
introduce the concept and term equivalent expressions.

In addition to developing and using a variety of strategies, students
also need to learn how to ask questions that extend problems. In this
way, they can be encouraged to follow up on their genuine curiosity
about mathematical ideas. For example, the teacher might ask students
to create a problem similar to the “dot square” problem or to extend it
in some way: If there were a total of 76 dots, how many would be on
each side of the square? Could a square be formed with a total of 75
dots? Students could also work with extensions involving dots on the
perimeter of other regular polygons. By extending problems and asking
different questions, students become problem posers as well as problem
solvers.

Fig. 5.27.

The “dot square” problem

oo ARy 0000009

°

° °

° °

° °

° °

° °

° °

0 °
oo Sleeeeoccele e
4x8+4=36 4x10-4=36 10+8+10+8=36

Fig. 5.28.

Several possible solutions to the “dot

square” problem

What should be the teacher’s role in developing
problem solving in grades 3 through 57

Teachers can help students become problem solvers by selecting
rich and appropriate problems, orchestrating their use, and assessing
students’ understanding and use of strategies. Students are more likely
to develop confidence and self-assurance as problem solvers in class-
rooms where they play a role in establishing the classroom norms and
where everyone’s ideas are respected and valued. These attitudes are
essential if students are expected to make sense of mathematics and to
take intellectual risks by raising questions, formulating conjectures,
and offering mathematical arguments. Since good problems challenge
students to think, students will often struggle to arrive at solutions. It
is the teacher’s responsibility to know when students need assistance

Standards for Grades 3-5: Problem Solving
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Perseverance is an
important aspect of the

problem-solving process.
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and when they are able to continue working productively without help.
It is essential that students have time to explore problems. Giving help
too soon can deprive them of the opportunity to make mathematical
discoveries. Students need to know that a challenging problem will
take some time and that perseverance is an important aspect of the
problem-solving process and of doing mathematics.

As students share their solutions with classmates, teachers can help
them probe various aspects of their strategies. Explanations that are
simply procedural descriptions or summaries should give way to mathe-
matical arguments. In this upper elementary class, a teacher questioned
two students as they described how they divided nine brownies equally
among eight people (Kazemi 1998, pp. 411-12):

Sarab: The first four we cut them in half. (Fasmine divides
squares in half on an overbead transparency.)

Ms. Carter: Now as you explain, could you explain why you did it in

half?
Sarah: Because when you put it in half, it becomes four ... four
... eight halves.
Ms. Carter: Eight halves. What does that mean if there are eight
halves?

Sarab: Then each person gets a half.

Ms. Carter: Okay, that each person gets a half. (Fasmine labels halves
1 through 8 for each of the eight people.)

Sarab: Then there were five boxes [brownies] left. We put
them in eighths.

Ms. Carter: Okay, so they divided them into eighths. Could you tell
us why you chose eighths?

Sarab: 1t’s easiest. Because then everyone will get ... each per-
son will get a half and (addresses Fasmine) ... how many
eighths?

Fasmine: (Quietly) Five-eighths.
Ms. Carter: 1didn’t know why you did it in eighths. That’s the rea-
son. I just wanted to know why you chose eighths.

Principles and Standards for School Mathematics



Fasmine: We did eighths because then if we did eighths, each
person would get each eighth, I mean one-eighth out of
each brownie.

M. Carter: Okay, one-eighth out of each brownie. Can you just,
you don’t have to number, but just show us what you
mean by that? I heard the words, but...

Fasmine: (Shades in one-eighth of each of the five brownies that were
divided into eighths.) Person one would get this ... (points
to one-eighth)

Ms. Carter: Oh, out of each brownie.

Sarah: Out of each brownie, one person will get one-eighth.

Ms. Carter: One-eighth. Okay. So how much then did they get if
they got their fair share?

Fasmine &
Sarah: They got a half and five-eighths.

Ms. Carter: Do you want to write that down at the top, so I can see
what you did? (fasmine writes 1/2 + 1/8 + 1/8 + 1/8 +
1/8 + 1/8 at the top of the overhead transparency.)

In this discussion, the teacher pressed students to give reasons for
their decisions and actions: What does it mean if there are eight halves?
Could you tell us why you chose eighths? Can you show us what you
mean by that? She was not satisfied with a simple summary of the steps
but instead expected the students to give verbal justifications all along
the way and to connect those justifications with both numbers and rep-
resentations. This particular pair of students used a strategy that was
different from that of other students. Although it was not the most effi-
cient strategy, it did reveal that these students could solve a problem
they had not encountered before and that they could explain and repre-
sent their thinking.

Listening to discussions, the teacher is able to assess students’ under-
standing. In the conversation about sharing brownies, the teacher asked
students to justify their responses in order to gain information about
their conceptual knowledge. For any assessment of problem solving,
teachers must look beyond the answer to the reasoning behind the solu-
tion. This evidence can be found in written and oral explanations,
drawings, and models. Reflecting on these assessment data, teachers can
choose directions for future instruction that fit with their mathematical
goals.

Standards for Grades 3-5: Problem Solving
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Reasoning and Proof

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize reasoning and proof as
fundamental aspects of mathematics

Make and investigate mathematical
conjectures

Develop and evaluate mathematical
arguments and proofs

Select and use various types of
reasoning and methods of proof

188

Grades

3—0

During grades 3-5, students should be involved in an important transi-
tion in their mathematical reasoning. Many students begin this grade band
believing that something is true because it has occurred before, because
they have seen several examples of it, or because their experience to date
seems to confirm it. During these grades, formulating conjectures and as-
sessing them on the basis of evidence should become the norm. Students
should learn that several examples are not sufficient to establish the truth
of a conjecture and that counterexamples can be used to disprove a conjec-
ture. They should learn that by considering a range of examples, they can
reason about the general properties and relationships they find.

Much of the work in these grades should be focused on reasoning
about mathematical relationships, such as the structure of a pattern, the
similarities and differences between two classes of shapes, or the overall
shape of the data represented on a line plot. Students should move from
considering individual mathematical objects—this triangle, this number,
this data point—to thinking about c/asses of objects—all triangles, all
numbers that are multiples of 4, a whole set of data. Further, they
should be developing descriptions and mathematical statements about
relationships between these classes of objects, and they can begin to un-
derstand the role of definition in mathematics.

Mathematical reasoning develops in classrooms where students are en-
couraged to put forth their own ideas for examination. Teachers and stu-
dents should be open to questions, reactions, and elaborations from oth-
ers in the classroom. Students need to explain and justify their thinking
and learn how to detect fallacies and critique others’ thinking. They need
to have ample opportunity to apply their reasoning skills and justify their
thinking in mathematics discussions. They will need time, many varied
and rich experiences, and guidance to develop the ability to construct
valid arguments and to evaluate the arguments of others. There is clear
evidence that in classrooms where reasoning is emphasized, students do
engage in reasoning and, in the process, learn what constitutes acceptable
mathematical explanation (Lampert 1990; Yackel and Cobb 1994, 1996).

What should reasoning and proof look like in grades 3
through 57

In grades 3-5, students should reason about the relationships that
apply to the numbers, shapes, or operations they are studying. They

Principles and Standards for School Mathematics



need to define the relationship, analyze why it is true, and determine to
what group of mathematical objects (numbers, shapes, and operations)
it can be applied. Consider the following episode drawn from unpub-
lished classroom observation notes:

In Ms. Taylor’s third-grade class, students were having a discussion
of how to compute 4 x 8. One student, Matt, explained, “I thought
of 2 x 8, that’s 16, then you just double it.” The teacher asked sev-
eral students to restate the idea and then asked the class, “Do you
think Matt’s way of multiplying by 4—by doubling then doubling
again—works with problems other than 4 x 8?” When the response
from students was quite mixed, she asked them to try some prob-
lems like this themselves before gathering again to discuss Matt’s

method.

"This example shows a teacher taking advantage of an opportunity
to engage students in mathematical reasoning. By asking the question
“Do you think that always works?” she moved the discussion from the
specific problem to a consideration of a general characteristic of mul-
tiplication problems—that a factor in a multiplication expression can
itself be factored and then the new factors can be multiplied in any
order.

After students had worked on several problems and had discussed
with a partner why “doubling then doubling again” was a strategy
for multiplying by 4, the teacher reconvened the class for further
discussion. Student responses to whether Matt’s strategy would
always work showed a wide range of thinking:

Carol: Because if you have 2 times 8 and 4 times 8, you’re dou-
bling the answer. It works every time.

Moalia: It has to be doubled because you’re doing the same thing
over again. It’s like you did 2 times 8 is 16 and then you
did 2 times 8 is 16 again, so it has to be 32.

Steven: What you're doing is counting by 8s, so you’re counting
ahead, you’re skipping some of the 8s. You’re doing
another two of them, so it’s like doubling them up.

Matt: 1 tried to see if it would work with triples, so I did 2 times
8 and 6 times 8, and it worked. You times it by 3 and the
answer is tripled.

These students’ explanations are tied to the specific example, but
there is evidence that some students are constructing arguments that
may lead to more-general conclusions. Carol is satisfied that “it
works every time” but does not have an argument that is based on the
structure of multiplication. Malia refers to breaking up one of the
factors in the problem into two parts, multiplying the other number
by both parts, and then adding the results—the distributive property
of multiplication over addition. Steven’s explanation is based on
modeling multiplication as skip-counting, and Matt takes his original
idea further by testing whether multiplying by 6 is the same as multi-
plying by 2 then by 3. Although none of these third graders’ argu-
ments is stated in a way that is complete or general, they are begin-
ning to see what it means to develop and test conjectures about
mathematical relationships.

Standards for Grades 3-5: Reasoning and Proof

Mathematical reasoning
develops in classrooms
where students are
encouraged to put forth
their own ideas for

exanination.
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Fig. 5.29.

A student’s solution to the problem
74 x 6 involves the distributive

property.

4 w2 =148
14 34 =298
\4e +246 =144

Fig. 5.30.

A rectangle cut into halves in two
different ways

Fig. 5.31.

Students’ attempts to demonstrate
that a triangle has the same area as a
rectangle
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Following this discussion, the teacher sent students off to work on a
set of multiplication problems. Their work on the problems gave
evidence that some of them were applying aspects of the reasoning
discussed in the class session. For example, Katherine computed

74 x 6 by first computing 74 x 2 and writing the product. Then she
doubled the answer to get the solution to 74 % 4 and added the two
products together to get the solution for 74 X 6 (see fig. 5.29). She
was using thinking similar to Malia’s, which seemed to involve the
distributive property.

During grades 3-5, students should move toward reasoning that de-
pends on relationships and properties. Students need to be challenged
with questions such as, What if I gave you twenty more problems like
this to do—would they all work the same way? How do you know?
Through comparing solutions and questioning one another’ reasoning,
they can begin to learn to describe relationships that hold across many
instances and to develop and defend arguments about why those rela-
tionships can be generalized and to what cases they apply (Maher and
Martino 1996).

At these grades, students need experiences in learning about what
constitutes a convincing argument (Hanna and Yackel forthcoming).
For example, in this episode drawn from unpublished classroom obser-
vation notes, a third-grade class explored the following problem
(adapted from Tierney and Berle-Carman [1995, p. 22]).

Start with two identical rectangular regions—each the same size. Cut
each of the two rectangles in half as shown in figure 5.30. Compare one
of the smaller rectangles to one of the right triangles; do they have the
same area or does one have a larger area than the other?

Initially, the students tried to solve the problem by just looking at
the figure. For example, they reasoned:

“The triangle is bigger because it goes way up.”

“I think they’re the same because the triangle’s taller, but the rec-
tangle’s longer.”

As the students worked on this problem, some were convinced that
they could decide if the areas were equal (or not) by whether or not
they could cut the triangle into a set of haphazard pieces and fit
them on the rectangle so that they cover the space (see fig. 5.31a).
Others thought about how to organize the cutting and pasting by,
for example, cutting the triangle into two pieces to make it into a
rectangle that matches the other rectangles (see fig. 5.31b).

Still others developed ways to reason about the relationships in the
figure without cutting and pasting. For example: “We folded each
paper in half and each paper was the same size to begin with, so the
half that’s a rectangle is the same as the half that’s a triangle.”

At this grade level, many students are just beginning to develop an
idea about what constitutes a convincing argument. The first solution—
cutting and pasting in a disorganized way—does not make use of the
properties of the two shapes and therefore may not convince the student
doing the cutting and pasting or other students that the areas are equal.
The second solution takes into consideration geometric relationships
between the particular triangle and rectangle and therefore may be more
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convincing. The third solution is the beginning of a logical analysis of
the relationships among the shapes—that halves of equal areas must be
equal to each other.

Students in grades 3—5 should frequently make conjectures about
mathematical relationships, investigate those conjectures, and make
mathematical arguments that are based on their work. They need to
know that posing conjectures and trying to justify them is an expected
part of students’ mathematical activity. Justification will have a range of
meanings for students in grades 3-5, but as they progress through these
grades and have more experiences with making mathematical argu-
ments, they should increasingly base their arguments on an analysis of
properties, structures, and relationships.

Sometimes students’ conjectures about mathematical properties and
relationships will turn out to be wrong. Part of mathematical reasoning
is examining and trying to understand why something that looks and
seems as if it might be true is not and to begin to use counterexamples in
this context. Coming up with ideas that turn out not to be true is part of
the endeavor. These “wrong” ideas often are opportunities for important
mathematical discussions and discoveries. For example, a student might
propose that if both the numerator and denominator of a fraction are
larger than the numerator and denominator, respectively, of another
fraction, then the first fraction must be larger. This rule works in com-
paring 3/4 with 1/2 or 6/4 with 2/3. However, when thinking about this
conjecture more carefully, students will find counterexamples—for
example, 3/4 is not larger than 2/2 and 2/6 is smaller than 1/2.

What should be the teacher’s role in developing
reasoning and proof in grades 3 through 5?

In order for mathematical experiences such as those described in this
section to happen frequently, the teacher must establish the expectation
that the class as a mathematical community is continually developing,
testing, and applying conjectures about mathematical relationships. In
the episode in Ms. Taylor’s third-grade classroom, where students ex-
plored the effects of multiplying by 2 and by 2 again, the teacher looked
for an opportunity to go beyond finding the solution to an individual
problem to focus on more-general mathematical structures and rela-
tionships. In this way, she helped her students recognize reasoning as a
central part of mathematical activity.

Part of the teacher’ role in making reasoning central is to make all
students responsible both for articulating their own reasoning and for
working hard to understand the reasoning of others, as shown in the fol-
lowing episode, drawn from unpublished classroom observation notes.

In a fourth-grade classroom, the students were ordering fractions. To
begin this activity, the teacher had asked them to identify fractions
that are more than 1/2 and less than 1. After the students talked in

pairs, the teacher asked how they were choosing their fractions:

Patrize: We were talking about how you could get it, and if you
make the top number, the numerator, higher than a half of
the denominator, but you don’t make it the same as the
denominator like 5/5 ’cause then it will be a whole.

Standards for Grades 3-5: Reasoning and Proof

Posing conjectures and
trying to justify them is
an expected part of
students’ mathematical

Activity.
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Teachers should look
for opportunities for
students to revise,
expand, and update
generalizations they

have made.

Teacher: It sounds like you have a conjecture. Can someone else
explain it?
Fustin: Like if you have 3/4, half of 4 is 2, so you want the number
higher than 2 but not 4.

By routinely questioning students in this way, the teacher is establishing
the expectation that students listen carefully to one another’s ideas and
try to understand them.

The teacher should continually remind students of conjectures and
mathematical arguments that they have developed as part of the shared
classroom experience and that can be applied to further work. Teachers
should look for opportunities for students to revise, expand, and update
generalizations they have made as they develop new mathematical skills
and knowledge. Matt’s idea about tripling in Ms. Taylor’s third-grade
class could provide the basis for students to reason about a larger class
of problems. Even students who seem to have developed a clear argu-
ment about a mathematical relationship need to be questioned and
challenged when they are ready to encounter new aspects of the rela-
tionship. For example, a class of third graders had spent a great deal of
time working with arrays in their study of multiplication. As a group,
they were very sure that multiplication was commutative, and they
could demonstrate this property using an area model. In the fourth
grade, they began encountering larger numbers; when the teacher no-
ticed that some students were using commutativity, she asked the class
what they knew about it. At first they seemed certain that multiplication
is commutative in all cases, but when she pressed, “But would it work
for any numbers? How about 43 279 times 6 892?” they lost their con-
fidence. They could no longer use physical models to show commuta-
tivity with such large numbers, and they needed further work to de-
velop mental images and mathematical arguments based on what they
had learned from the physical models. It is likely that these students
will also need to revisit commutativity when they study computation
with fractions and decimals.

The teacher will also have to make decisions about which conjectures
are mathematically significant for students to pursue. To do this, the
teacher must take into account the skills, needs, and understandings of
the students and the mathematical goals for the class.
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Communication

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Organize and consolidate their
mathematical thinking through
communication

Communicate their mathematical
thinking coherently and clearly to
peers, teachers, and others

Analyze and evaluate the mathe-
matical thinking and strategies of
others

Use the language of mathematics
to express mathematical ideas
precisely

O

E-example 5.1 kg

Communication through Games
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Grades

3—0

The ability to read, write, listen, think, and communicate about prob-
lems will develop and deepen students’ understanding of mathematics.
In grades 3-5, students should use communication as a tool for under-
standing and generating solution strategies. Their writing should be
more coherent than in earlier grades, and their increasing mathematical
vocabulary can be used along with everyday language to explain con-
cepts. Depending on the purpose for writing, such as taking notes or
writing to explain an answer, students’ descriptions of problem-solving
strategies and reasoning should become more detailed and coherent.

In grades 3-5, students should become more adept at learning from,
and working with, others. Their communication can consist not only of
conversations between student and teacher or one student and another
student but also of students listening to a number of peers and joining
group discussions in order to clarify, question, and extend conjectures.
In classroom discussions, students should become the audience for one
another’s comments. This involves speaking to one another in order to
convince or question peers. The discourse should not be a goal in itself
but rather should be focused on making sense of mathematical ideas and
using them effectively in modeling and solving problems. The value of
mathematical discussions is determined by whether students are learning
as they participate in them (Lampert and Cobb forthcoming).

What should communication look like in grades 3
through 57

In a grades 3-5 classroom, communication should include sharing
thinking, asking questions, and explaining and justifying ideas. It should
be well integrated in the classroom environment. Students should be
encouraged to express and write about their mathematical conjectures,
questions, and solutions. For example, after preparatory work in deci-
mals, a fifth-grade teacher engaged her students in the following prob-
lem in order to help them think about and develop methods for adding
decimals (episode adapted from Schifter, Bastable, and Russell [1999,
pp- 114-20]).

Pretend you are a jeweler. Sometimes people come in to get rings resized.
When you cut down a ring to make it smaller, you keep the small portion
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of gold in exchange for the work you have done. Recently you have col-
lected these amounts:

1.14g .089 g g

Now you have a repair job to do for which you need some gold. You are
wondering if you have enough. Work together with your group to figure
out how much gold you have collected. Be prepared to show the class your
solution. (P. 114)

In this activity, the teacher presented the students with a problem-
solving situation. Although they had worked with representing deci-
mals, they had not discussed adding them. As was customary in the
class, the students were expected to talk with their peers to solve the
problem and to share their results and thinking with the class. The
students used communication as a natural and essential part of the
problem-solving process. As the groups worked, the teacher circulated
among the students:

Nikki: We could line the numbers up on the right like you do
with other numbers.

Ned: Maybe we should line up the decimals, but I don’t know
why we would do that.

Teacher: 1 think you’re suggesting that you might line this prob-
lem up differently from the way you line up whole-
number addition. Is that right?

Ned: (Nods.)

Teacher: Why do you line whole numbers up the way you do?
What’s the reason for it?

Ned: T don’t know. It’s just the way you do it. That’s how we
learned to do it.

Malik: 1 think it would help if we drew a picture, like of the
[base-ten] blocks. Maybe we could figure it out then.
(P. 114)

The teacher moved to another group where the students had repre-
sented their problem as shown in figure 5.32.

Teacher: What happened to the decimal numbers?

Faron: We just decided to drop the decimals and add the num-
bers like usual. That way we could line them up on the
right and add. We left the zero in there, but you can
just leave it out since it doesn’t mean anything.

Teacher: Do you all agree?
Fobanna &
Ferry: Yes.
Teacher: Are you saying, then, that if you start out with 1 and 14

hundredths grams of gold and some other little bits that
it adds up to 206 grams of gold? (P. 115)

Listening carefully to the discussions, the teacher rephrased Ned’s
suggestion in order to make sure she had accurately captured his think-
ing, to help him focus on the important mathematical concepts, and to
guide him in considering how this problem is related to those more

Standards for Grades 3-5: Communication

Fig. 5.32.

Jaron’s group’ incorrect solution to
1.14g+.089g+3¢g

/
087
+ 3
206

195

=z
c
3
(o
(0]
=
R0
(@)
ie)
[¢)
=
)
=
[*]
3
(2]
=
«Q
[0
o
=
[V)
(@)
®
[e]
=
o
(=
<
=
[0]
o
(7]
(=
=
(1)
=
1)
=}
-
O
Q
=4
(V)
>
3
)
<
o8
(/2]
Ro
o
=
o
o
()
o
=
<
o
=
()
(=
(1)
=
w
o
=
3
«Q
Pl
[]
o
[72]
[e]
3,
3
«Q
R0
o
=
(]
[e]
=4
(]
o
3
3
(=
3,
(2]
(V]
=5
o
=)
(<
[e)
3
3
(1]
(2]
(=7
[¢]
3
(]
X
0]
T
=
o
[72]
o
=}
=4
(]
(=4
[¢]
3




(2]
[ =
o
=
©
S
(]
[o
(@)
o3
)
(]
Q0
=
3
=
©
1
Q2
(V]
o
<
>
S
=
(]
£
(]
(]
O
-
[=
(]
£
()]
S
3
n
©
(]
=
>
=
e}
©
Q
(o]
S
o
o3
A
n
>
©
[ =
<
©
8
©
a)
(o]
£
=
(o}
n
=
o
Ko
o
<
a1
Y
o
o
S
a
o3
[o)]
£
[ =
(]
0
©
[]
o
[ =
S
=
©
.Q
c
=)
£
£
o
(&)
(]
(=
S
e
[$)
(4]
(=
=
o}
(3]
(=
9
=
]
©
(=
(]
(]
(]
S
Q
(4]
o

Fig. 5.33.

Rob’s group’s solution to
1.14g+.089g+3¢g

familiar to him. Ned’s response gave her important assessment informa-
tion about whether he understood his method for adding whole num-
bers. Although he was able to use an algorithm to add whole numbers,
he lacked an understanding of the concepts behind the procedure and
therefore was unsure if or how it could be used or adapted for this new
purpose.

In talking with Jaron’s group, the teacher asked a question that led stu-
dents to think about the reasonableness of their response by considering it
in relation to its real-world context. The realization that their response
didn’t make sense caused the students to revisit the problem. In this par-
ticular instance, the teacher chose to let students work through their con-
fusion. The teacher’s decisions about what to say or not say, what to ask or
not ask, were based on her observations of the students and their conver-
sations. For example, What strategies were they using? Were misconcep-
tions being challenged? Her goal was to nudge the students to reflect on
their answer and to do further mathematical reasoning.

After the groups finished their work, the class as a whole had a dis-
cussion. Rob reported that the students in his group represented
the problem as shown in figure 5.33 (p. 116).

Ned immediately asked why they had decided to line up the num-
bers that way, and Rob responded that the group thought they
needed to line up the tenths with the tenths and the hundredths
with the hundredths to “make it come out right.” Jaron speculated
that it was possible to drop the zero in .089, since “it doesn’t stand
for anything.” Teresa jumped in the conversation by stating, “You
can’t just drop that zero. It has to be there or you get 89 hundredths
instead of 89 thousandths, and they’re not the same at all.” Malik
continued to push for a model, but he was stumped. “If I had the
flats be one whole, then the rods are tenths and the units are hun-
dredths, but I don’t know how to draw the thousandths except as
dots. Then I can’t really tell what’s going on.” Another student,
Ben, suggested that the block be one whole, so a flat could be
tenths, the rod could be hundredths, and the unit could be thou-
sandths. He and several other students drew and presented a picture
to illustrate their thinking (see fig. 5.34).

Fig. 5.34.

Ben’s group’s solution to
1.14g+.089g+.3¢g
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Malik paid close attention during Ben’s explanation, nodding that he
understood. Teresa was also interested in the explanation, noting the
significance of how zero was represented. After this presentation, the

Principles and Standards for School Mathematics



students wrote in their journals, explaining what they thought was
a correct procedure for adding the numbers. Many mentioned
that the demonstration had made it clear that tenths had to be
added to tenths and hundredths to hundredths for the right an-
swer. Some made up new problems and made drawings of the
base-ten model.

Because discussion of thinking was a regular occurrence in this class-
room, students were comfortable describing their thinking, even if their
ideas were different from the ideas of their peers. Besides focusing on
their own thinking, students also attempted to understand the thinking
of others and in some cases to relate it to their own. Ned, who earlier
had been unable to articulate why he lined up whole numbers in a par-
ticular way when he added, questioned Rob about why his group had
lined up the numbers the way they did. Ned was taking responsibility
for his learning by asking questions about a concept that wasn’t quite
clear to him. Ben thought about Malik’s dilemma and came up with a
solution that became clear to Malik.

The use of models and pictures provides a further opportunity for
understanding and conversation. Having a concrete referent helps stu-
dents develop understandings that are clearer and more easily shared
(Hiebert et al. 1997). The talk that preceded, accompanied, and fol-
lowed Ben’s presentation gave meaning to the base-ten model. Malik
had been “stuck” by viewing the model in one way until Ben showed
him another way to look at it.

Throughout the lesson, the interactions among students were neces-
sary in helping them make sense of what they were doing. Because
there was time to talk, write, model, and draw pictures, as well as occa-
sions for work in small groups, large groups, and as individuals, stu-
dents who worked best in different ways all had opportunities to learn.

What should be the teacher’s role in developing
communication in grades 3 through 5%

With appropriate support and a classroom environment where com-
munication about mathematics is expected, teachers can work to build
the capacity of students to think, reason, solve complex problems, and
communicate mathematically. This involves creating classroom envi-
ronments in which intellectual risks and sense making are expected.
"Teachers must also routinely provide students with rich problems cen-
tered on the important mathematical ideas in the curriculum so that
students are working with situations worthy of their conversation and
thought. In daily lessons, teachers must make on-the-spot decisions
about which points of the mathematical conversation to pick up on and
which to let go, and when to let students struggle with an issue and
when to give direction. For example, the teacher in the episode above
chose to let one group of students struggle with the fact that their an-
swer was unreasonable. Teachers must refine their listening, question-
ing, and paraphrasing techniques, both to direct the flow of mathemati-
cal learning and to provide models for student dialogue. Well-posed
questions can simultaneously elicit, extend, and challenge students’
thinking and at the same time give the teacher an opportunity to assess
the students’ understanding.

Standards for Grades 3-5: Communication

Teachers may need to
explicitly discuss
students’ effective and
ineffective
COTMINUNICALION

strategies.
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Teachers must belp
students acquire

mathematical Zanguﬂge.
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Periodically, teachers may need to explicitly discuss students’ effec-
tive and ineffective communication strategies. Teachers can model
questioning and explaining, for example, and then point out and explain
those techniques to their students. They can also highlight examples of
good communication among students. (“I noticed that Karen and Malia
disagreed on an answer. They not only explained their reasoning to
each other very carefully, but they listened to one another. Each under-
stood the other’s reasoning. It was hard, but eventually, they realized
that one way made more sense than the other.”)

Teachers need to help students learn to ask questions when they
disagree or do not understand a classmate’s reasoning. It is important
that students understand that the focus is not on who is right or
wrong but rather on whether an answer makes sense and can be justi-
fied. Students need to learn that mathematical arguments are logical
and connected to mathematical relationships. When making a con-
cept or strategy clear to a peer, the student-explainer is forced to re-
examine and thus deepen his or her mathematical understanding. In
settings where communication strategies are taught, modeled, and
expected, students will eventually begin to adopt listening, para-
phrasing, and questioning techniques in their own mathematical
conversations.

Teachers must help students acquire mathematical language to de-
scribe objects and relationships. For example, as students use informal
language such as “the corner-to-corner lines” to describe the diagonals
of a rectangle, the teacher should point out the mathematical term given
to these lines. Specialized vocabulary is much more meaningful if it is in-
troduced in an appropriate context. Teachers in grades 3—5 should look
for, and take advantage of, such opportunities to introduce mathematical
terms. In this way, words such as equation, variable, perpendicular, product,
and factor should become part of students’ normal vocabulary.

Teachers also need to provide students with assistance in writing
about mathematical concepts. They should expect students’ writing to
be correct, complete, coherent, and clear. Especially in the beginning,

Principles and Standards for School Mathematics



teachers need to send writing back for revision. Students will also need
opportunities to check the clarity of their work with peers. Initially,
when they have difficulty knowing what to write about in mathematics
class, the teacher might ask them to use words, drawings, and symbols
to explain a particular mathematical idea. For example, students could
write about how they know that 1/2 is greater than 2/5 and show at
least three different ways to justify this conclusion. To help students
write about their reasoning processes, the teacher can pose a problem-
solving activity and later ask, “What have you done so far to solve this
problem, what decisions did you make, and why did you make those de-
cisions?” As students respond, the teacher can explain, “This is exactly
what I'd like you to tell me in your writing.”

Having students compare and analyze different pieces of their work
is another way to convey expectations and help them understand what
complete and incomplete responses look like. For example, students
were asked to use pictures and words to explain their thinking for the
following question (Kouba, Zawojewski, and Strutchens 1997, p. 119):

José ate 1/2 of a pizza.
Ella ate 1/2 of another pizza.

José said that he ate more pizza than Ella, but Ella said they both ate the
same amount. Use words and pictures to show that José could be right.

Students’ responses reflected different levels of understanding (see
the examples in fig. 5.35). The first student assumed that each pizza was
the same size. Although the student used words and drawings in the
response, the answer was correct only if the units were the same, an
assumption that cannot be made from the statement of the problem.
The second student suggested by the drawing that the size of 1/2 de-
pends on the size of the unit. The teacher might ask this student to ex-
plain his or her thinking. The third solution, including written words
and drawings, was correct and complete in that it communicated why
José could be correct. Discussion of various student responses, espe-
cially as mathematical concepts and problems become more complex, is
an effective way to help students continue to improve their ability to

Fig. 5.35.

Students’ responses to the “pizza”
problem (Dossey, Mullis, and Jones
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Connections

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize and use connections
among mathematical ideas

Understand how mathematical
ideas interconnect and build on one
another to produce a coherent
whole

Recognize and apply mathematics
in contexts outside of mathematics

200

Grades

3—0

Students in grades 3-5 study a considerable amount of new mathe-
matical content, and their ability to understand and manage these new
ideas will rest, in part, on how well the ideas are connected. Connecting
mathematical ideas includes linking new ideas to related ideas consid-
ered previously. These connections help students see mathematics as a
unified body of knowledge rather than as a set of complex and disjoint
concepts, procedures, and processes.

What should connections look like in grades 3
through 57?

"Two big ideas that recur throughout the study of mathematics in
grades 3-5 were elaborated on in the introduction at the beginning of the
chapter: equivalence and multiplicative reasoning. Each should receive
major emphasis at this level, in part because each is connected to so many
topics studied in grades 3-5. For example, students learn that a fraction
has an equivalent decimal representation, that the area of a right triangle
is equal to half of the area of a related rectangle, that 150 centimeters is
the same as 1.5 meters, and that the likelihood of getting heads when
flipping a coin is the same as the likelihood of rolling an even number on
a number cube. Some equivalences are not obvious to students and thus
prompt further exploration to understand “why.” As equivalence contin-
ues to emerge in the study of different mathematical content areas, it fos-
ters a sense of unity and connectedness in the study of mathematics.
Likewise, as students solve problems as diverse as counting the possible
combinations of shirts and shorts in a wardrobe and measuring the area
of a rectangle, they begin to see and use a similar multiplicative structure
in both situations. Their work in developing computational algorithms
highlights properties of multiplication that they can model geometrically,
reason about, and express in general terms. Thus, multiplicative struc-
tures connect ideas from number, algebra, and geometry. Equivalence
and multiplicative reasoning help students see that mathematics is not a
set of isolated topics but rather a web of closely connected ideas.

Real-world contexts provide opportunities for students to connect
what they are learning to their own environment. Students’ experiences
at home, at school, and in their community provide contexts for worth-
while mathematical tasks. For example, ideas of position and direction

Principles and Standards for School Mathematics



such as those used in walking from one place to another can be used to
develop the geometric idea of using coordinates to describe a location.
In a fourth-grade class, students could make a map on a coordinate sys-
tem of the various routes they use to walk to school. With the map, they
could determine and compare the distances traveled. Everyday experi-
ences can also be the source of data. In a fifth-grade classroom, students
may want to investigate questions about after-school activities. How
many students participate in such activities? What are the activities?
How frequently do they participate? Is the level of participation consis-
tent across the year? Is there a way to describe the class on the basis of
their activities? Encouraging students to ask questions and to use mathe-
matical approaches to find answers helps them see the value of mathe-
matics and also motivates them to study new mathematical ideas.

There are connections within mathematics, and mathematics is also
connected to, and used within, other disciplines. Building on these con-
nections provides opportunities to enrich the learning in both areas.
For example, in a social studies unit, a fifth-grade class might discuss
the population and area of selected states. They can investigate which
states are most and least crowded. By using almanacs, Web-based data-
bases, and maps, they can collect data and construct charts to summa-
rize the information. Once the information is collected, they will need
to determine how to consider both area and population in order to
judge crowdedness. Such discussions could lead to an informal consid-
eration of population density and land use.

In grades 3-5, students should be developing the important processes
needed for scientific inquiry and for mathematical problem solving—
inferring, measuring, communicating, classifying, and predicting. The
kinds of investigations that enable students to build these processes
often include significant mathematics as well as science. It is important
that teachers stimulate discussion about both the mathematics and the
science ideas that emerge from the investigations, whether they occur
in a science lesson or a mathematics lesson. For example, students
might study the evaporation of liquid from an open container. How
does the volume of liquid in the container change over time? From
which type of jar does 100 cubic centimeters of water evaporate faster—
one with a large opening or one with a small opening? Figure 5.36
(Goldberg 1997, p. 2) shows the results of an experiment to examine
this question. The table shows the volume of water in each jar over a
five-day period. Is there a pattern in the data? If so, what are some ways
to describe the pattern? How many days will it take for all the water in
jar 1 to evaporate? A discussion about why the water evaporates faster
from a wider container and what might happen if certain conditions are
altered—for example, if a fan is left blowing on the containers—inte-
grates concepts of both mathematics and science.

The development of mathematical ideas and the use of mathematics
in other disciplines are intertwined. At times, new ideas develop in a
purely mathematical context and are applied to other situations. At
other times, new mathematics arises out of situations in other disci-
plines or in real-world contexts. Mathematical investigations that are
drawn strictly from the realm of mathematics are also appropriate and
important. The value of a mathematical task is not dependent on
whether it has a real-world context but rather on whether it addresses
important mathematics, is intellectually engaging, and is solvable using

Standards for Grades 3-5: Connections

The value of a

mathematical task is not
dependent on whether it

has a real-world context.
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tools the learner has or can draw on. The use of similar mathematics
within different contexts gives students an appreciation of the power of
mathematics and its generality. As stated in a National Research Coun-

cil report (1996, p. 105):

Students at all grade levels and in every domain of science should
have the opportunity to use scientific inquiry and develop the abil-
ity to think and act in ways associated with inquiry, including asking
questions, planning and conducting investigations, using appropri-
ate tools and techniques to gather data, thinking critically and logi-
cally about relationships between evidence and explanations, con-
structing and analyzing alternative explanations, and
communicating scientific arguments.

What should be the teacher’s role in developing

connections in grades 3 through 5?

Teachers should select tasks that help students explore and develop
increasingly sophisticated mathematical ideas. They should ask ques-
tions that encourage and challenge students to explain new ideas and
develop new strategies based on mathematics they already know. For
example, asking students to describe two ways they can estimate the
cost of twelve notebooks can prompt different strategies. Figure 5.37
illustrates two strategies that might emerge—a rounding strategy and
another strategy based on proportionality, a new idea that will receive
considerable attention in later grades.

Principles and Standards for School Mathematics




Estimate the cost of 12 notebooks

"Teachers should help students explore and describe mathematical
connections and ensure that they see mathematical ideas in a variety of
contexts and models. For example, as students explain their strategies
for estimating the cost of the twelve notebooks, the teacher should
point out how the second strategy relates to multiplication and how it
can be modeled using a fractional representation (e.g., 2 for $1 means
12 for $6, or 2/1 = 12/6).

"Teachers should encourage students to look for mathematical ideas
throughout the school day. For example, geometry can play an important
role in art, data should have a prominent role in social studies discussions,
and communication and problem solving should be integrated with lan-
guage arts. Scientific contexts can be especially productive for exploring
and using mathematics. Mathematics and science have a long history of
close ties, and many mathematical notions arose from scientific problems.
"Teachers should build on everyday experiences to encourage the study of
mathematical ideas through systematic, quantitative investigations of
phenomena that students can experience directly. These may include ap-
plications as varied as studying the relationship between the arm span and
height of students, investigating the strength of a particular brand of
paper towel, or studying the volume and surface area of different cereal
boxes.

At times, opportunities for mathematical investigations arise sponta-
neously in class. For example, after a fifth-grade class spent some time
learning about environmental issues, a question arose as to whether the
water fountain was an efficient way of getting water to students. The
class formulated a plan to respond to the question. This included esti-
mating how much water the fountain released during a “typical” turn at
the fountain and how much water was actually consumed. In a situation
like this, the teacher plays an important role in helping students under-
stand and think about the scientific and mathematical topics that this
investigation evokes.

Standards for Grades 3-5: Connections

Fig. 5.37.

"Two estimation strategies—one
using rounding and the other based
on proportionality

At times, opportunities
for mathematical
Investigations arise

spontaneously in class.
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Buildin g 07 conmnec tions Although the teacher’s role includes being alert and responsive to un-
. expected opportunities, it is also important that teachers plan ahead to
can make mathematics a integrate mathematics into other subject areas and experiences that stu-

hall . . dents will have during the year. Consider, for example, the following
havenging, engaging, episode, adapted from Russell, Schifter, and Bastable (1999).

and exc‘itiﬂg domain Of Ms. Watson’s fourth grade runs a snack shop for two weeks every
school year to pay for a trip to meet the class’s pen pals in a neigh-
S tud_)’ boring state. Since the students run the whole project, from plan-

ning what to sell to recording sales and reordering stock, Ms. Wat-
son uses this project as an opportunity for students to develop and
use mathematical ideas. It is clear that a great deal of estimation and
calculation takes place naturally as part of the project: projecting
what will be needed for the trip, making change, keeping records of
expenses, calculating income, and so forth. This year Ms. Watson
decided to extend some of the ideas her students had encountered
about collecting and describing data through their work on this
project.

At the beginning of the project, she gave the class a list of twenty-
one items, available at a local warehouse club, that she and the prin-
cipal had approved as possible sale items. The students needed to
decide which of these products they would sell and how they would
allocate the $100 provided for their start-up costs to buy certain
quantities of those products. They had limited time to make these
decisions, and the class engaged in a lively discussion about how
best to find out which of the snack items were most popular among
the students in the school. Some students insisted that they would
need to survey all classes in order to get “the correct information.”
If they surveyed only some students, this group contended, then
“we won’t give everyone a chance, so we won’t know about some-
thing that maybe only one person likes.” Others argued that survey-
ing one or two classes at each grade level would provide enough of
an idea of what students across the grades like and would result in a
set of data they could collect and organize more efficiently. As they
talked, the teacher reminded them of the purpose of their survey:
“Will our business fail if we don’t have everyone’s favorite?” The
class eventually decided to survey one class at each grade. Even the
students who had worried that a sample would not give them com-
plete information had become convinced that this procedure would
give them enough information to make good choices about which
snacks to buy.

The students went on to design their survey—which raised new
issues—and to collect, organize, and use the data to develop their
budget. Once they had their data, another intense discussion ensued
about how to use the information to guide their choices on how to
stock their snack shop. They eventually chose to buy the two top
choices in each category (they had classified the snacks into four
categories), and since that didn’t use up their budget, they ordered
additional quantities of the overall top two snacks.

Ms. Watson used this realistic context to help her students see how
decisions about designing data investigations are tied to the purpose or
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the problem being addressed. The real restrictions of time and re-
sources made it natural for the students to consider how a sample can
be selected to represent a population, and they were able to interpret
their data in light of the decisions they needed to make.

Ultimately, connections within mathematics, connections between
mathematics and everyday experience, and connections between mathe-
matics and other disciplines can support learning. Building on the con-
nections can also make mathematics a challenging, engaging, and excit-
ing domain of study.

Standards for Grades 3-5: Connections 205
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Representation

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Create and use representations to
organize, record, and communicate
mathematical ideas

Select, apply, and translate among
mathematical representations to
solve problems

Use representations to model and
interpret physical, social, and
mathematical phenomena

206

Grades

3—0

In grades 3-5, students need to develop and use a variety of repre-
sentations of mathematical ideas to model problem situations, to inves-
tigate mathematical relationships, and to justify or disprove conjectures.
They should use informal representations, such as drawings, to high-
light various features of problems; they should use physical models to
represent and understand ideas such as multiplication and place value.
They should also learn to use equations, charts, and graphs to model
and solve problems. These representations serve as tools for thinking
about and solving problems. They also help students communicate
their thinking to others. Students in these grades will use both external
models—ones that they can build, change, and inspect—as well as
mental images.

What should representation look like in grades 3-57

Students in grades 3—5 should continue to develop the habit of repre-
senting problems and ideas to support and extend their reasoning. Such
representations help to portray, clarify, or extend a mathematical idea
by focusing on essential features. Students represent ideas when they
create a table of data about weather patterns, when they describe in
words or with a picture the important features of an object such as a
cylinder, or when they translate aspects of a problem into an equation.
Good representations fulfill a dual role: they are tools for thinking and
instruments for communicating. Consider the following problem:

What happens to the area of a rectangle if the lengths of its sides are
doubled?

Students who represent the problem in some way are more likely to
see important relationships than those who consider the problem with-
out a representation. One student’ initial response to the problem was
that the new rectangle would be twice the size of the first rectangle.
Her thinking might have stopped there, but another student questioned
her answer, prompting her to think more deeply. She decided she
needed a picture to help her think about the problem. Her drawing (see
fig. 5.38) helped her consider the complexity of the problem more care-
fully and showed her that the new rectangle is not only bigger but that
it is four times bigger than the original rectangle. It was also a way to
show her answer and to justify it to others.

Principles and Standards for School Mathematics
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Students will have learned about, and begun to use, many symbolic
and graphical representations (e.g., numerals, equals sign, and bar
graphs) in the primary grades. In grades 3-5, students should create
representations that are more detailed and accurate than is expected in
the primary grades. Their repertoire of symbols, tools, and conven-
tional notation should expand and be clearly connected to concepts as
they are explored. For example, in representing algebraic and numerical
relationships, students should become comfortable using equations and
understanding the equals sign as a balance point in the equation. Many
students who have only seen equations with an arithmetic expression on
the left side of the equation and a call for the numerical answer on the
right side, such as 6 x 30 =[_], don’t understand that equations may
have several symbols on each side, asin2 x5 x6=3 x4 x 5.

Students in grades 3—5 should also become familiar with technological
tools such as dynamic geometry software and spreadsheets. They should
learn to set up a simple spreadsheet (see fig. 5.39) and use it to pose and
solve problems, examine data, and investigate patterns. For example, a
fourth-grade class could keep track of the daily temperature and other
features of the weather for the whole year and consider questions such as
these: What month is coldest? What would we tell a visitor to expect for
weather in October? After two months, they might find that they are
having difficulty managing and ordering the quantity of data they have
collected. By entering the data in a spreadsheet, they can easily see and
select the data they want, compare certain columns, or graph particular
aspects of the data. They can conveniently find the median temperature
for February or calculate the total amount of rainfall for April. In January,
if the class notices that temperature alone is no longer giving them
enough information, they can add a column for wind chill to get a more
accurate summary of the weather they are experiencing.

Learning to interpret, use, and construct useful representations
needs careful and deliberate attention in the classroom. Teaching formus
of representation (e.g., graphs or equations) as ends in themselves is not
productive. Rather, representations should be portrayed as useful tools

Standards for Grades 3-5: Representation

Fig. 5.38.

A student’s representation of the re-
sults of doubling the lengths of the
sides of a rectangle

O
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Linking Spreadsheets and Graphing
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Fig. 5.39.

A simple spreadsheet can be used to
organize and examine data, pose
and solve problems, and investigate
patterns.

A B C D E |

1| JANUARY

2

3 Date High Temperature Precipitation Rain or Snow? YWind Chill

4

) 1-Jan 22 20

& 2-Jan 20 5.0" Snow 20

7 3-Jan 23 35" snow 23

8 4-Jan 24 20

9 S-Jan 14 10

10 &-Jan S =S

11 7-Jan 24 20

12 8-Jan 8 0

13 9-Jan & -10

14 10-Jan 9 -5

15 11-Jan 16 10

16 12-Jan 20 20

Fig. 5.40.

An exploration of odd and even num-
bers in the multiplication table

\.\_7‘3: \/l_ eveh
2_*5 = ‘O -rd"k even
\ZX:}— = 2\ 6M
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for building understanding, for communicating information, and for
demonstrating reasoning (Greeno and Hall 1997). Students should be-
come flexible in choosing and creating representations—standard or
nonstandard, physical models or mental images—that fit the purpose at
hand. They should also have many opportunities to consider the advan-
tages and limitations of the various representations they use.

What should be the teacher’s role in developing
representation in grades 3-57

Learning to record or represent thinking in an organized way, both in
solving a problem and in sharing a solution, is an acquired skill for many
students. Teachers can and should emphasize the importance of repre-
senting mathematical ideas in a variety of ways. Modeling this process as
they work through a problem with the class is one way to stimulate stu-
dents to use and analyze representations. Talking through why some rep-
resentations are more effective than others in a particular situation gives
prominence to the process and helps students critique aspects of their
representations. Teachers can strategically choose student representations
that will be fruitful for the whole class to discuss. For example, consider
the following question, which a third-grade class might explore:

Are there more even or odd products in the multiplication table shown in
figure 5.41? Explain why.

Students may initially generate many examples to formulate an an-
swer, as illustrated in figure 5.40. Other students may use the multipli-
cation table to organize their work, as illustrated in figure 5.41. Orga-
nizing the work in this way highlights patterns that support students in
thinking more systematically about the problem.

Each representation reveals a different way of thinking about the
problem. Giving attention to the different methods as well as to the dif-
ferent representations will help students see the power of viewing a
problem from different perspectives. Observing how different students
select and use representations also gives the teacher assessment informa-
tion about what aspects of the problem they notice and how they reason
about the patterns and regularities revealed in their representations.

Principles and Standards for School Mathematics
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As students discuss their ideas and begin to develop conjectures
based on representations of the problem, the teacher might want to
represent the students’ thinking in other ways in order to support and
extend their ideas. For example, when students notice that an even
number multiplied by an even number always produces an even result,
the teacher might record this idea as “even X even = even.” This repre-
sentation serves as a summary of the students’ thinking. It suggests a
way to record the generalization and may prompt students to look for
other generalizations of the same type.

Some students will need explicit help in representing problems. Al-
though in the rectangle problem (fig. 5.38), the student quickly de-
cided on a representation that was effective in showing the important
relationships, many students need support in constructing pictures,
graphs, tables, and other representations. If they have many opportu-
nities for using, developing, comparing, and analyzing a variety of rep-
resentations, students will become competent in selecting what they
need for a particular problem.

As students work with a variety of representations, teachers need to
observe carefully how they understand and use them. Representations
do not “show” the mathematics to the students. Rather, the students
need to work with each representation extensively in many contexts as
well as move between representations in order to understand how they
can use a representation to model mathematical ideas and relationships.

By listening carefully to students’ ideas and helping them select and
organize representations that will show their thinking, teachers can
help students develop the inclination and skills to model problems ef-
tectively, to clarify their own understanding of a problem, and to use
representations to communicate effectively with one another.

Standards for Grades 3-5: Representation

Fig. 5.41.

Using a multiplication table to solve
an “odd and even numbers” problem
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Middle-grades students are drawn toward
mathematics if they find both challenge and

support in the mathematics classroom.

Ambitious expectations in

algebra and geometry
stretch the middle-grades program beyond

a preoccupation with number.



CHAPTER

Standards for
Grades 6-8

Middle-grades students should see mathematics as an exciting, useful,
and creative field of study. As they enter adolescence, students experience
physical, emotional, and intellectual changes that mark the middle grades as
a significant transition point in their lives. During this time, many students
will solidify conceptions about themselves as learners of mathematics—
about their competence, their attitude, and their interest and motivation.
These conceptions will influence how they approach the study of mathe-
matics in later years, which will in turn influence their life opportunities.
Middle-grades students are drawn toward mathematics if they find both
challenge and support in the mathematics classroom. Students acquire an
appreciation for, and develop an understanding of, mathematical ideas if
they have frequent encounters with interesting, challenging problems.

In the middle-grades mathematics classroom, young adolescents should
regularly engage in thoughtful activity tied to their emerging capabilities of
finding and imposing structure, conjecturing and verifying, thinking hypo-
thetically, comprehending cause and effect, and abstracting and generalizing.
In these grades, each student follows his or her own developmental timetable.
Some mature early, and others late. Some progress rapidly, others more
slowly. Thus, every middle-grades teacher faces the challenge of dealing with
many aspects of diversity. Yet students also display some commonalities. For
example, young adolescents are almost universally sensitive to the influence of
their peers. The differences in intellectual development and emotional matu-
rity and the sensitivity of individuals to peer-group perceptions make it espe-
cially important for teachers to create classroom environments in which
clearly established norms support the learning of mathematics by everyone.

An ambitious, focused mathematics program for #// students in the middle
grades is proposed in these Standards. Ambitious expectations are identified
in algebra and geometry that would stretch the middle-grades program be-
yond a preoccupation with number. In recent years, the possibility and ne-
cessity of students’ gaining facility in algebraic thinking have been widely

211



Students should learn
significant amounts of
algebra and geometry

and see them as

interconnected.

212

recognized. Accordingly, these Standards propose a significant amount of
algebra for the middle grades. In addition, there is a need for increased
attention to geometry in these grades. Facility in geometric thinking is
essential to success in the later study of mathematics and also in many sit-
uations that arise outside the mathematics classroom. Moreover, geome-
try is typically the area in which U.S. students perform most poorly on
domestic and international assessments of mathematics proficiency.
Therefore, significantly more geometry is recommended in these Stan-
dards for the middle grades than has been the norm. The recommenda-
tions are ambitious—they call for students to learn many topics in algebra
and geometry and also in other content areas. To guard against fragmen-
tation of the curriculum, therefore, middle-grades mathematics curricu-
lum and instruction must also be focused and integrated.

Specific foci are identified in several content areas. For example, in
number and operations, these Standards propose that students develop a
deep understanding of rational-number concepts, become proficient in
rational-number computation and estimation, and learn to think flexibly
about relationships among fractions, decimals, and percents. This facility
with rational numbers should be developed through experience with
many problems involving a range of topics, such as area, volume, relative
frequency, and probability. In algebra, the focus is on proficiency in rec-
ognizing and working effectively with linear relationships and their cor-
responding representations in tables, graphs, and equations; such profi-
ciency includes competence in solving linear equations. Students can
develop the desired algebraic facility through problems and contexts that
involve linear and nonlinear relationships. Appropriate problem contexts
can be found in many areas of the curriculum, such as using scatterplots
and approximate lines of fit to give meaning to the concept of slope or
noting that the relationship between the side lengths and the perimeters
of similar figures is linear, whereas the relationship between the side
lengths and the areas of similar figures is nonlinear.

Curricular focus and integration are also evident in the proposed em-
phasis on proportionality as an integrative theme in the middle-grades
mathematics program. Facility with proportionality develops through
work in many areas of the curriculum, including ratio and proportion,
percent, similarity, scaling, linear equations, slope, relative-frequency
histograms, and probability. The understanding of proportionality
should also emerge through problem solving and reasoning, and it is
important in connecting mathematical topics and in connecting mathe-
matics and other domains such as science and art.

In the recommendations for middle-grades mathematics outlined
here, students will learn significant amounts of algebra and geometry
throughout grades 6, 7, and 8. Moreover, they will see algebra and
geometry as interconnected with each other and with other content
areas in the curriculum. They will have experience with both the geo-
metric representation of algebraic ideas, such as visual models of alge-
braic identities, and the algebraic representation of geometric ideas, such
as equations for lines represented on coordinate grids. They will see the
value of interpreting both algebraically and geometrically such impor-
tant mathematical ideas as the slope of a line and the Pythagorean rela-
tionship. They also will relate algebraic and geometric ideas to other
topics—for example, when they reason about percents using visual mod-
els or equations or when they represent an approximate line of fit for a

Principles and Standards for School Mathematics



scatterplot both geometrically and algebraically. Students can gain a
deeper understanding of proportionality if it develops along with foun-
dational algebraic ideas such as linear relationships and geometric ideas
such as similarity.

Students’ understanding of foundational algebraic and geometric ideas
should be developed through extended experience over all three years in
the middle grades and across a broad range of mathematics content, in-
cluding statistics, number, and measurement. How these ideas are pack-
aged into courses and what names are given to the resulting arrangement
are far less important than ensuring that students have opportunities to
see and understand the connections among related ideas. This approach
is a challenging alternative to the practice of offering a select group of
middle-grades students a one-year course that focuses narrowly on alge-
bra or geometry. All middle-grades students will benefit from a rich and
integrated treatment of mathematics content. Instruction that segregates
the content of algebra or geometry from that of other areas is education-
ally unwise and mathematically counterproductive.

Principles and Standards for School Mathematics proposes an ambitious
and rich experience for middle-grades students that both prepares them
to use mathematics effectively to deal with quantitative situations in
their lives outside school and lays a solid foundation for their study of
mathematics in high school. Students are expected to learn serious, sub-
stantive mathematics in classrooms in which the emphasis is on
thoughtful engagement and meaningful learning.

For those who make decisions about the design and organization of
middle-grades mathematics education, it would be insufficient simply
to announce new and more-ambitious goals like those suggested here.
School system leaders need to commit to and support steady, long-
term improvement and capacity building to accomplish such goals.
The capacity of schools and middle-grades teachers to provide the
kind of mathematics education envisioned needs to be built. Special at-
tention must be given to the preparation and ongoing professional
support of teachers in the middle grades. Teachers need to develop a
sound knowledge of mathematical ideas and excellent pedagogical
practices and become aware of current research on students’ mathe-
matics learning. Professional development is especially important in
the middle grades because so little attention has been given in most
states and provinces to the special preparation that may be required for
mathematics teachers at these grade levels. Many such teachers hold
elementary school generalist certification, which typically involves lit-
tle specific preparation in mathematics. Yet teachers in the middle
grades need to know much more mathematics than is required in most
elementary school teacher-certification programs. Some middle-grades
mathematics teachers hold secondary school mathematics-specialist
certification. But middle-grades teachers need to know much more
about adolescent development, pedagogical alternatives, and interdis-
ciplinary approaches to teaching than most secondary school teacher-
certification programs require. In order to accomplish the ambitious
goals for the middle grades that are presented here, special teacher-
preparation programs must be developed.

Standards for Grades 6-8: Introduction

Students are expected to
learn serious, substantive
mathematics with an
emphasis on thoughtful
engagement and

meaningful learning.

213




Number and Operations

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand numbers, ways of rep-
resenting numbers, relationships
among numbers, and number
systems

Understand meanings of operations
and how they relate to one another

Compute fluently and make reason-
able estimates

214

Grades

6—8

In grades 6-8 all students should—

» work flexibly with fractions, decimals, and percents to solve problems;

» compare and order fractions, decimals, and percents efficiently and find
their approximate locations on a number line;

* develop meaning for percents greater than 100 and less than 1;

* understand and use ratios and proportions to represent quantitative
relationships;

* develop an understanding of large numbers and recognize and
appropriately use exponential, scientific, and calculator notation;

* use factors, multiples, prime factorization, and relatively prime numbers to
solve problems;

* develop meaning for integers and represent and compare quantities with
them.

* understand the meaning and effects of arithmetic operations with fractions,
decimals, and integers;

* use the associative and commutative properties of addition and
multiplication and the distributive property of multiplication over addition to
simplify computations with integers, fractions, and decimals;

* understand and use the inverse relationships of addition and subtraction,
multiplication and division, and squaring and finding square roots to simplify
computations and solve problems.

* select appropriate methods and tools for computing with fractions and
decimals from among mental computation, estimation, calculators or
computers, and paper and pencil, depending on the situation, and apply the
selected methods;

* develop and analyze algorithms for computing with fractions, decimals, and
integers and develop fluency in their use;

» develop and use strategies to estimate the results of rational-number
computations and judge the reasonableness of the results;

* develop, analyze, and explain methods for solving problems involving
proportions, such as scaling and finding equivalent ratios.

Principles and Standards for School Mathematics



Number and Operations

In grades 6-8, students should deepen their understanding of frac-
tions, decimals, percents, and integers, and they should become profi-
cient in using them to solve problems. By solving problems that re-
quire multiplicative comparisons (e.g., “How many times as many?” or
“How many per?”), students will gain extensive experience with ratios,
rates, and percents, which helps form a solid foundation for their un-
derstanding of, and facility with, proportionality. The study of rational
numbers in the middle grades should build on students’ prior knowl-
edge of whole-number concepts and skills and their encounters with
fractions, decimals, and percents in lower grades and in everyday life.
Students’ facility with rational numbers and proportionality can be de-
veloped in concert with their study of many topics in the middle-
grades curriculum. For example, students can use fractions and deci-
mals to report measurements, to compare survey responses from
samples of unequal size, to express probabilities, to indicate scale fac-
tors for similarity, and to represent constant rate of change in a prob-
lem or slope in a graph of a linear function.

Understand numbers, ways of representing numbers,
relationships among numbers, and number systems

In the middle grades, students should become facile in working
with fractions, decimals, and percents. Teachers can help students
deepen their understanding of rational numbers by presenting prob-
lems, such as those in figure 6.1 that call for flexible thinking. For more
discussion of useful representations for rational numbers, see the “Rep-
resentation” section of this chapter.

a. |If :| is 3/4, draw the c.

fraction strip for 1/2, for 2/3, for

4/3, and for 3/2. Be prepared to

Fig. 6.1.

Problems that require students to

think flexibly about rational numbers

justify your answers.

b. < 1 1 ” Use the drawing above to justify
2 in as many different ways as
Using the points you are given you can that 75% of the square
on the number line above, locate is equal to 3/4 of the square.
1/2, 2 1/2, and 1/4. Be prepared You may reposition the shaded
to justify your answers. squares if you wish.

At the heart of flexibility in working with rational numbers is a solid
understanding of different representations for fractions, decimals, and
percents. In grades 3-5, students should have learned to generate and
recognize equivalent forms of fractions, decimals, and percents, at least
in some simple cases. In the middle grades, students should build on
and extend this experience to become facile in using fractions, decimals,
and percents meaningfully. Students can develop a deep understanding
of rational numbers through experiences with a variety of models, such

Standards for Grades 6—8: Number and Operations
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Fig. 6.2.

A student’s reasoning about the sizes
of rational numbers

2

3

The 7/8 portion is one piece
less than a whole, and so is 2/3.
But the missing piece for 7/8 is
smaller than the missing piece for
2/3. So 7/8 is bigger than 2/3.
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as fraction strips, number lines, 10 x 10 grids, area models, and objects.
These models offer students concrete representations of abstract ideas
and support students’ meaningful use of representations and their flexi-
ble movement among them to solve problems.

As they solve problems in context, students also can consider the
advantages and disadvantages of various representations of quantities.
For example, students should understand not only that 15/100, 3/20,
0.15, and 15 percent are all representations of the same number but
also that these representations may not be equally suitable to use in a
particular context. For example, it is typical to represent a sales dis-
count as 15%, the probability of winning a game as 3/20, a fraction of a
dollar in writing a check as 15/100, and the amount of the 5 percent tax
added to a purchase of $2.98 as $0.15.

In the middle grades, students should expand their repertoire of
meanings, representations, and uses for nonnegative rational numbers.
They should recognize and use fractions not only in the ways they have
in lower grades—as measures, quantities, parts of a whole, locations on
a number line, and indicated divisions—but also in new ways. For ex-
ample, they should encounter problems involving ratios (e.g., 3 adult
chaperones for every 8 students), rates (e.g., scoring a soccer goal on 3
of every 8 penalty kicks), and operators (e.g., multiplying by 3/8 means
generating a number that is 3/8 of the original number). In the middle
grades, students also need to deepen their understanding of decimal
numbers and extend the range of numbers and tasks with which they
work. The foundation of students’ work with decimal numbers must be
an understanding of whole numbers and place value. In grades 3-5, stu-
dents should have learned to think of decimal numbers as a natural ex-
tension of the base-ten place-value system to represent quantities less
than 1. In grades 6-8, they should also understand decimals as fractions
whose denominators are powers of 10. The absence of a solid concep-
tual foundation can greatly hinder students. Without a solid conceptual
foundation, students often think about decimal numbers incorrectly;
they may, for example, think that 3.75 is larger than 3.8 because 75 is
more than 8 (Resnick et al. 1989). Students also need to interpret deci-
mal numbers as they appear on calculator screens, where they may be
truncated or rounded.

In the lower grades, students should have had experience in com-
paring fractions between 0 and 1 in relation to such benchmarks as 0,
1/4,1/2, 3/4, and 1. In the middle grades, students should extend this
experience to tasks in which they order or compare fractions, which
many students find difficult. For example, fewer than one-third of the
thirteen-year-old U.S. students tested in the National Assessment of
Educational Progress (NAEP) in 1988 correctly chose the largest num-
ber from 3/4, 9/16, 5/8, and 2/3 (Kouba, Carpenter, and Swafford
1989). Students’ difficulties with comparison of fractions have also been
documented in more recent NAEP administrations (Kouba, Zawojew-
ski, and Strutchens 1997). Visual images of fractions as fraction strips
should help many students think flexibly in comparing fractions. As
shown in figure 6.2, a student might conclude that 7/8 is greater than
2/3 because each fraction is exactly “one piece” smaller than 1 and the
missing 1/8 piece is smaller than the missing 1/3 piece. Students may
also be helped by thinking about the relative locations of fractions and
decimals on a number line.
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Percents, which can be thought about in ways that combine aspects of
both fractions and decimals, offer students another useful form of rational
number. Percents are particularly useful when comparing fractional parts
of sets or numbers of unequal size, and they are also frequently encoun-
tered in problem-solving situations that arise in everyday life. As with frac-
tions and decimals, conceptual difficulties need to be carefully addressed
in instruction. In particular, percents less than 1 percent and greater than
100 percent are often challenging, and most students are likely to benefit
from frequent encounters with problems involving percents of these mag-
nitudes in order to develop a solid understanding.

Attention to developing flexibility in working with rational numbers
contributes to students’ understanding of, and facility with, proportion-
ality. Facility with proportionality involves much more than setting two
ratios equal and solving for a missing term. It involves recognizing quan-
tities that are related proportionally and using numbers, tables, graphs,
and equations to think about the quantities and their relationship. Pro-
portionality is an important integrative thread that connects many of the
mathematics topics studied in grades 6-8. Students encounter propor-
tionality when they study linear functions of the form y = kx, when they
consider the distance between points on a map drawn to scale and the
actual distance between the corresponding locations in the world, when
they use the relationship between the circumference of a circle and its
diameter, and when they reason about data from a relative-frequency
histogram.

In the middle grades, students should continue to work with whole
numbers in a variety of problem-solving settings. They should develop
a sense of the magnitude of very large numbers (millions and billions)
and become proficient at reading and representing them. For example,
they should recognize and represent 2300 000 000 as 2.3 x 10 in scien-
tific notation and also as 2.3 billion. Contexts in which large numbers
arise naturally are found in other school subjects as well as in everyday
life. For example, a newspaper headline may proclaim, “Clean-Up
Costs from Oil Spill Exceed $2 Billion!” or a science textbook may in-
dicate that the number of red blood cells in the human body is about
1.9 x 10". Students also need to understand various forms of notation
and recognize, for instance, that the number 2.5 x 10" might appear on
a calculator as 2.5E11 or 2.5 11, depending on the make and model of
the machine. Students’ experiences in working with very large numbers
and in using the idea of orders of magnitude will also help build their
facility with proportionality.

Students can also work with whole numbers in their study of num-
ber theory. Tasks, such as the following, involving factors, multiples,
prime numbers, and divisibility, can afford opportunities for problem
solving and reasoning.

1. Explain why the sum of the digits of any multiple of 3 is itself divisible
by 3.

2. A number of the form abcabc always has several prime-number factors.
Which prime numbers are always factors of a number of this form?

Why?

Middle-grades students should also work with integers. In lower
grades, students may have connected negative integers in appropriate
ways to informal knowledge derived from everyday experiences, such as
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Dynamically Linking Area
and Multiplication

Fig. 6.3.

This dynamic area model shows the
effect of multiplying by a number

less than 1.
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below-zero winter temperatures or lost yards on football plays. In the
middle grades, students should extend these initial understandings of
integers. Positive and negative integers should be seen as useful for not-
ing relative changes or values. Students can also appreciate the utility of
negative integers when they work with equations whose solution re-
quires them, such as 2x + 7 = 1.

Understand meanings of operations and how they
relate to one another

In the middle grades, students should continue to refine their under-
standings of addition, subtraction, multiplication, and division as they
use these operations with fractions, decimals, percents, and integers.
Teachers need to be attentive to conceptual obstacles that many stu-
dents encounter as they make the transition from operations with whole
numbers.

Multiplying and dividing fractions and decimals can be challenging
for many students because of problems that are primarily conceptual
rather than procedural. From their experience with whole numbers,
many students appear to develop a belief that “multiplication makes big-
ger and division makes smaller.” When students solve problems in which
they need to decide whether to multiply or divide fractions or decimals,
this belief has negative consequences that have been well researched
(Greer 1992). Also, a mistaken expectation about the magnitude of a
computational result is likely to interfere with students’ making sense of
multiplication and division of fractions or decimals (Graeber and Tanen-
haus 1993). Teachers should check to see if their students harbor this
misconception and then take steps to build their understanding.

Figure 6.3 illustrates how students might use dynamic geometry
software to examine how the product 3 * y is affected by the magnitude
of y for nonnegative y-values. In this illustration, the product is repre-
sented as the area of a 3 x y rectangle. As a student changes the value of
y by dragging a point along the vertical axis, the area of the rectangle
changes. Referring to the area of the 3 x 1 rectangle, students can see
that the area of the 3 x y rectangle is smaller when y is less than 1 and
larger when y is greater than 1. That is, in contrast to the expectation
that multiplication makes bigger, multiplying 3 by a number smaller
than 1 results in a product that is less than 3.

Teachers can help students extend their understanding of addition
and subtraction with whole numbers to decimals by building on a solid
understanding of place value. Students should be able to compute 1.4 +
0.67 by applying their knowledge about 140 + 67 and their under-
standing of the magnitude of the numbers involved in the computa-
tion. Without such a foundation, students may operate with decimal
numbers inappropriately by, say, placing the decimal point in the
wrong place after multiplying or dividing. Teachers can also help stu-
dents add and subtract fractions correctly by helping them develop
meaning for numerator, denominator, and equivalence and by encour-
aging them to use benchmarks and estimation (see fig. 6.4). Students
who have a solid conceptual foundation in fractions should be less
prone to committing computational errors than students who do not
have such a foundation.
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The division of fractions has traditionally been quite vexing for stu-
dents. Although “invert and multiply” has been a staple of conventional
mathematics instruction and although it seems to be a simple way to re-
member how to divide fractions, students have for a long time had diffi-
culty doing so. Some students forget which number is to be inverted,
and others are confused about when it is appropriate to apply the pro-
cedure. A common way of formally justifying the “invert and multiply”
procedure is to use sophisticated arguments involving the manipulation
of algebraic rational expressions—arguments beyond the reach of many
middle-grades students. This process can seem very remote and myste-
rious to many students. Lacking an understanding of the underlying ra-
tionale, many students are therefore unable to repair their errors and
clear up their confusions about division of fractions on their own. An
alternative approach involves helping students understand the division
of fractions by building on what they know about the division of whole
numbers. If students understand the meaning of division as repeated
subtraction, they can recognize that 24 + 6 can be interpreted as “How
many sets of 6 are there in a set of 24?” This view of division can also
be applied to fractions, as seen in figure 6.5. To solve this problem, stu-
dents can visualize repeatedly cutting off 3/4 yard of ribbon. The 5
yards of ribbon would provide enough for 6 complete bows, with a re-
mainder of 2/4, or 1/2, yard of ribbon, which is enough for only 2/3 of
a bow. Carefully sequenced experiences with problems such as these can
help students build an understanding of division of fractions.

Fig. 6.4.

Using benchmarks to estimate the
results of a fraction computation

If 5 yards of ribbon are cut into pieces that are each 3/4 yard long to
make bows, how many bows can be made?

Number of Bows

Fig. 6.5.

Using the idea of division as repeated
subtraction to solve a problem in-
volving fractions

Students’ understanding of operations with fractions, decimals, and
integers can also be enhanced as they examine the validity and utility of
properties of operations, such as the commutative and associative proper-
ties of addition and multiplication, with which they are familiar from their
experiences with whole numbers. These properties can be used to simplify
many computations with fractions, for example, 3 x (4/5 x 2/3) can be ex-
pressed as (3 % 2/3) x 4/5, which makes the calculation easier. The familiar
distributive properties for whole-number operations can also be applied to
fractions, decimals, and integers. Students already know that 3 x 26 can be
computed by decomposing 26 and using the distributive property of mul-
tiplication over addition to get (3 % 20 + 3 x 6); in a similar fashion, they
can compute 3 x 2 1/2 by expressing itas (3 x 2 + 3 x 1/2).

From earlier work with whole numbers, students should be familiar
with the inverse relationship between the operation pairs of addition-
subtraction and multiplication-division. In the middle grades, they can
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continue to apply this relationship as they work with fractions, decimals,
and integers. In the middle grades, students should also add another pair
to their repertoire of inverse operations—squaring and taking square
roots. In grades 6-8, students frequently encounter squares and square
roots when they use the Pythagorean relationship. They can use the in-
verse relationship to determine the approximate location of square roots
between whole numbers on a number line. Figure 6.6 illustrates this rea-

soning for 427 and /99.

Fig. 6.6.

Locating square roots on a
number line

J27 Jo9

N

In grades 6-8,

students should acquire
computational fluency—
the ability to compute
efficiently and
accurately —with
fractions, decimals, and

integers.
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0 1 2 3 4 5 6 7 8 9 10

A
A

ﬁis a little more than 5 because 5° = 25.
@ is a little less than 10 because 10” = 100.

Compute fluently and make reasonable estimates

In grades 6-8, students should acquire computational fluency—the
ability to compute efficiently and accurately—with fractions, decimals,
and integers. Teachers should help students learn how to decide when
an exact answer or an estimate would be more appropriate, how to
choose the computational method that would be best to use, and how
to evaluate the reasonableness of answers to computations. Most calcu-
lations should arise as students solve problems in context. Students
should consider the features of the problem and the likely use of an an-
swer to a calculation in deciding whether an exact answer or an esti-
mate is needed, and then select an appropriate mode of calculation
from among mental calculation, paper-and-pencil methods, or calcula-
tor use. For example, the cost of 1 1/4 pounds of cheese at $2.40 a
pound can be found mentally, whereas the cost of 1.37 pounds of
cheese at $2.95 a pound might be estimated, although a calculator
would probably be the preferred tool if an exact answer were needed.
Students should regularly analyze the answers to their calculations to
evaluate their reasonableness.

Through teacher-orchestrated discussions of problems in context,
students can develop useful methods to compute with fractions, deci-
mals, percents, and integers in ways that make sense. Students’ under-
standing of computation can be enhanced by developing their own
methods and sharing them with one another, explaining why their meth-
ods work and are reasonable to use, and then comparing their methods
with the algorithms traditionally taught in school. In this way, students
can appreciate the power and efficiency of the traditional algorithms and
also connect them to student-invented methods that may sometimes be
less powerful or efficient but are often easier to understand.

Students should also develop and adapt procedures for mental cal-
culation and computational estimation with fractions, decimals, and in-
tegers. Mental computation and estimation are also useful in many cal-
culations involving percents. Because these methods often require
flexibility in moving from one representation to another, they are useful
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in deepening students’ understanding of rational numbers and helping
them think flexibly about these numbers.

Instruction in solving proportions should include methods that
have a strong intuitive basis. The so-called cross-multiplication method
can be developed meaningfully if it arises naturally in students’ work,
but it can also have unfortunate side effects when students do not ade-
quately understand when the method is appropriate to use. Other ap-
proaches to solving proportions are often more intuitive and also quite
powerful. For example, when trying to decide which is the better buy—
12 tickets for $15.00 or 20 tickets for $23.00—students might choose to Fig. 6.7.
use a scaling strategy (finding the cost for a common number of tickets)
or a unit-rate strategy (finding the cost for one ticket). (See fig. 6.7.)

"Two approaches to solving a problem
involving proportions

Which is the better buy—12 tickets for $15.00 or 20 tickets for $23.00?

Scaling Strategy Unit-Rate Strategy
12 tickets for $15.00 - 60 tickets for $75.00. $15.00 for 12 tickets — $1.25 for 1 ticket.
20 tickets for $23.00 — 60 tickets for $69.00. $23.00 for 20 tickets — $1.15 for 1 ticket.

So 20 tickets for $23.00 is the better buy.

As different ways to think about proportions are considered and dis-
cussed, teachers should help students recognize when and how various
ways of reasoning about proportions might be appropriate to solve prob-
lems. Further discussion about ways to approach a contextualized prob-
lem involving a proportional relationship is found in the “Connections”
section of this chapter.
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Algebra

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand patterns, relations, and
functions

Represent and analyze mathemati-
cal situations and structures using

algebraic symbols

Use mathematical models to repre-
sent and understand quantitative
relationships

Analyze change in various contexts
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Grades

6—8

In grades 6-8 all students should—

* represent, analyze, and generalize a variety of patterns with tables, graphs,
words, and, when possible, symbolic rules;

* relate and compare different forms of representation for a relationship;

* identify functions as linear or nonlinear and contrast their properties from
tables, graphs, or equations.

* develop an initial conceptual understanding of different uses of variables;

* explore relationships between symbolic expressions and graphs of lines,
paying particular attention to the meaning of intercept and slope;

* use symbolic algebra to represent situations and to solve problems,
especially those that involve linear relationships;

* recognize and generate equivalent forms for simple algebraic expressions
and solve linear equations.

* model and solve contextualized problems using various representations,
such as graphs, tables, and equations.

* use graphs to analyze the nature of changes in quantities in linear
relationships.
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Algebra

Students in the middle grades should learn algebra both as a set of con-
cepts and competencies tied to the representation of quantitative relation-
ships and as a style of mathematical thinking for formalizing patterns,
functions, and generalizations. In the middle grades, students should work
more frequently with algebraic symbols than in lower grades. It is essential
that they become comfortable in relating symbolic expressions containing
variables to verbal, tabular, and graphical representations of numerical and
quantitative relationships. Students should develop an initial understand-
ing of several different meanings and uses of variables through represent-
ing quantities in a variety of problem situations. They should connect
their experiences with linear functions to their developing understandings
of proportionality, and they should learn to distinguish linear relationships
from nonlinear ones. In the middle grades, students should also learn to
recognize and generate equivalent expressions, solve linear equations, and
use simple formulas. Whenever possible, the teaching and learning of al-
gebra can and should be integrated with other topics in the curriculum.

Understand patterns, relations, and functions

The study of patterns and relationships in the middle grades should
focus on patterns that relate to linear functions, which arise when there
is a constant rate of change. Students should solve problems in which
they use tables, graphs, words, and symbolic expressions to represent
and examine functions and patterns of change. For example, consider
the following problem:

Charles saw advertisements for two cellular telephone companies. Keep-
in-Touch offers phone service for a basic fee of $20.00 a month plus $0.10
for each minute used. ChitChat has no monthly basic fee but charges
$0.45 a minute. Both companies use technology that allows them to
charge for the exact amount of time used; they do not “round up” the time
to the nearest minute, as many of their competitors do. Compare these
two companies’ charges for the time used each month.

Students might begin by making a table, picking convenient num-
bers of minutes, and finding the corresponding costs for the two com-
panies, as shown in figure 6.8a. Using a graphing calculator, students
might then plot the points as ordered pairs (minutes, cost) on the coor-
dinate plane, obtaining a graph for each of the two companies (see fig.
6.8b). Some students might describe the pattern in each graph verbally:
“Keep-in-Touch costs $20.00 and then $0.10 more per minute.” Others
might write an equation to represent the cost (y) in dollars in terms of

Fig. 6.8.

Students can compare the charges
for two telephone companies by
making a table (a) and by represent-
ing the charges on a graphing calcu-
lator (b).

the number of minutes (x), such as y = 20.00 + 0.10x.

Before the students solve the problem, a teacher might ask them to g o @
use their table and graph to focus on important basic issues regarding 4 o o " +

+
+

No. of minutes 0 10 20 30 40 50 60 +

Keep-in-Touch | $20.00 | $21.00 | $22.00 | $23.00 | $24.00 | $25.00 | $26.00 +

ChitChat $0.00 $4.50 $9.00 | $13.50 | $18.00 | $22.50 | $27.00

(@) (b)
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Students should

develop a general
understanding of, and
facility with, slope and
y-intercept and their
manifestations in tables,

graphs, and equations.
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the relationships they represent. By asking, “How much would each
company charge for 25 minutes? For 100 minutes?” the teacher could
find out if students can interpret and extend the patterns. Since the
table identifies only a small number of distinct points, a teacher could
ask why it is legitimate to connect the points on the graph to make a
line. Students might also be asked why one graph (for ChitChat) in-
cludes the origin but the other (for Keep-in-Touch) does not (see fig.
6.8b). Most students will recognize that the ChitChat graph includes
the origin because there is no charge if no calls are made but the Keep-
in-Touch graph includes (0, 20) because the company charges $20.00
even if the telephone is not used.

Many students will naturally seek a formula to express these patterns,
but questions such as the following would be a good catalyst for others:
How can you find the cost for any number of minutes for the Keep-in-
Touch plan? For the ChitChat plan? What aspects of the stated price
schedule are indicated in the graph? How? Students are likely to ob-
serve the constant difference between both the successive entries in the
table and the coordinates of the points for each company along a
straight line. They may explain the pattern underlying the function by
saying, “Whenever you talk for one more minute, you pay $0.10 more
(or $0.45 more), so the points go up the same amount each time.” Oth-
ers might say that a straight line is reasonable because each company
charges a constant amount for each minute. Teachers should encourage
students to explain their observations in their own words. Their expla-
nations will provide the teacher with important insights into the stu-
dents’ thinking, particularly how well they recognize and represent lin-
ear relationships.

A solution to the stated problem requires comparing data from the
two companies. A teacher might want to ask additional questions about
this comparison: Which company is cheaper if you use the telephone
infrequently? If you use it frequently? If you cannot spend more than
$50.00 in a month but you want to talk for as many minutes as possible,
which company would be the better choice? Considering questions
such as these can lay the groundwork for a pivotal question: Is there a
number of minutes that costs the same for both companies? Such ques-
tions could give rise to many observations. For example, most students
will notice in their table that something important happens between 50
and 60 minutes, namely, using ChitChat becomes more expensive than
using Keep-in-Touch. From the graph, some students may observe that
this shift occurs at about 57 minutes: Keep-in-Touch is the cheaper
company when a customer uses more than 57 minutes in a month. Ex-
periences such as this can lay a foundation for solving systems of simul-
taneous equations.

The problem could also easily be extended or adapted in ways that
would draw students’ attention to important characteristics of the line
graph for each company’s charges. For example, to draw attention to
the y-intercept, students could be asked to use a graphing calculator to
examine how the graph would be affected if Keep-in-Touch increased
or decreased its basic fee or if ChitChat decided to begin charging a
basic fee. Students’ attention could be drawn to the slope by asking
them to consider the steepness of the lines using a question such as,
What happens to the graph for Keep-in-Touch if the company in-
creases its cost per minute from $0.10 to $0.15? Through experiences
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such as these, students should develop a general understanding of, and
facility with, slope and y-intercept and their manifestations in tables,
graphs, and equations.

The problem could also easily be extended to nonlinear relation-
ships if, for instance, the companies did not charge proportionally for
portions of minutes used. If they rounded to the nearest minute, then
the cost for each company would be graphed as a step function rather
than a linear function. In another variation, a nonlinear pricing scheme
for a third company could be introduced.

Another important topic for class discussion is comparing and con-
trasting the merits of graphical, tabular, and symbolic representations in
this example. A teacher might ask, “Which helps us see better the point
at which the two companies switch position and Keep-in-Touch be-
comes the more economical—a table or a graph?” “Is it easier to see the
rate per minute from the graph or from the equation?” or “How can
you determine the rate per minute from the table?” Through discus-
sion, students can identify the strengths and the limitations of different
forms of representation. Graphs give a picture of a relationship and
allow the quick recognition of linearity when change is constant. Alge-
braic equations typically offer compact, easily interpreted descriptions
of relationships between variables.

Represent and analyze mathematical situations and
structures using algebraic symbols

Working with variables and equations is an important part of the
middle-grades curriculum. Students’ understanding of variable should
go far beyond simply recognizing that letters can be used to stand for
unknown numbers in equations (Schoenfeld and Arcavi 1988). The fol-
lowing equations illustrate several uses of variable encountered in the
middle grades:

27 =4x +3
1 =¢(1/%)
A=LW
y=3x

The role of variable as “place holder” is illustrated in the first equation:
x is simply taking the place of a specific number that can be found by
solving the equation. The use of variable in denoting a generalized
arithmetic pattern is shown in the second equation; it represents an
identity when 7 takes on any real value except 0. The third equation is a
formula, with A, L, and W representing the area, length, and width, re-
spectively, of a rectangle. The third and fourth equations offer examples
of covariation: in the fourth equation, as x takes on different values, y
also varies.

Most students will need extensive experience in interpreting rela-
tionships among quantities in a variety of problem contexts before they
can work meaningfully with variables and symbolic expressions. An
understanding of the meanings and uses of variables develops gradually
as students create and use symbolic expressions and relate them to ver-
bal, tabular, and graphical representations. Relationships among quanti-
ties can often be expressed symbolically in more than one way, provid-
ing opportunities for students to examine the equivalence of various
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Fig. 6.9.
The Super Chocolates problem

Super Chocolates are arranged in
boxes so that a caramel is placed in
the center of each array of four
chocolates, as shown below. The
dimensions of the box tell you how
many columns and how many rows of
chocolates come in the box. Develop
a method to find the number of
caramels in any box if you know its
dimensions. Explain and justify your
method using words, diagrams, or
expressions.

2%x2

3x5

226

algebraic expressions. Fairly simple equivalences can be involved: the
cost (in dollars) of using Keep-in-Touch can be expressed as y = 0.10x +
20,asy =20+ 0.10x, as 20 + 0.10x = y, and as 0.10x + 20 = y. Complex
symbolic expressions also can be examined, such as the equivalence of
4+ 2L +2W and (L + 2)(W + 2) - LW when representing the number of
unit tiles to be placed along the border of a rectangular pool with
length L units and width 7 units; see the “Representation” section of
this chapter for a discussion of this example.

A problem such as the one in figure 6.9 (adapted from Educational
Development Center, Inc. 1998, p. 41) could give students valuable ex-
perience in deciding whether two expressions are equivalent. A teacher
might encourage students to begin solving this problem by drawing
several more boxes of various sizes so they can look for a pattern. Some
students will probably note that the caramels are also arranged in a rec-
tangular pattern, which is narrower and shorter than the rectangular
arrangement of chocolates. Using this observation, they might report,
“To find the length and width of the caramel rectangle, take 1 off the
length and 1 off the width of the chocolate rectangle. Multiply the
length and width of the caramel rectangle to find the number of
caramels.” If LL and I are the dimensions of the array of chocolates,
and C is the number of caramels, then this generalization could be ex-
pressed symbolically as C = (L — 1)(W - 1). Other students might find
and use the number of chocolates to find the number of caramels. For
example, for a 3 x 5 box of chocolates, they might propose starting with
the 15 chocolates, then taking off 3 because “there is one less column of
caramels” and then taking off 5 “because there is one less row of
caramels.” This could be expressed generally as C = LW - L — W. Al-
though both expressions for the number of caramels are likely to seem
reasonable to many students, they do not yield the same answer. For
the 3 x 5 array, the first produces the correct answer, 8 caramels. The
second gives the answer 7 caramels. Either examining a few more boxes
with different dimensions or reconsidering the process represented by
the second equation would confirm that the second equation needs to
be corrected by adding 1 to obtain C'= LW — L — W + 1. The algebraic
equivalence of (L — 1)(W—-1) and LW — L — W + 1 can be demonstrated
in general using the distributive property of multiplication over sub-
traction.

Through a variety of experiences such as these, students can learn
the strengths and limitations of various methods for checking the equiv-
alence of expressions. In some instances, the equivalence of algebraic ex-
pressions can be demonstrated geometrically; see the “Geometry” sec-
tion of this chapter for a demonstration that (z + 4)* = 2° + 2ab + b*.

Most middle-grades students will need considerable experience with
linear equations before they will be comfortable and fluent in transform-
ing or solving them. Although students will probably acquire facility
with equations at different times during the middle grades, by the end of
grade 8, students should be able to solve equations like 84 — 2x = Sx + 12
for the unknown number, to recognize as identities such equations as 1 =
t(1/t) (when # is not 0), to apply formulas such as = T0-*h, and to recog-
nize that equations such as y = =3x + 10 represent linear functions that
are satisfied by many ordered pairs (x, y). Students should be able to use
equations of the form y = mx + b to represent linear relationships, and
they should know how the values of the slope (#z) and the y-intercept (b)
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affect the line. For example, in the “cellular telephone” problem
discussed earlier, they should recognize that y = 0.10x + 20 and y = 0.45x
are both linear equations, that the graph of the latter will be steeper than
that of the former, and that the former intersects the y-axis at (0, 20)
rather than at the origin.

Students’ facility with symbol manipulation can be enhanced if it is
based on extensive experience with quantities in contexts through
which students develop an initial understanding of the meanings and
uses of variables and an ability to associate symbolic expressions with
problem contexts. Fluency in manipulating symbolic expressions can be
further enhanced if students understand equivalence and are facile with
the order of operations and the distributive, associative, and commuta-
tive properties.

Use mathematical models to represent and understand
quantitative relationships

A major goal in the middle grades is to develop students’ facility
with using patterns and functions to represent, model, and analyze a va-
riety of phenomena and relationships in mathematics problems or in
the real world. With computers and graphing calculators to produce
graphical representations and perform complex calculations, students
can focus on using functions to model patterns of quantitative change.
Students should have frequent experiences in modeling situations with
equations of the form y = kx, such as relating the side lengths and the
perimeters of similar shapes. Opportunities can be found in many other
areas of the curriculum; for example, scatterplots and approximate lines
of fit can model trends in data sets. Students also need opportunities to
model relationships in everyday contexts, such as the “cellular tele-
phone” problem.

Students also should have experience in modeling situations and re-
lationships with nonlinear functions, such as compound-interest prob-
lems, the relationship between the length of the radius of a circle and
the area of the circle, or situations like the one in figure 6.10. If stu-
dents have only a few points to examine, it can be difficult to see that
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Fig. 6.10.

A problem involving a nonlinear
relationship, with an associated table
and graph

With a graphing
calculator or computer
graphing software,
students can test some
conjectures more easily
than with paper-and-
pencil methods.
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Consider rectangles with a fixed area of 36 square units. The width
(W) of the rectangles varies in relation to the length (L) according to
the formula W = 36/L. Make a table showing the widths for all the
possible whole-number lengths for these rectangles up to L = 36.

Solution:
Length | 1 2 3| a4 5 6 7 8 9 |10 ]| 12| ... | 36
width | 36 |18 | 12| 9 |72 | 6 |514| 45| 4 | 36 |327] .. 1

Look at the table and examine the pattern of the difference between
consecutive entries for the length and the width. As the length
increases by 1, the width decreases, but not at a constant rate. What
do you expect the graph of the relationship between L and W to look
like? Will it be a straight line? Why or why not?

Solution:

The graph is not a straight line because the rate of change is not
constant. Instead the graph appears to be a curve that bends sharply
downward and then becomes more level.

40

35

30

25

20

Width

15

10

o 1 2 3 4 5 6 7
Length

the graph for this problem is not linear. As more points are graphed,
however, the curve becomes more apparent. Students could use graph-
ing calculators or computer graphing tools to do problems such as this.
When doing experiments or dealing with real data, students may
encounter “messy data,” for which a line or a curve may not be an exact
fit. They will need experience with such situations and assistance from
the teacher to develop their ability to find a function that fits the data
well enough to be useful as a prediction tool. In their later study of sta-
tistics, students may learn sophisticated methods to determine lines of
best fit for data. In the middle grades when students encounter a set of
points suggesting a linear relationship, they can simply use a ruler to try
several lines until they find one that appears to be a good fit and then
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write an equation for that line. An example of this sort of activity, re-
lated to a scatterplot of measurements, can be found in the “Data
Analysis and Probability” section of this chapter. With a graphing cal-
culator or computer graphing software, students can test some conjec-
tures more easily than with paper-and-pencil methods.

Analyze change in various contexts

In their study of algebra, middle-grades students should encounter
questions that focus on quantities that change. Recall, for example, that
ChitChat charges $0.45 a minute for phone calls. The cost per minute
does not change, but the total cost changes as the telephone is used.
This can be seen quite readily from the two graphs in figure 6.11. The
meaning of the term flat rate can be seen in the cost-per-minute graph,
which shows points along a horizontal line at y = 0.45, representing a
constant rate of $0.45 a minute. The total-cost graph shows points These two graphs represent

along a straight line that includes the origin and has a slope of 0.45. difiomenis nolitonsinps fm ClaiLeics
pricing scheme.

Fig. 6.11.

A A
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5 135 S s135- g
Q [
O  $0.90 1 é $0.90 1 o
$0.45 T 00— 00— 00— —0 —© $0.45 A o
0 1 2 3 45 6 7 8 9 10 01 2 3 456 8 9 10
Number of Minutes Number of Minutes

Students may be confused when they first encounter two different
graphs to represent different relationships in the same situation. Teach-
ers can assist students in understanding what relationships are repre-
sented in the two graphs by asking such questions as these: When the
number of minutes is 4, what do the values of the corresponding point
on each graph represent? When the number of minutes is 82 Why is
the y-value of the cost-per-minute graph constant at 0.45? How much
does the total-cost graph increase from 5 minutes to 6 minutes? Why?
How would each graph change, if at all, if the cost per minute were
changed to $0.20?

A slight modification of the problem, such as the addition of a third
telephone company with a different pricing scheme, can allow the
analysis of change in nonlinear relationships:

Quik-Talk advertises monthly cellular phone service for $0.50 a minute for
the first 60 minutes but only $0.10 a minute for each minute thereafter.
Quik-Talk also charges for the exact amount of time used.
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Fig. 6.12.

These two graphs represent
different relationships in Quik-Talk’s
pricing scheme.

O E-example 6.2K§

Comparing Cost Functions
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A teacher might ask students to graph the rates of change in this exam-
ple. Figure 6.12 shows the cost-per-minute graph and a total-cost graph
for Quik-Talk’s pricing scheme. Students can answer questions about
the relationships represented in the graphs: Why does the cost-per-
minute graph consist of two different line segments? How can we tell
from the graph that the pricing scheme changes after 60 minutes? Why
is part of the total-cost function steeper than the rest of the graph?

Comparing the cost-per-minute graph to the total-cost graph for
phone calls can help students develop a clearer understanding of the re-
lationship between change (cost per minute) and accumulation (total
cost of calls). These concepts are precursors to the later study of change
in calculus.

Students’ examination of graphs of change and graphs of accumula-
tion can be facilitated with specially designed computer software. Such
software allows students to change either the number of minutes used
in one month by dragging a horizontal “slider” (see fig. 6.13) or the
cost per minute by dragging a vertical slider. They can then observe the
corresponding changes in the graphs and in the symbolic expression for
the relationship. Technological tools can also help students examine the
nature of change in many other settings. For example, students could
examine distance-time relationships using computer-based laboratories,
as discussed in the “Measurement” section of this chapter. Such experi-
ences with appropriate technology, supported by careful planning by
teachers and interactions with classmates, can help students develop a
solid understanding of some fundamental notions of change.

Principles and Standards for School Mathematics



$0.50
[
=

$0.40 =
o
o
%
o
O

$0.20

$0.10

Slider for Cost

A

$3.90 A
$3.60 -
$3.30 -
$3.00 -
$2.70 -
$2.40 -
$2.10 -
$1.80 -
$1.50 -
$1.20 -
$0.90 -
$0.60 -
$0.30

Cellular Phone Costs

»

0 1 2 3

T T 14

4 5 6 7 8 9 10

Number of Minutes

Y=x

Total Cost for Calls

A

$3.90 -
$3.60 1
$3.30 1
$3.00 1
$2.70 1
$2.40 -
$2.10 1
$1.80 1
$1.50 1
$1.20 1
$0.90 -
$0.60 -
$0.30 -

(8, $2.40)

»
T T T T T T T d

0 1 2 3 45 6 7 8 9 10

Number of Minutes

1234567910

Slider for Number of Minutes

Standards for Grades 6-8: Algebra

Fig. 6.13.

Computer software can help students
understand some fundamental no-
tions of change.
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(GGeometry

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Analyze characteristics and proper-
ties of two- and three-dimensional
geometric shapes and develop
mathematical arguments about
geometric relationships

Specify locations and describe
spatial relationships using coordinate
geometry and other representational
systems

Apply transformations and use
symmetry to analyze mathematical
situations

Use visualization, spatial reasoning,
and geometric modeling to solve
problems
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Grades

6—8

In grades 6-8 all students should—

* precisely describe, classify, and understand relationships among types of
two- and three-dimensional objects using their defining properties;

* understand relationships among the angles, side lengths, perimeters, areas,
and volumes of similar objects;

* create and critique inductive and deductive arguments concerning
geometric ideas and relationships, such as congruence, similarity, and the
Pythagorean relationship.

* use coordinate geometry to represent and examine the properties of
geometric shapes;

* use coordinate geometry to examine special geometric shapes, such as
regular polygons or those with pairs of parallel or perpendicular sides.

* describe sizes, positions, and orientations of shapes under informal
transformations such as flips, turns, slides, and scaling;

* examine the congruence, similarity, and line or rotational symmetry of
objects using transformations.

» draw geometric objects with specified properties, such as side lengths or
angle measures;

* use two-dimensional representations of three-dimensional objects to
visualize and solve problems such as those involving surface area and
volume;

* use visual tools such as networks to represent and solve problems;

* use geometric models to represent and explain numerical and algebraic
relationships;

* recognize and apply geometric ideas and relationships in areas outside the
mathematics classroom, such as art, science, and everyday life.
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Geometry

Students should come to the study of geometry in the middle grades
with informal knowledge about points, lines, planes, and a variety of
two- and three-dimensional shapes; with experience in visualizing and
drawing lines, angles, triangles, and other polygons; and with intuitive
notions about shapes built from years of interacting with objects in
their daily lives.

In middle-grades geometry programs based on these recommenda-
tions, students investigate relationships by drawing, measuring, visualiz-
ing, comparing, transforming, and classifying geometric objects.
Geometry provides a rich context for the development of mathematical
reasoning, including inductive and deductive reasoning, making and
validating conjectures, and classifying and defining geometric objects.
Many topics treated in the Measurement Standard for the middle
grades are closely connected to students’ study of geometry.

Analyze characteristics and properties of two- and
three-dimensional geometric shapes and develop
mathematical arguments about geometric relationships

Middle-grades students should explore a variety of geometric shapes
and examine their characteristics. Students can conduct these explo-
rations using materials such as geoboards, dot paper, multiple-length
cardboard strips with hinges, and dynamic geometry software to create
two-dimensional shapes.

Students must carefully examine the features of shapes in order to
precisely define and describe fundamental shapes, such as special types
of quadrilaterals, and to identify relationships among the types of
shapes. A teacher might ask students to draw several parallelograms on
a coordinate grid or with dynamic geometry software. Students should
make and record measurements of the sides and angles to observe some
of the characteristic features of each type of parallelogram. They should
then generate definitions for these shapes that are correct and consis-
tent with the commonly used ones and recognize the principal relation-
ships among elements of these parallelograms. A Venn diagram like the
one shown in figure 6.14 might be used to summarize observations that
a square is a special case of a rhombus and rectangle, each of which is a
special case of a parallelogram.

The teacher might also ask students to draw the diagonals of multi-
ple examples of each shape, as shown in figure 6.15, and then measure
the lengths of the diagonals and the angles they form. The results can
be summarized in a table like that in figure 6.16. Students should ob-
serve that the diagonals of these parallelograms bisect each other, which
they might propose as a defining characteristic of a parallelogram.
Moreover, they might observe, the diagonals are perpendicular in
rhombuses (including squares) but not in other parallelograms and the
diagonals are of equal length in rectangles (including squares) but not
in other parallelograms. These observations might suggest other defin-
ing characteristics of special quadrilaterals, for instance, that a square is
a parallelogram with diagonals that are perpendicular and of equal

Standards for Grades 6—8: Geometry

Fig. 6.14.

A diagram showing the relationships
among types of parallelograms

Parallelograms

Rectangles Rhombuses

Fig. 6.15.

Students can draw the diagonals of
parallelograms to make further
observations.

A

233

4
c
3
o
o
=
R0
o
O
(2]
=
0
=
o
3
(2]
=
(e}
(1)
o
=
[
©
o
o
3
0]
o
<
=
1]
[\
(2]
c
=
(1]
3
(0]
3
-
O
0
=3
[
>
3
=L
<
il
(]
R0
0
=
o
o
1Y
=f
=
<
0
=
o
o
(0]
S
wn
o
=
3
(e}
P
(0]
[\
(]
o
=
3
(e}
R0
O
=
o
o
=h
(@)
o
=
3
c
3,
0
Q
(=
o
3
(@)
o
3
3
[0
Q
(=5
o
3
(]
r
(1]
©
=
o
(2]
(1)
3
=3
o
=
o
3




Fig. 6.16. - -
] Do the diagonals Are the diagonals
A table of students’ observations always bisect each | always equal in Are the diagonals
about the properties of the diagonals other? length? always perpendicular?

of special types of quadrilaterals

Parallelograms Yes No No

Rectangles Yes Yes No

Rhombuses Yes No Yes

Squares Yes Yes Yes

length. Using dynamic geometry software, students could explore the
adequacy of this definition by trying to generate a counterexample.

Middle-grades students also need experience in working with con-
gruent and similar shapes. From their earlier work, students should un-
derstand that congruent shapes and angles are identical and can be
“matched” by placing one atop the other. Students can begin with an
intuitive notion of similarity: similar shapes have congruent angles but
not necessarily congruent sides. In the middle grades, they should ex-
tend their understanding of similarity to be more precise, noting, for
instance, that similar shapes “match exactly when magnified or shrunk”
or that their corresponding angles are congruent and their correspond-
ing sides are related by a scale factor.

Students can investigate congruence and similarity in many settings,
including art, architecture, and everyday life. For example, observe the
overlapping pairs of triangles in the design of the kite in figure 6.17.
The overlapping triangles, which have been disassembled in the figure,
can be shown to be similar. Students can measure the angles of the tri-
angles in the kite and see that their corresponding angles are congru-
ent. They can measure the lengths of the sides of the triangles and see
that the differences are not constant but are instead related by a con-
stant scale factor. With the teacher’s guidance, students can thus begin
to develop a more formal definition of similarity in terms of relation-
ships among sides and angles.

Investigations into the properties of, and relationships among, simi-
lar shapes can afford students many opportunities to develop and evalu-
ate conjectures inductively and deductively. For example, an investiga-
tion of the perimeters, areas, and side lengths of the similar and

Fig. 6.17.
Kite formed by overlapping triangles ? i
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congruent triangles in the kite example could reveal relationships and
lead to generalizations. Teachers might encourage students to formulate
conjectures about the ratios of the side lengths, of the perimeters, and
of the areas of the four similar triangles. They might conjecture that
the ratio of the perimeters is the same as the scale factor relating the
side lengths and that the ratio of the areas is the square of that scale fac-
tor. Then students could use dynamic geometry software to test the
conjectures with other examples. Students can formulate deductive ar-
guments about their conjectures. Communicating such reasoning accu-
rately and clearly prepares students for creating and understanding
more-formal proofs in subsequent grades.

Specify locations and describe spatial relationships using
coordinate geometry and other representational systems

Geometric and algebraic representations of problems can be linked
using coordinate geometry. Students could draw on the coordinate plane
examples of the parallelograms discussed previously, examine their char-
acteristic features using coordinates, and then interpret their properties
algebraically. Such an investigation might include finding the slopes of
the lines containing the segments that compose the shapes. From many
examples of these shapes, students could make important observations
about the slopes of parallel lines and perpendicular lines. Figure 6.18
helps to illustrate for one specific rhombus what might be observed in
general: the slopes of parallel lines (in this instance, the opposite sides of
the rhombus) are equal and the slopes of perpendicular lines (in this in-
stance, the diagonals of the rhombus) are negative reciprocals. The
slopes of the diagonals are

and

Apply transformations and use symmetry to analyze
mathematical situations

Transformational geometry offers another lens through which to in-
vestigate and interpret geometric objects. To help them form images of
shapes through different transformations, students can use physical ob-
jects, figures traced on tissue paper, mirrors or other reflective surfaces,
figures drawn on graph paper, and dynamic geometry software. They
should explore the characteristics of flips, turns, and slides and should
investigate relationships among compositions of transformations. These
experiences should help students develop a strong understanding of line
and rotational symmetry, scaling, and properties of polygons.

From their experiences in grades 3-5, students should know that ro-
tations, slides, and flips produce congruent shapes. By exploring the po-
sitions, side lengths, and angle measures of the original and resulting
figures, middle-grades students can gain new insights into congruence.
They could, for example, note that the images resulting from transfor-
mations have different positions and sometimes different orientations

Standards for Grades 6—8: Geometry

0 = E-example 6.3, =—]

Linking Length, Perimeter,

Area, and Volume

Fig. 6.18.

A rhombus drawn on the coordinate

plane

>

(-3, 11)

(11, 19)

(-5,-5)
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Fig. 6.19.

Using dynamic geometry software,
students can explore the results of re-
flections (a) and rotations (b).

[0 = E-example 6.4’(%

Congruence, Similarity, and
Symmetry through Transformations

Fig. 6.20.

Three pairs of congruent shapes

\ 4
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GC =067inches | E
GC'=0.67 inches

A A H |
< “. %! IK=136inches
_____ ) BRI %/ I'K=136inches
B C G C B “so. h\\/ JK=078inches
mO I'KI = 45° ~\\3“,‘ J'K=0.78 inches
m0OJ'KJ=45° K
F m0O H'KH = 45°

(@ (b)

from those of the original figure (the preimage), although they have the
same side lengths and angle measures as the original. Thus congruence
does not depend on position and orientation.

Transformations can become an object of study in their own right.
"Teachers can ask students to visualize and describe the relationship
among lines of reflection, centers of rotation, and the positions of
preimages and images. Using dynamic geometry software, students
might see that each point in a reflection is the same distance from the
line of reflection as the corresponding point in the preimage, as shown
in figure 6.19a. In a rotation, such as the one shown in figure 6.19b,
students might note that the corresponding vertices in the preimage
and image are the same distance from the center of rotation and that
the angles formed by connecting the center of rotation to correspond-
ing pairs of vertices are congruent.

Teachers can pose additional challenges to develop students’ under-
standing of transformations and congruence. For example, given the
three pairs of congruent shapes in figure 6.20, students might be asked
to identify a transformation applied to transform one shape into the
other. Most students who have had extensive experience with transfor-
mations should see that the first pair appears to be related by a reflec-
tion, the second pair by a translation, and the third pair by either a
reflection or a rotation. As students develop a more sophisticated un-
derstanding of transformations, they could be asked to describe the
transformation more exactly, using distance, angles, and headings. The
transformation for the second pair of shapes, for example, is a transla-
tion of 1.5 cm at a 45-degree angle.

"Teachers may also want students to consider what happens when
transformations are composed. For example, the image produced when
a figure is reflected through one line and the resulting image is re-
flected through a different line will be either a translation of the preim-
age if the lines of reflection are parallel or a rotation if they intersect.
To assess students’ understanding of transformations, teachers can give
students two congruent shapes and have them specify a transformation
or a composition of transformations that will map one to the other.
"This can be done using dynamic geometry software.

Transformations can also be used to help students understand similar-
ity and symmetry. Work with magnifications and contractions, called di-
lations, can support students’ developing understanding of similarity. For

Principles and Standards for School Mathematics



example, dilation of a shape affects the length of each side by a constant
scale factor, but it does not affect the orientation or the magnitude of
the angles. In a similar manner, rotations and reflections can help stu-
dents understand symmetry. Students can observe that when a figure
has rotational symmetry, a rotation can be found such that the preim-
age (original shape) exactly matches the image but its vertices map to
different vertices. Looking at line symmetry in certain classes of shapes
can also lead to interesting observations. For example, isosceles trape-
zoids have a line of symmetry containing the midpoints of the parallel
opposite sides (often called bases). Students can observe that the pair of
sides not intersected by the line of symmetry (often called the Jegs) are
congruent, as are the two corresponding pairs of angles. Students can
conclude that the diagonals are the same length, since they can be re-
flected onto each other, and that several pairs of angles related to those
diagonals are also congruent. Further exploration reveals that rectan-
gles and squares also have a line of symmetry containing the midpoints
of a pair of opposite sides (and other lines of symmetry as well) and all
the resulting properties.

Use visualization, spatial reasoning, and geometric
modeling to solve problems

Students’ skills in visualizing and reasoning about spatial relation-
ships are fundamental in geometry. Some students may have difficulty
finding the surface area of three-dimensional shapes using two-dimen-
sional representations because they cannot visualize the unseen faces of
the shapes. Experience with models of three-dimensional shapes and
their two-dimensional “nets” is useful in such visualization (see fig. 6.25
in the “Measurement” section for an example of a net). Students also
need to examine, build, compose, and decompose complex two- and
three-dimensional objects, which they can do with a variety of media,
including paper-and-pencil sketches, geometric models, and dynamic
geometry software. Interpreting or drawing different views of buildings,
such as the base floor plan and front and back views, using dot paper
can be useful in developing visualization. Students should build three-
dimensional objects from two-dimensional representations; draw ob-
jects from a geometric description; and write a description, including its
geometric properties, for a given object.

Students can also benefit from experience with other visual models,
such as networks, to use in analyzing and solving real problems, such as
those concerned with efficiency. To illustrate the utility of networks,
students might consider the problem and the networks given in figure
6.21 (adapted from Roberts [1997, pp. 106-7]). The teacher could ask
students to determine one or several efficient routes that Caroline
might use for the streets on map A, share their solutions with the class,
and describe how they found them. Students should note the start-end
point of each route and the number of different routes that they find.
Students could then find an efficient route for map B. They should
eventually conclude that no routes in map B satisfy the conditions of
the problem. They should discuss why no such route can be found; the
teacher might suggest that students count the number of paths attached
to each node and look at where they “get stuck” in order to better

Standards for Grades 6—8: Geometry

Students’ skills in
visualizing and
reasoning about spatial
relationships are
fundamental in
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Fig. 6.21.

Networks used to solve efficiency
problems

0 = E-example 6.5 =—=]

Exploring the Pythagorean
Relationship

Caroline’s job is to collect money from parking meters. She wants to find
an efficient route that starts and ends at the same place and travels on
each street only once.

A. The streets she has to cover are shown in map A. Find and trace such
a route for her.

B. A new street, shown in map B, may be added to her route. Can you
find an efficient route that includes the new street?

Map A Map B

understand why they reach an impasse. To extend this investigation,
students could look for efficient paths in other situations or they might
change the conditions of the map B problem to find the pathway with
the least backtracking. Such an investigation in the middle grades is a
precursor of later work with Hamiltonian circuits, a foundation for
work with sophisticated networks.

Visual demonstrations can help students analyze and explain mathe-
matical relationships. Eighth graders should be familiar with one of the
many visual demonstrations of the Pythagorean relationship—the dia-
gram showing three squares attached to the sides of a right triangle.
Students could replicate some of the other visual demonstrations of the
relationship using dynamic geometry software or paper-cutting proce-
dures, and then discuss the associated reasoning.

Geometric models are also useful in representing other algebraic re-
lationships, such as identities. For example, the visual demonstrations
of the identity (# + b)* = 4* + 2ab + b* in figure 6.22 makes it easy to re-
member. A teacher might begin by asking students to draw a square
with side lengths (2 + 5). Students could then partition the square as
shown in fig. 6.22a, calculate the area of each section, and finally rep-
resent the total area. Students could then apply this approach to the

Fig. 6.22.

Geometric representation demonstrat-
ing the identity (# + b)* = 4* + 2ab + b’

238

2 5 a b

(2+5)%=2-2+2-5+2:-5+5-5 (a+b’=a-a+a-b+a-b+b-b
=4+10+10+25 = a’+2ab+ b?
=49
(@) (b)
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general case of a square with sides of length (# + /), as shown in figure
6.22b, which demonstrates the identity (# + b)’ = 4° + 2ab + b’

Many investigations in middle-grades geometry can be connected to
other school subjects. Nature, art, and the sciences provide opportuni-
ties for the observation and the subsequent exploration of geometry
concepts and patterns as well as for appreciating and understanding the
beauty and utility of geometry. For example, the study in nature or art
of golden rectangles (i.e., rectangles in which the ratio of the lengths is
the golden ratio, (1 ++/5 )/2) or the study of the relationship between
the rigidity of triangles and their use in construction helps students see
and appreciate the importance of geometry in our world.

Standards for Grades 6-8: Geometry 239
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Measurement

Grades

Instructional programs from
prekindergarten through grade 12 —
should enable all students to—

In grades 6-8 all students should—

Understand measurable attributes * understand both metric and customary systems of measurement;
of objects and the units, systems, « understand relationships among units and convert from one unit to another
and processes of measurement within the same system;

* understand, select, and use units of appropriate size and type to measure
angles, perimeter, area, surface area, and volume.

Apply appropriate techniques, * use common benchmarks to select appropriate methods for estimating
tools, and formulas to determine measurements;
measurements * select and apply techniques and tools to accurately find length, area,

volume, and angle measures to appropriate levels of precision;

* develop and use formulas to determine the circumference of circles and the
area of triangles, parallelograms, trapezoids, and circles and develop
strategies to find the area of more-complex shapes;

* develop strategies to determine the surface area and volume of selected
prisms, pyramids, and cylinders;

* solve problems involving scale factors, using ratio and proportion;

* solve simple problems involving rates and derived measurements for such
attributes as velocity and density.

240 Principles and Standards for School Mathematics



Measurement

Students bring to the middle grades many years of diverse experi-
ences with measurement from prior classroom instruction and from
using measurement in their everyday lives. In the middle grades, stu-
dents should build on their formal and informal experiences with mea-
surable attributes like length, area, and volume; with units of measure-
ment; and with systems of measurement.

Important aspects of measurement in the middle grades include
choosing and using compatible units for the attributes being measured,
estimating measurements, selecting appropriate units and scales on the
basis of the precision desired, and solving problems involving the
perimeter and area of two-dimensional shapes and the surface area and
volume of three-dimensional objects. Students should also become pro-
ficient at measuring angles and using ratio and proportion to solve
problems involving scaling, similarity, and derived measures.

Measurement concepts and skills can be developed and used
throughout the school year rather than treated exclusively as a separate
unit of study. Many measurement topics are closely related to what stu-
dents learn in geometry. In particular, the Measurement and Geometry
Standards span several important middle-grades topics, such as similar-
ity, perimeter, area, volume, and classifications of shape that depend on
side lengths or angle measures. Measurement is also tied to ideas and
skills in number, algebra, and data analysis in such topics as the metric
system of measurement, distance-velocity-time relationships, and data
collected by direct or indirect measurement. Finally, many measure-
ment concepts and skills can be both learned and applied in students’
study of science in the middle grades.

Understand measurable attributes of objects and the
units, systems, and processes of measurement

From earlier instruction in school and life experience outside school,
middle-grades students know that measurement is a process that assigns
numerical values to spatial and physical attributes such as length. Stu-
dents have some familiarity with metric and customary units, especially
for length. For example, they should know some common equivalences
within these systems, such as 100 centimeters equals 1 meter and 36
inches equals 3 feet, which equals 1 yard. In the middle grades they
should become proficient in converting measurements to different units
within a system, recognizing new equivalences, such as 1 square yard
equals 9 square feet and 1 cubic meter equals 1000000 cubic centime-
ters. Work in the metric system ties nicely to students’ emerging under-
standing of, and proficiency in, decimal computation and the use of sci-
entific notation to express large numbers. When moving between the
metric and customary systems, students are likely to find approximate
equivalents—a quart is a little less than a liter and a yard is a little less
than a meter—both useful and memorable.

Students in grades 6-8 should become proficient in selecting the ap-
propriate size and type of unit for a given measurement situation. They
should know that it makes sense to use liters rather than milliliters
when determining the amount of refreshments for the school dance but

Standards for Grades 6—8: Measurement

Measurement concepts
and skills can be
developed and used
throughout the school
year rather than treated
exclusively as a separate

unit of study.
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that milliliters may be quite appropriate when measuring a small
amount of a liquid for a science experiment.

In the middle grades, students expand their experiences with measure-
ment. Although students may have developed an initial understanding of
area and volume, many will need additional experiences in measuring di-
rectly to deepen their understanding of the area of two-dimensional
shapes and the surface area and volume of three-dimensional objects.
Even in the middle grades, some measurement of area and volume by ac-
tually covering shapes and filling objects can be worthwhile for many stu-
dents. Through such experiences, teachers can help students clarify con-
cepts associated with these topics. For example, many students experience
some confusion about why square units are always used to measure area
and cubic units to measure volume, especially when the shapes or objects
being measured are not squares or cubes. If they move rapidly to using
formulas without an adequate conceptual foundation in area and volume,
many students could have underlying confusions such as these that would
interfere with their working meaningfully with measurements.

Frequent experiences in measuring surface area and volume can also
help students develop sound understandings of the relationships among
attributes and of the units appropriate for measuring them. For exam-
ple, some students may hold the misconception that if the volume of a
three-dimensional shape is known, then its surface area can be deter-
mined. This misunderstanding appears to come from an incorrect over-
generalization of the very special relationship that exists for a cube: If
the volume of a cube is known, then its surface area can be uniquely de-
termined. For example, if the volume of a cube is 64 cubic units, then
its surface area is 96 square units. But this relationship is not true for
rectangular prisms or for other three-dimensional objects in general. To
address and correct this misunderstanding, a teacher can have students
use a fixed number of stacking cubes to build different rectangular
prisms and then record the corresponding surface area of each arrange-
ment. Because the number of cubes is the same, the volume is identical
for all, but the surface area varies. Although a single counterexample is

Principles and Standards for School Mathematics



sufficient to demonstrate mathematically that volume does not deter-
mine surface area, one example may not dispel the misconception for all
students. Some students will benefit from repeating this activity with
several different fixed volumes. Students can reap an additional benefit
from this activity by considering how the shapes of rectangular prisms
with a fixed volume are related to their surface areas. By observing pat-
terns in the tables they construct for different fixed volumes, students
can note that prisms of a given volume that are cubelike (i.e., whose lin-
ear dimensions are nearly equal) tend to have less surface area than
those that are less cubelike. Experiences such as this contribute to a
general understanding of the relationship between shape and size, ex-
tend students’ earlier work in patterns of variation in the perimeters
and areas of rectangles, and lay a foundation for a further examination
of surface area and volume in calculus.

Apply appropriate techniques, tools, and formulas to
determine measurements

When students measure an object, the result should make sense; esti-
mates and benchmarks can help students recognize when a measure-
ment is reasonable. Students can use their sense of the size of common
units to estimate measurements; for example, the height of the class-
room door is about two meters, it takes about ten minutes to walk from
the middle school to the high school, or the textbook weighs about two
pounds. They should also be able to use commonly understood bench-
marks to estimate large measurements; for instance, the distance be-
tween the middle school and the high school is about the length of ten
football fields.

Students should become proficient in composing and decomposing
two- and three-dimensional shapes in order to find the lengths, areas,
and volumes of various complex objects. In addition, they should de-
velop an understanding of different angle relationships and be proficient
in measuring angles. Toward this end, they should learn to use a protrac-
tor to measure angles directly. Just as lower-grades students need help
learning to use a ruler to measure length, so middle-grades students also
need help with the mechanics of using a protractor—aligning it properly
with the vertex and sides of the angle to be measured and reading the
correct size of the angle on the scale. Students who have had experience
in determining and using benchmark angles are less likely to misread a
protractor. Estimating that an angle is less than 90 degrees should pre-
vent a student from misreading a measurement of 150 degrees for a 30-
degree angle. Students can develop a repertoire of benchmark angles, in-
cluding right angles, straight angles, and 45-degree angles. They should
be able to offer reasonable estimates for the measurement of any angle
between 0 degrees and 180 degrees. Checking the reasonableness of a
measurement should be a part of the process.

In the middle grades, students should also develop an understanding of
precision and measurement error. By examining and discussing how ob-
jects are measured and how the results are expressed, teachers can help
their students understand that a measurement is precise only to one-half
of the smallest unit used in the measurement. That is, when students say
that the length of a book, to the nearest quarter inch, is 12 1/4 inches,

Standards for Grades 6—8: Measurement

Students who have had
experience in
determining and using
benchmark angles are
less likely to misread a

protractor.
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they should be aware that the measurement could be off by 1/8 inch.
Thus, the absolute error in the measurement is +1/8 inch in this instance.
Similarly, if they use a protractor to measure angles to the nearest degree,
they will be precise within 1/2 degree.

An understanding of the concepts of perimeter, area, and volume is
initiated in lower grades and extended and deepened in grades 6-8.
Whenever possible, students should develop formulas and procedures
meaningfully through investigation rather than memorize them. Even
formulas that are difficult to justify rigorously in the middle grades,
such as that for the area of a circle, should be treated in ways that help
students develop an intuitive sense of their reasonableness.

One particularly accessible and rich domain for such investigation is
areas of parallelograms, triangles, and trapezoids. Students can develop
formulas for these shapes using what they have previously learned about
how to find the area of a rectangle, along with an understanding that
decomposing a shape and rearranging its component parts without
overlapping does not affect the area of the shape. For example, figure
6.23 illustrates how students could use their knowledge of the area of a
rectangle to generate formulas for the area of a parallelogram and a tri-
angle. Once students develop these formulas, they can also generate a
formula for the area of a trapezoid. A teacher might have students begin
working with isosceles trapezoids and then try to generalize their for-
mula for any trapezoid. As suggested in figure 6.24, students can use
what they know about rectangles, parallelograms, and triangles in sev-
eral different ways. They might decompose an isosceles trapezoid into
two triangles and a rectangle and rearrange these shapes to form a rec-
tangle, or they might duplicate the trapezoid and arrange the two
shapes to form a parallelogram.

Fig. 6.23.

Students can use their knowledge of
the area of a rectangle to generate a
formula for the area of a parallelogram
(a) and for the area of a triangle (b).

@) (b)

Fig. 6.24.

An isosceles trapezoid can be decom-
posed and rearranged or duplicated
in order to find a formula for its area.
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Students in the middle grades should also develop formulas for the
surface areas and volumes of three-dimensional objects. Teachers can
help students develop formulas for the volumes of prisms, pyramids, and
cylinders and for the surface areas of right prisms and cylinders by hav-
ing them construct models, measure the dimensions, estimate the areas
and volumes, and look for patterns and relationships related to lengths,
areas, and volumes. In their work with three-dimensional objects, stu-
dents can make use of what they know about two-dimensional shapes.
For example, they can relate the surface area of a three-dimensional ob-
ject to the area of its two-dimensional net. Students might determine
the surface area of a cylinder by determining the area of its net (the
two-dimensional figure produced by cutting the cylinder and laying it
flat), which consists of a rectangle and two circles (see fig. 6.25). Thus,
students can develop a formula for the surface area of a cylinder be-
cause they can find the areas of the circles and the rectangle that com-
pose its net.

It is important that middle-grades students understand similarity,
which is closely related to their more general understanding of propor-
tionality and to the idea of correspondence. Students can use measure-
ment to explore the meaning of similarity and later to apply the con-
cept to solve problems. The important observation that the
measurements of the corresponding angles of similar shapes are equal
is often a starting point for work with similarity. Measurement is also
useful for determining the relationships between the side lengths and
the perimeters and areas of similar shapes and the surface areas and
volumes of similar objects. Students need to understand that the
perimeters of pairs of similar shapes are proportional to their corre-
sponding side lengths but that their areas are proportional to the
squares of the corresponding side lengths. Similarly, through investiga-
tion they should recognize that the surface areas of similar objects are
proportional to the squares of the lengths of their corresponding sides
but that their volumes are proportional to the cubes of those lengths.

Problems that involve constructing or interpreting scale drawings
offer students opportunities to use and increase their knowledge of sim-
ilarity, ratio, and proportionality. Such problems can be created from
many sources, such as maps, blueprints, science, and even literature.
For example, in Gulliver’s Travels, a novel by Jonathan Swift, many pas-
sages suggest problems related to scaling, similarity, and proportional-
ity. Another interesting springboard for such problems is “One Inch
Tall,” a poem by Shel Silverstein (1974) (see fig. 6.26).

Standards for Grades 6—8: Measurement

Fig. 6.25.

Students can determine the surface
area of a cylinder by determining the
area of its net.

245

4
c
3
o
o
=
R0
o
T
()
=
0
=
o
3
(2]
=
(]
()
o
=
[
Q)
o
o
3
0]
o
<
=
®
[
(0]
c
=
o
3
]
=]
=
O
0
=3
[
>
3
=L
<
il
(]
R0
0
=
o
o
1Y
=f
=
<
0
=
o
o
(0]
S
wn
o
=
3
(]
P
(0]
[\
(]
o
3,
3
(o]
R0
O
=
o
o
=h
(@)
o
=
3
c
3,
0
Q
=
o
3
(@)
o
3
3
[0
Q
(=
o
3
(]
r
(1]
T
=
o
(2]
o
3
=3
o
=
o
=]




n
[=
S
2
©
S
[}
o
o
L]
)
Q
Q
£
=)
=
©
1
Q
(V)
o
<
>
S
2
[}
£
o
Q
(O]
-
c
Q
£
(5]
S
3
n
©
()
s
>
5=
3
©
o)
o
S
o
L]
@
n
>
©
[=
<
(2]
o
]
o
[o)]
£
=
(e}
(7]
£
o
Q
(e}
S
o
S
o
o
S
o
C.]
(o))
£
c
o
n
©
[}
o
c
o
2
o
o
(=
3
£
£
o
(&)
0
[ =
o
2
[$]
(4)
[=
[ =
[e]
(&)
=
o
2
©
I
[=
Q
(7]
()
S
[}
[J)
o

Fig. 6.26

“One Inch Tall,” by Shel Silverstein
(1974). Used with permission.
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ONE IncH TaLL

If you were only one inch tall, you’d ride a worm to school.
The teardrop of a crying ant would be your swimming pool.
A crumb of cake would be a feast

And last you seven days at least,

A flea would be a frightening beast

If you were one inch tall.

If you were only one inch tall, you’d walk beneath the door,
And it would take about a month to get down to the store.
A bit of fluff would be your bed,

You’d swing upon a spider’s thread,

And wear a thimble on your head

If you were one inch tall.

You’d surf across the kitchen sink upon a stick of gum.

You couldn’t hug your mama, you’d just have to hug her thumb.
You’d run from people’s feet in fright,

To move a pen would take all night,

(This poem took fourteen years to write—

’Cause I'm just one inch tall).

—Shel Silverstein

In connection with the poem, a teacher could pose a problem like the
following:

Use ratios and proportions to help you decide whether the statements in

Shel Silverstein’s poem are plausible. Imagine that you are the person de-

scribed in the poem, and assume that all your body parts changed in pro-

portion to the change in your height. Choose one of the following to in-

vestigate and write a complete report of your investigation, including

details of any measurements you made or calculations you performed:

¢ In the poem the author says that you could ride a worm to school. Is this
statement plausible? Would it be true that you could ride a worm if you
were 1 inch tall? Use the fact that common earthworms are about 5
inches long with diameters of about 1/4 inch.

¢ In the poem the author says that you could wear a thimble on your head.
Would this be true if you were only 1 inch tall? Use one of the thimbles
in the activity box to help you decide.

"To solve this problem, students need to use proportionality to imag-
ine a scale model of a student shrunk to a height of 1 inch. They need
to consider the resulting circumference of a student’s head or the result-
ing length of a student’s legs in relation to the diameter of a cross sec-
tion of a worm. Because middle-grades students’ heights vary greatly,
scale factors will vary greatly within a class, which can generate a lively
discussion. A student who is 4 feet 8 inches tall would use a 56:1 ratio as
a scale factor; in contrast, a student who is 5 feet tall would use a scale
factor based on a 60:1 ratio. After discussing this problem and pointing
out that an author can legitimately use poetic license to create images

Principles and Standards for School Mathematics



that do not conform to reality, a teacher might extend the investigation
by asking students to evaluate the plausibility of other statements in the
poem that intrigue them. Alternatively, a teacher might select a state-
ment, for example, “And it would take about a month to get down to
the store,” which refers to a rate given as a distance-time relationship.
Students could use a stopwatch and a tape measure to get distance-time
readings for a typical student. They could then determine how far away
the store would need to be in order for the assertion to be plausible,
given a proportional change in the rate of walking for a student shrunk
to 1 inch.

Students should also have opportunities to consider other kinds of
rates, such as monetary exchange rates, which can afford practice with
decimal computation and experience with ratios and rates expressed as
single numbers. Experience with cost-per-item rates are also valuable;
see the examples in the “Problem Solving” and “Algebra” sections in
this chapter.

Teachers can use technological tools such as computer-based labora-
tories (CBLs) to expand the set of measurement experiences, especially
those involving rates and derived measures, and to relate measurement
to other topics in the curriculum. For example, using the CBL to mea-
sure a student’s distance from an object as she walks away from or to-
ward it and plotting the corresponding points on a distance-time graph
can be very instructive. Different paths generate different graphs. Dif-
ferent start-end points and variations in speed can also affect the graphs.
Students could generate many such graphs with specific kinds of varia-
tion and then discuss the graphs to help them relate this experience to
their developing understandings of linear relationships, proportionality,
and slopes and rates of change. Questions such as the following might be

useful:

* For which graphs does the relationship between distance and time
appear to be linear? For which is the relationship nonlinear? Why?

* For the graphs that depict a linear relationship, how does the speed
at which the person walks appear to affect the graph? Why?

® Which graphs portray a proportional relationship between distance
and time? Are there any graphs that depict proportional relation-
ships that are not also linear? Are there any that depict linear rela-
tionships that are not also proportional? Why?

* Would it be possible to generate a distance-time graph that depicts
a relationship that is linear but not proportional? That is propor-
tional but not linear? Why?

A teacher can use such experiences, whether in the mathematics class
or in collaboration with a science teacher, not only to enrich students’
understanding of topics in measurement but also to provide a spring-
board for the study of data representation and analysis.

Standards for Grades 6—8: Measurement
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Data Analysis and Probability

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Formulate questions that can be
addressed with data and collect,
organize, and display relevant data
to answer them

Select and use appropriate statisti-
cal methods to analyze data

Develop and evaluate inferences
and predictions that are based on
data

Understand and apply basic
concepts of probability

248

Grades

6—8

In grades 6-8 all students should—

formulate questions, design studies, and collect data about a characteristic
shared by two populations or different characteristics within one population;

select, create, and use appropriate graphical representations of data,
including histograms, box plots, and scatterplots.

find, use, and interpret measures of center and spread, including mean and
interquartile range;

discuss and understand the correspondence between data sets and their
graphical representations, especially histograms, stem-and-leaf plots, box
plots, and scatterplots.

use observations about differences between two or more samples to make
conjectures about the populations from which the samples were taken;
make conjectures about possible relationships between two characteristics
of a sample on the basis of scatterplots of the data and approximate lines
of fit;

use conjectures to formulate new questions and plan new studies to
answer them.

understand and use appropriate terminology to describe complementary
and mutually exclusive events;

use proportionality and a basic understanding of probability to make and
test conjectures about the results of experiments and simulations;

compute probabilities for simple compound events, using such methods as
organized lists, tree diagrams, and area models.

Principles and Standards for School Mathematics



Data Analysis and Probability

Prior to the middle grades, students should have had experiences col-
lecting, organizing, and representing sets of data. They should be facile
both with representational tools (such as tables, line plots, bar graphs,
and line graphs) and with measures of center and spread (such as me-
dian, mode, and range). They should have had experience in using
some methods of analyzing information and answering questions, typi-
cally about a single population.

In grades 6-8, teachers should build on this base of experience to help
students answer more-complex questions, such as those concerning rela-
tionships among populations or samples and those about relationships
between two variables within one population or sample. Toward this
end, new representations should be added to the students’ repertoire.
Box plots, for example, allow students to compare two or more samples,
such as the heights of students in two different classes. Scatterplots allow
students to study related pairs of characteristics in one sample, such as
height versus arm span among students in one class. In addition, stu-
dents can use and further develop their emerging understanding of pro-
portionality in various aspects of their study of data and statistics.

Formulate questions that can be addressed with data and
collect, organize, and display relevant data to answer them

Middle-grades students should formulate questions and design experi-
ments or surveys to collect relevant data so that they can compare char-
acteristics within a population or between populations. For example, a
teacher might ask students to examine how various design characteristics
of a paper airplane—such as its length or the number of paper clips at-
tached to its nose—affect the distance it travels and its consistency of
flight. Students would then plan experiments in which they collect data
that would allow them to compare the effects of particular design fea-
tures. In addition to helping students design their experiments logically,
the teacher should help them consider other factors that might affect the
data, such as wind or inconsistencies in launching the planes.

Because laboratory experiments involving data collection are part of
the middle-grades science curriculum, mathematics teachers may find it
useful to collaborate with science teachers so that they are consistent in
their design of experiments. Such collaboration could be extended so
that students might collect the data for an experiment in science class
and analyze it in mathematics class.

In addition to collecting their own data, students should learn to find
relevant data in other resources, such as Web sites or print publications.
Consumer Reports, for example, regularly compares the characteristics of
various products, such as the quality of peanut butter; the longevity of
rechargeable batteries; or the cost, size, and fuel efficiency of automo-
biles. When using data from other sources, students need to determine
which data are appropriate for their needs, understand how the data
were gathered, and consider limitations that could affect interpretation.

Middle-grades students should learn to use absolute- and relative-
frequency bar graphs and histograms to represent the data they collect
and to decide which form of representation is appropriate for different

Standards for Grades 6—8: Data Analysis and Probability

Middle-grades students
should formulate
questions and design

experiments or Surveys

to collect relevant data.
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Fig. 6.27.

A relative-frequency histogram for
data for a paper airplane with one

paper clip

50%

purposes. For example, suppose students were considering the follow-
ing question:

40%

Compare the distance traveled by a paper airplane constructed using one
paper clip with the distance traveled by a plane that is built with two paper

0, . . .
30% clips. Which one travels farther when thrown indoors?

In an experiment conducted to answer this question, one student
might throw one of the airplanes forty times while team members mea-
sure and record the distance traveled each time. The group might later
do the same for the other paper airplane. The teacher might then have
the students use a relative-frequency histogram to represent the data, as
shown in figure 6.27. For comparison, the teacher might suggest that
students display both sets of data using box plots, as in figure 6.28.

20%

Relative Frequency

10%

15 18 21 24 27 30 a3 | oOelect and use appropriate statistical methods to
Distance Traveled in Feet analyze data

In the middle grades, students should learn to use the mean, and con-
Fig. 6.28. tinue to use the median and the mode, to describe the center of a set of
Box plots for the paper airplane data data. Although the mean often quickly becomes the method of choice

Airplane with
one paper clip ~

Airplane with
two paper clips

(—/l,-f], } } } } } } } } } } } } } } } } } } } >
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Distance Traveled in Feet
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for students when summarizing a data set, their knack for computing the
mean does not necessarily correspond to a solid understanding of its
meaning or purpose (McClain 1999). Students need to understand that
the mean “evens out” or “balances” a set of data and that the median
identifies the “middle” of a data set. They should compare the utility of
the mean and the median as measures of center for different data sets. As
several authors have noted (e.g., Uccellini [1996]; Konold [forthcom-
ing]), students often fail to apprehend many subtle aspects of the mean
as a measure of center. Thus, the teacher has an important role in pro-
viding experiences that help students construct a solid understanding of
the mean and its relation to other measures of center.

Students also need to think about measures of center in relation to the
spread of a distribution. In general, the crucial question is, How do
changes in data values affect the mean and median of a set of data? 'To ex-
amine this question, teachers could have students use a calculator to create
a table of values and compute the mean and median. Then they could
change one of the data values in the table and see whether the values of
the mean and the median are also changed. These relationships can be ef-
fectively demonstrated using software through which students can control
a data value and observe how the mean and median are affected. For ex-
ample, using software that produces line plots for data sets, students could
plot a set of data and mark the mean and median on the line. The students
could then change one data value and observe how the mean and median
change. By repeating this process for various data points, they can notice
that changing one data value usually does not affect the median at all, un-
less the moved value is at the middle of the data set or moves across the
middle, but that every change in a value affects the mean. Thus, the mean
is more likely to be influenced by extreme values, since it is affected by the
actual data values, but the median involves only the relative positions of
the values. Other similar problems can be useful in helping students un-
derstand the different sensitivities of the mean and median; for example,
the mean is very sensitive to the addition or deletion of one or two ex-
treme data points, whereas the median is far less sensitive to such changes.

Students should consider how well different graphs represent important
characteristics of data sets. For example, they might notice that it is easier
to see symmetry or skewness in a graph than in a table of values. Graphs,
however, can lose some of the features of the data, as can be demonstrated
by generating a family of histograms for a single set of data, using different
bin sizes: the different histograms may convey different pictures of the
symmetry, skewness, or variability of the data set. Another example is seen
when comparing a histogram and a box plot for the same data, such as
those for the one-clip plane in figures 6.27 and 6.28. Box plots do not con-
vey as much specific information about the data set, such as where clusters
occur, as histograms do. But box plots can provide effective comparisons
between two data sets because they make descriptive characteristics such
as median and interquartile range readily apparent.

Develop and evaluate inferences and predictions that
are based on data

In collecting and representing data, students should be driven by a
desire to answer questions on the basis of the data. In the process, they
should make observations, inferences, and conjectures and develop new

Standards for Grades 6—8: Data Analysis and Probability
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Relating Mean and Median

The teacher has an
important role in
providing experiences
that help students
construct a solid
understanding of the
mean and its relation to

other measures of center.
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questions. They can use their developing facility with rational numbers
and proportionality to refine their observations and conjectures. For ex-
ample, when considering the relative-frequency histogram in figure
6.27, most students would observe that “the paper plane goes between
15 and 21 feet about as often as it goes between 24 and 33 feet,” but
such an observation is not very precise about the frequency. A teacher
could press students to make more-precise statements: “The plane goes
between 15 and 21 feet about 45 percent of the time.”

Box plots are useful when making comparisons between popula-
tions. A teacher might pose the following question about the box plots
in figure 6.28:

From the box plots (in fig. 6.28), which type of plane appears to fly
farther? Which type of plane is more consistent in the distance it flies?

From the relative position of the two graphs, students can infer that the
two-clip plane generally flies slightly farther than the one-clip plane.
Students can answer the second question by using the spreads of the
data portrayed in the box plots to argue that the one-clip plane is more
variable in the distance it travels than the two-clip plane.

Scatterplots are useful for detecting and examining relationships be-
tween two characteristics of a population. For example, a teacher might
ask students to consider if a relationship exists between the length and the
width of warblers’ eggs (activity adapted from Encyclopaedia Britannica
Educational Corporation [1998, pp. 104-19]). She might provide the stu-
dents with data and ask the students to make a scatterplot in which each
point displays the length and the width of an egg, as shown in figure 6.29.
Most students will note that the relationship between the length and the
width of the eggs seems to be direct (or positive); that is, longer eggs also
tend to be wider. Many students will also note that the points on this
scatterplot approximate a straight line, thus suggesting a nearly linear re-
lationship between length and width. To make this relationship even
more apparent, the teacher could have students draw an approximate line
of fit for the data, as has been done in figure 6.29. Students could apply
their developing understanding of the slope of a line to determine that

Fig. 6.29. 15
A scatterplot showing the relationship /l/:
between the length and the width of
warblers’ eggs (Encyclopaedia Britan- 14
nica Educational Corporation 1998, -
p. 109) . -
&2
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the slope is approximately three-fourths and that therefore the ratio of
the width to the length of warblers’ eggs is approximately 3:4.

"Teachers can also help students learn to use scatterplots to consider
the relationship between two characteristics in different populations.
For example, students could measure the height and arm span for
groups of middle school and high school students and then make a scat-
terplot in which the points for middle school students are plotted with
one color and the points for high school students are plotted with a sec-
ond color. Students can make observations about the differences be-
tween the two samples, such as that students in the high school sample
are generally taller than those in the middle school sample. They can
also use the plots to examine possible similarities. In particular, if stu-
dents draw an approximate line of fit for each set of points, they can de-
termine whether the slopes are approximately equal (i.e., the lines are
approximately parallel), which would indicate that the relationship be-
tween height and arm span is about the same for both middle school
and high school students.

Because linearity is an important idea in the middle grades, students
should encounter many scatterplots that have a nearly linear shape. But
teachers should also have students explore plots that represent nonlin-
ear relationships. For example, in connection with their study of geom-
etry and measurement, students could measure the lengths of the bases
of several similar triangles and use formulas to find their areas or graph
paper to estimate their areas. Creating a scatterplot of the lengths of
the bases and the areas will make evident the quadratic relationship be-
tween length and area in similar figures.

Teachers should encourage students to plot many data sets and look
for relationships in the plots; computer graphing software and graphing
calculators can be very helpful in this work. Students should see a range
of examples in which plotting data sets suggests linear relationships,
nonlinear relationships, and no apparent relationship at all. When a
scatterplot suggests that a relationship exists, teachers should help stu-
dents determine the nature of the relationship from the shape and di-
rection of the plot. For example, for an apparently linear relationship,
students could use their understanding of slope to decide whether the
relationship is direct or inverse. Students should discuss what the rela-
tionships they have observed might reveal about the sample, and they
should also discuss whether their conjectures about the sample might
apply to larger populations containing the sample. For example, if a
sample consists of students from one sixth-grade class in a school, how
valid might the inferences made from the sample be for all sixth graders
in the school? For all middle-grades students in the school? For all sixth
graders in the city? For all sixth graders in the country? Such discus-
sions can suggest further studies students might undertake to test the
generality of their conjectures.

Understand and apply basic concepts of probability

Teachers should give middle-grades students numerous opportuni-
ties to engage in probabilistic thinking about simple situations from
which students can develop notions of chance. They should use appro-
priate terminology in their discussions of chance and use probability to

Standards for Grades 6—8: Data Analysis and Probability

Scatterplots are useful
for detecting and
examining relationships
between two
characteristics of a

population.

253

4
c
3
o
o
=
R0
o
O
(2]
=
0
=
o
3
(2]
=
(e}
(1)
o
=
[
Q)
o
o
3
0]
o
<
=
1]
[\
(2]
c
=
o
3
(0]
3
-
O
Y
=3
[
>
3
=
<
@,
(7]
R0
0
=
o
o
Y
=f
=
<
0
=
o
=2
(0]
S
w0
S
=
3
(e}
P
0]
[\
(]
o
=
3
(e}
R0
O
=
o
o
=h
(@)
o
=
3
c
=
[
Q
(=
o
=]
(®)
o
3
3
[0
Q
(=5
o
3
(]
r
(1]
©
=
(9]
(]
o
3
=3
o
=
o
=]




n
[=
o
2
©
S
[}
o
o
-}
N
Q
Q
£
=)
=
©
1
Q
(V)
o
<
>
S
=
[}
£
o
Q
(O]
et
=
Q
£
(5]
S
3
n
©
()
=
>
5=
3
©
Q2
o
S
o
L]
@
n
E)
©
[=
<
(2]
S
]
o
[o)]
£
=
(e}
(7]
£
g
Q
(e}
S
o
N
o
o
S
o
L}
(o))
£
c
o
n
©
[}
o
c
S
2
o
k]
(=
3
£
£
o
(&)
0
[ =
S
2
[$]
(4)
[=
[ =
[e]
(&)
=
S
2
©
S
[=
Q
(7]
()
S
[}
[J)
o

Computer simulations
may help students avoid
07 overcome erroneous

probabilistic thinking.

254

make predictions and test conjectures. For example, a teacher might
give students the following problem:

Suppose you have a box containing 100 slips of paper numbered from 1
through 100. If you select one slip of paper at random, what is the proba-
bility that the number is a multiple of 5? A multiple of 8? Is not a multiple
of 5? Is a multiple of both 5 and 8?

Students should be able to use basic notions of chance and some basic
knowledge of number theory to determine the likelihood of selecting a
number that is a multiple of 5 and the likelihood of not selecting a mul-
tiple of 5. In order to facilitate classroom discussion, the teacher should
help students learn commonly accepted terminology. For example, stu-
dents should know that “selecting a multiple of 5” and “selecting a num-
ber that is not a multiple of 5” are complementary events and that because
40 is in the set of possible outcomes for both “selecting a multiple of 5”
and “selecting a multiple of 8,” they are not mutually exclusive events.

Teachers can help students relate probability to their work with data
analysis and to proportionality as they reason from relative-frequency
histograms. For example, referring to the data displayed in figure 6.27,
a teacher might pose questions like, How likely is it that the next time
you throw a one-clip paper airplane, it goes at least 27 feet? No more
than 21 feet?

Although the computation of probabilities can appear to be simple
work with fractions, students must grapple with many conceptual chal-
lenges in order to understand probability. Misconceptions about proba-
bility have been held not only by many students but also by many adults
(Konold 1989). To correct misconceptions, it is useful for students to
make predictions and then compare the predictions with actual out-
comes.

Computer simulations may help students avoid or overcome erro-
neous probabilistic thinking. Simulations afford students access to rela-
tively large samples that can be generated quickly and modified easily.
"Technology can thus facilitate students’ learning of probability in at
least two ways: With large samples, the sample distribution is more
likely to be “close” to the actual population distribution, thus reducing
the likelihood of incorrect inferences based on empirical samples. With
easily generated samples, students can focus on the analysis of the data
rather than be distracted by the demands of data collection. If simula-
tions are used, teachers need to help students understand what the sim-
ulation data represent and how they relate to the problem situation,
such as flipping coins.

Although simulations can be useful, students also need to develop
their probabilistic thinking by frequent experience with actual experi-
ments. Many can be quite simple. For example, students could be asked
to predict the probability of various outcomes of flipping two coins
sixty times. Some students will incorrectly expect that there are three
equally likely outcomes of flipping two coins once: two heads, two tails,
and one of each. If so, they may predict that each of these will occur
about twenty times. If groups of students conducted this experiment,
they could construct a relative-frequency bar graph from the pooled
data for the entire class. Then they could discuss whether the results of
the experiment are consistent with their predictions. If students are ac-
customed to reasoning from and about data, they will understand that

Principles and Standards for School Mathematics



discrepancies between predictions and outcomes from a large and rep-
resentative sample must be taken seriously. The detection of discrepan-
cies can lead to learning when students turn to classmates and their
teacher for alternative ways to think about the possible results of flip-
ping two coins (or other similar compound events). Teachers can then
introduce students to various methods—organized lists, tree diagrams,
and area models—to help them understand and compute the probabili-
ties of compound events.

Using a problem like the following, a teacher might assess students’
understanding of probability in a manner that includes data analysis and
reveals possible misconceptions:

For the one-clip paper airplane, which was flight-tested with the results
shown in the relative-frequency histogram (in fig. 6.27), what is the proba-
bility that exactly one of the next two throws will be a dud (i.e., it will
travel less that 21 feet) and the other will be a success (i.e., it will travel 21
feet or more)?

To solve this problem, students would need to understand the data rep-
resentation in figure 6.27 and use ratios to estimate that there is about a
45 percent chance that a throw will be a dud and about a 55 percent
chance that it will be a success. Then they would need to use some
method for handling the compound event and deal with the fact that
there are two ways it might occur. Students who understand all that is
required might produce a tree diagram like the one in figure 6.30 to
show that the total probability is 198/400, or .495, since each of the two
possibilities—*“dud first, then success” and “success first, then dud”—
has a probability of 99/400.

Fig. 6.30.

A tree diagram for determining the
probability of a compound event,
given sample data

First throw Second throw
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Problem Solving

Grades

Instructional programs from
prekindergarten through grade 12 —
should enable all students to—

Build new mathematical knowledge Through problem solving, students can experience the power and
through problem solving utility of mathematics. Problem solving is central to inquiry and appli-
cation and should be interwoven throughout the mathematics curricu-
lum to provide a context for learning and applying mathematical ideas.
Solve problems that arise in mathe- Middle-grades students whose curriculum is based on the Standards in
matics and in other contexts this document will benefit from frequent opportunities for both inde-
pendent and collaborative problem-solving experiences. They will en-
gage profitably in complex investigations, perhaps occasionally working

Apply and adapt a variety of appro- for several days on a single problem and its extensions.
priate strategies to solve problems

What should problem solving look like in grades 6

Monitor and reflect on the process through 87?

of mathematical problem solving Problem solving in grades 6-8 should promote mathematical learn-

ing. Students can learn about, and deepen their understanding of,
mathematical concepts by working through carefully selected problems
that allow applications of mathematics to other contexts. Many interest-
ing problems can be suggested by everyday experiences, such as reading
literature or using cellular telephones, in-line skates, kites, and paper
airplanes.

Instruction in grades 68 should take advantage of the expanding
mathematical capabilities of students to include more-complex prob-
lems that integrate such topics as probability, statistics, geometry, and
rational numbers. Situations and approaches should build on and ex-
tend the mathematical understanding, skills, and language that students
have acquired.

Well-chosen problems can be particularly valuable in developing or
deepening students’ understanding of important mathematical ideas. Con-
sider the following problem that might be used by a teacher who wants
her students to think about various ways to use ratios and proportions:

A baseball team won 48 of its first 80 games. How many of its next 50
games must the team win in order to maintain the ratio of wins to losses?

Students can solve this problem in many ways. One student might ex-
press the ratio of wins in the first 80 games as 48/80 and note that the
ratio is a little more than one-half; that is, the team wins a little more
than half the time. She might then estimate that in the next 50 games
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the team should win about 28 games. She could compare the resulting
ratio of 28/50 to the given ratio of 48/80 and adjust her estimate until
the two ratios are equivalent. Another student might look at the ratio
of wins to losses, 48:32, and simplify it to 3:2. Restating this result as
“3 wins in every 5 games” and noting that there are 10 sets of 5 games
in the 50 games to be played, he could conclude that 30 games is the
solution. Yet another student might use a proportion, 48/80 = x/50, to
find the solution. A fourth student might use percents or decimals (as
newspapers do when reporting the “standings” of baseball teams). This
student might divide 48 by 80 and represent the ratio as 60 percent
and then find 60 percent of 50 games, or represent it as 0.600 and mul-
tiply by 50, to determine that 30 games must be won to maintain the
success rate. Such problems help students develop and use a variety of
problem-solving strategies and approaches, and sharing these methods
within the classroom affords students opportunities to assess the
strengths and limitations of alternative approaches to considering them.

After students have had similar experiences with ratios, rates, and
proportions in grades 6 and 7, a teacher who wanted to extend and
deepen her eighth-grade students’ understanding of the topics might
use a problem like the following:

Opver the past few weeks, the American Movie Corporation has introduced
two new kinds of candy at the concession stands in movie theaters in town.
For three weeks, two theaters have offered Apple Banana Chews. For two
weeks, five other theaters sold Mango Orange Nips. Only one of the two
types of candy was sold at each theater, and all the theaters showed the
same movies and had roughly the same attendance each week during the
introductory period. During that period, 660 boxes of Apple Banana
Chews and 800 boxes of Mango Orange Nips were sold. Suppose you have
been hired by the company to help them determine which candy sold bet-
ter. Use the information to decide which type of candy was more popular,
and carefully and completely explain the basis for your answer.

This problem can help students see the need to go beyond superficial
approaches and to dig deeply into their understanding of ratios and
rates. For some students, an initial response will be that Mango Orange
Nips (MONs) were more popular because more were sold. In an early
class discussion, other students might point out to them that such a di-
rect comparison is misleading because the two types of candy were sold
at different numbers of theaters and for different amounts of time. From
this discussion, a need to probe more deeply into the relationships in the
problem will be apparent. Students are likely next to consider ratios or
rates, which they have learned to use to express quantitative relation-
ships. By inviting individuals or groups of students to present possible
solutions, the teacher can initiate a lively discussion of competing ap-
proaches and arguments. Some students will consider the average num-
ber of candies sold for each theater—330 boxes of ABCs (Apple Banana
Chews) per theater versus 160 boxes of MON’s per theater—and con-
clude that ABCs were more popular. Other students will consider a dif-
ferent rate, namely, the average number of candies sold each week—220
boxes of ABCs per week versus 400 boxes of MONSs per week—and con-
clude that MONss were more popular. Because each of these answers is
different and seems to be based on a sensible approach, neither answer
can be argued to be “better” than the other. So students can see that
they must go beyond these simple rates to answer the question. The
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Problems in the middle
grades can and should
respond to students’
questions and engage

their intevests.
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teacher can then help them develop a more complex rate—the average
number of boxes of candy per theater per week—that incorporates all
the information in the problem and yields a defensible solution: the rates
are 110 for ABCs and 80 for MONSs, so ABCs are the better sellers.

"Teachers should regularly ask students to formulate interesting prob-
lems based on a wide variety of situations, both within and outside mathe-
matics. Teachers should also give students frequent opportunities to ex-
plain their problem-solving strategies and solutions and to seek general
methods that apply to many problem settings. These experiences should
engender in students important problem-solving dispositions—an orienta-
tion toward problem finding and problem posing; an interest in, and ca-
pacity for, explaining and generalizing; and a propensity for reflecting on
their work and monitoring their solutions. They should be expected to ex-
plain their ideas and solutions in words first, and then teachers can help
them learn to use conventional mathematical symbols or their own forms
of representations, as appropriate, to convey their thinking.

The availability of technology—in the form of computers and scien-
tific or graphing calculators—allows middle-grades students to deal
with “messy,” complex problems. The technology can alleviate much of
the drudgery that until recently often constrained middle-school
mathematics to using only problems with “nice numbers.” Computers,
calculators, and electronic data-gathering devices, such as calculator-
based laboratories (CBLs) or rangers (CBRs), offer means of gathering
or analyzing data that in years past might have been considered too
troublesome to deal with. Similarly, classroom Internet connections
make it possible for students to find information for use in posing and
solving a wide variety of problems. For example, students might be in-
terested in investigating whether it is cost-effective to recycle aluminum
cans at their school, or they might explore weather patterns in different
regions. Graphing calculators and easy-to-use computer software en-
able students to move between different representations of data and to
compute with large quantities of data and with messy numbers, both
large and small, with relative ease. As a result, problems in the middle
grades can and should respond to students’ questions and engage their
interests.

What should be the teacher’s role in developing
problem solving in grades 6 through 87

Students’ learning about and through problem solving and their dis-
positions toward mathematics are shaped by teachers’ instructional de-
cisions and actions. Teachers can make problem solving an integral part
of the class’s mathematical activity by choosing interesting problems
that incorporate important mathematical ideas from the curriculum. To
help students develop a problem-solving orientation, teachers can allow
them to choose or create some of the problems to be solved. Teachers
can help build students’ problem-analysis skills by including tasks that
have extraneous information or insufficient information. And they can
challenge students with problems that have more than one answer, such
as the following (adapted from Gelfand and Shen [1993], p. 3):

Make a sum of 1000, using some eights (8s) with some plus signs (+s)
inserted.

Principles and Standards for School Mathematics



Because this problem can be solved in more than one way, students
could find several solutions (888 + 88 + 8 + 8 + 8 = 1000 is one solution,
and 888 +8+8+8+8+8+8+8+8+8+8+8+8+8+8=1000is
another). They could then analyze these solutions and discuss whether
others exist.

"Teachers motivate students by encouraging communication and col-
laboration and by urging students to seek complete solutions to chal-
lenging problems. Recognizing students’ contributions can add to their
motivation. Some teachers, for example, find it effective to name a
problem, conjecture, or solution method after the student who pro-
posed it (e.g., Tamela’s problem).

Research suggests that an important difference between successful
and unsuccessful problem solvers lies in their beliefs about problem
solving, about themselves as problem solvers, and about ways to ap-

proach solving problems (Kroll and Miller 1993). For example, many Some teachers ﬁnd it
students have developed the faulty belief that all mathematics problems .
could be solved quickly and directly. If they do not immediately know eﬁ[éf tive 1o nante a

how to solve a problem, they will give up, which supports a view of
themselves as incompetent problem solvers. Furthermore, many stu-
dents believe there is just one “right” way to solve any mathematics
problem. Not only do these students become dependent on the teacher

roblem, conjecture, or
) )

solution method after

or an answer key for a verification of their solution, but they also fail to the student who
appreciate the excitement and insight that can come from recognizing
and connecting very different ways to solve a problem. To counteract propo sed it.

negative dispositions, teachers can help students develop a tendency to
contemplate and analyze problems before attempting a solution and
then persevere in finding a solution.

The essence of problem solving is knowing what to do when con-
fronted with unfamiliar problems. Teachers can help students become
reflective problem solvers by frequently and openly discussing with
them the critical aspects of the problem-solving process, such as under-
standing the problem and “looking back” to reflect on the solution and
the process (Pélya 1957). Through modeling, observing, and question-
ing, the teacher can help students become aware of their activity as they
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solve problems. For example, consider how the following problem
might be used to develop students’ skill in problem solving (Schroeder
and Lester 1989, p. 40):

On centimeter graph paper outline all the shapes that have an area of 14
square cm and a perimeter of 24 cm. For each shape you draw, at least one
side of each square must share a side with another square.

Students may initially assume that the shapes referred to are rectan-
gles. Under that assumption, students can discover that the problem
has no solution. A teacher might allow this line of thinking to surface
early so that it can be addressed. Once students understand that shapes
other than rectangles are possible, they might approach the problem
by experimenting with a few shapes, using graph paper or 14 square
cutouts. If students do not begin to recognize that haphazard experi-
mentation is not likely to produce a complete solution, questioning by
the teacher might help them. The teacher can help students develop a
systematic way to keep track of the shapes that have been tried. The
teacher can also ask provocative questions that encourage students to
find all possibilities: What makes two shapes “different”? Are shapes
different if one is a flip of the other? What strategies can be used to
create new shapes from old ones in a way that preserves both the area
and the perimeter? In this problem, students draw on their knowledge
of various of geometric ideas, such as area, perimeter, and congruence
and transformations that preserve area and perimeter. Moreover, they
engage in a process that is applicable to a wide variety of problems:
gradually understanding a problem more deeply and then working sys-
tematically to determine all possible solutions. As research has shown,
effective problem solvers move flexibly among aspects of the problem-
solving process as they work through a problem (Kroll and Miller
1993).

Although it is not the main focus of problem solving in the middle
grades, learning about problem solving helps students become familiar
with a number of problem-solving heuristics, such as looking for pat-
terns, solving a simpler problem, making a table, and working back-
ward. These general strategies are useful when no known approach to a
problem is readily apparent. These processes may have been used in the
elementary grades, but middle-grades students need additional experi-
ence and instruction in which they consider how to use these strategies
appropriately and effectively.

Students also should be encouraged to monitor and assess them-
selves. Good problem solvers realize what they know and don’t know,
what they are good at and not so good at; as a result they can use their
time and energy wisely. They plan more carefully and more effectively
and take time to check their progress periodically. These habits of mind
are important not only in making students better problem solvers but
also in helping students become better learners of mathematics.

For several reasons, students should reflect on their problem solving
and consider how it might be modified, elaborated, streamlined, or
clarified: Through guided reflection, students can focus on the mathe-
matics involved in solving a problem, thus solidifying their understand-
ing of the concepts involved. They can learn how to generalize and ex-
tend problems, leading to an understanding of some of the structure
underlying mathematics. Students should understand that the problem-
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solving process is not finished until they have looked back at their solu-
tion and reviewed their process.

An important aspect of a problem-solving orientation toward mathe-
matics is making and examining conjectures raised by solving a problem
and posing follow-up questions. For example, according to the
Pythagorean relationship, if squares are built on the legs and the hy-
potenuse of any right triangle, then the areas of the squares on the legs
will together sum to the area of the square on the hypotenuse. This
well-known relationship, summarized with the formula #* + * = &,
where # and b are the lengths of the triangle’s legs and ¢ is the length of
its hypotenuse, is used frequently to solve numerical and algebraic
problems. It can be the source of much interesting problem posing and
generalization for middle-grades students. A teacher might orchestrate
a discussion in which students pose a variety of “what if” questions
about variants and extensions of the Pythagorean relation (Brown and
Walter 1983), for example, Would the area relationship hold if we built
something other than squares on the sides of right triangles, say for
equilateral triangles? Or regular hexagons? Or semicircles? Will the
areas still sum in the same way? Such conjectures can easily be exam-
ined by using interactive geometry software, which can also facilitate
students’ search for a counterexample to disprove a conjecture. Al-
though formal proof of a generalization of the Pythagorean relationship
may be beyond the reach of most students in the middle grades, some
students might be able to use their developing understanding of pro-
portionality and similarity to argue that the generalization holds be-
cause the areas of similar figures are proportional to the square of the
lengths of their corresponding sides.

By reflecting on their solutions, such as in this extension of the
Pythagorean relationship, students use a variety of mathematical skills,
develop a deeper insight into the structure of mathematics, and gain a
disposition toward generalizing. The teacher can ensure that classroom
discussion continues until several solution paths have been considered,
discussed, understood, and evaluated. It should become second nature
for students to talk about connections among problems; to propose, cri-
tique, and value alternative approaches to solving problems; and to be
adept in explaining their approaches.

Standards for Grades 6-8: Problem Solving
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Reasoning and Proof

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize reasoning and proof as
fundamental aspects of mathematics

Make and investigate mathematical
conjectures

Develop and evaluate mathematical
arguments and proofs

Select and use various types of
reasoning and methods of proof
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Grades

6—8

Reasoning is an integral part of doing mathematics. Students should
enter the middle grades with the view that mathematics involves exam-
ining patterns and noting regularities, making conjectures about possi-
ble generalizations, and evaluating the conjectures. In grades 6-8 stu-
dents should sharpen and extend their reasoning skills by deepening
their evaluations of their assertions and conjectures and using inductive
and deductive reasoning to formulate mathematical arguments. They
should expand the audience for their mathematical arguments beyond
their teacher and their classmates. They need to develop compelling ar-
guments with enough evidence to convince someone who is not part of
their own learning community.

What should reasoning and proof look like in grades 6
through 87

In the middle grades, students should have frequent and diverse ex-
periences with mathematics reasoning as they—

* examine patterns and structures to detect regularities;
¢ formulate generalizations and conjectures about observed regularities;
* evaluate conjectures;

* construct and evaluate mathematical arguments.

Students should discuss their reasoning on a regular basis with the
teacher and with one another, explaining the basis for their conjectures
and the rationale for their mathematical assertions. Through these ex-
periences, students should become more proficient in using inductive
and deductive reasoning appropriately.

Students can use inductive reasoning to search for mathematical rela-
tionships through the study of patterns. Consider an example from a
classroom in which rising seventh-grade students were studying figu-
rate numbers (drawn from classroom observation and partially de-

scribed in Malloy [1997]).

The teacher began by explaining triangular numbers and then asked
the students to generate representations for the first five triangular
numbers. The students visualized the structure of the numbers to
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draw successive dot triangles, each time adding at the bottom a
row containing one more dot than the bottom row in the previous
triangle (see fig. 6.31). Next the teacher asked the students to pre-
dict (without drawing) how many dots would be needed for the
next triangular number. Reflecting on what they had done to gen-
erate the sequence thus far, they quickly concluded that the sixth
triangular number would have six more dots than the fifth trian-
gular number. These students were engaged in recursive reason-
ing about the structure of this sequence of numbers, using the
just-formed number to generate the next number. This approach
was repeated for several more “next” numbers in the sequence,
and it worked well.

P Fig. 6.31.
° P ) First five triangular numbers
(] e o e o o
[ o o e 0 o e & 0 O
(] e o e 06 o e 6 0 © e 6 6 0 ©
First ~ Second Third Fourth Fifth

The teacher then asked the students to find the 100th term in the
sequence. Most students knew that the value of the 100th term is
100 more than the value of the 99th term, but because they did not
already know the value of the 99th term, they were not able to find
the answer quickly. The teacher suggested that they make a chart to
record their observations about triangular numbers and to look for
a pattern or a relationship to help them find the 100th triangular
number. The students began with a display that reflected what they
had already observed (see fig. 6.32). They examined the display for
additional patterns. Tamika commented that she thought there was
a pattern relating the differences and the numbers. She explained
that if the consecutive differences are multiplied, the product is
twice the number that is “between” them in the display; for exam-
ple, the product of 4 and 5 is twice as large as 10.

Fig. 6.32.
Triangular numbers

Term First Second Third Fourth Fifth Sixth

\2/ \3/ \4/ \5/ \6/

Number

Difference

The teacher asked the students to check to see if Tamika’s observa-
tion was true for other numbers in the display. After they verified
the observation, the teacher asked them to use this method to find
the next triangular number. Some students were unable to see how
it could be done, but Curtis used Tamika’s observation as follows:
“Using Tamika’s method, the seventh number is (7)(8)/2, which is
28.” Several students checked this answer by using the recursive
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method of adding 7 to the sixth triangular number to find the sev-
enth triangular number (21 + 7 = 28). The teacher then asked the
students to check Tamika’s method for the next few triangular
numbers to verify that it worked in those instances. She next asked
if Tamika’s method could be used to find the 100th triangular num-
ber. Darnell said, “If Tamika is right, the hundredth triangular
number should be (100)(101)/2.”

In general, the students agreed that the method of multiplying and
dividing by 2 was useful because it seemed to work and because it
did not require knowing the #th term in order to find the (# + 1)th
term. However, some students were not convinced that the method
was correct. It lacked the intuitive appeal of the recursive method
they used first, and it did not appear to have a mathematical basis.
The teacher decided that it was worth additional class time to de-
velop a mathematical argument to support Tamika’s method. She
began by asking students to notice that each triangular number is
the sum of consecutive whole numbers, which they readily saw
from the dot triangles. Then the teacher demonstrated Gauss’s
method for finding the sum of consecutive whole numbers, apply-
ing it to the first seven whole numbers. She asked the students to
add the numbers from 1 to 7 to those in the reversed sequence, 7
to 1, as shown in figure 6.33, to see that the seventh triangular
number—1 +2 +3 +4 + 5 + 6 + 7— could also be expressed as
(7)(8)/2. After the students completed this exercise, the teacher
asked them to express the general relationship in words. They
struggled, but they came up with this general rule: If you want to
find a particular triangular number, you multiply your number by
the next number and divide by 2. The students wrote the rule this
way: (number)(number + 1)/2.

Fig. 6.33.

Gauss’s method—the sum of the first
seven counting numbers
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1+2+3+4%+5+6+7 Students can see that the sums of the pairs

of addends can be represented as 7 x 8, or 56.
7+6+5+4+3+2+1 P

Because each number is listed twice, they divide
8+8+8+8+8+8+8 Y

56 by 2, resulting in (7)(8)/2 = 56/2 = 28.

The example illustrates what reasoning and proof can look like in the
middle grades. Although mathematical argument at this level lacks the
formalism and rigor often associated with mathematical proof, it shares
many of its important features, including formulating a plausible con-
jecture, testing the conjecture, and displaying the associated reasoning
for evaluation by others. The teacher and students used inductive rea-
soning to reach a generalization. They noted regularities in a pattern
(growth of triangular numbers), formulated a conjecture about the reg-
ularities (Tamika’s rule), and developed and discussed a convincing ar-
gument about the truth of the conjecture.

Middle-grades students can develop arguments to support their
conclusions in varied topics, such as number theory, properties of geo-
metric shapes, and probability. For example, students who encounter the
rules of divisibility by 2 and by 3 in number theory know that even num-
bers are divisible by 2 and numbers whose digits add to a number
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divisible by 3 are divisible by 3. A teacher might ask students to
formulate a rule for divisibility by 6 and develop arguments to support
their rule.

Some students might begin by listing some multiples of 6: 12, 18, 24,
and 30. They could examine the numbers and try to detect patterns re-
sembling those in other rules they have learned. Students might ob-
serve that all the numbers are even, which allows them to infer divisibil-
ity by 2. They could also look at the sums of the digits of the multiples
and notice that the sums of the digits are all divisible by 3, just as in the
test for divisibility by 3. Noting that 2 « 3 = 6, they might conclude that
if the number is divisible both by 2 and by 3, then it must be divisible
by 6, which might lead them to form the following conjecture for de-
termining whether a number is divisible by 6: Check to see if the num-
ber is even and if the sum of its digits is divisible by 3.

The teacher should also challenge students to consider possible limi-
tations of their reasoning. For example, she could ask them to use 12 as
an example to consider whether it is always true that the product of two
factors of a number is itself a factor of that number. The students
should note that although 6 and 4 are both factors of 12, 6 « 4 is not. In
this way, the teacher can help students become appropriately cautious
in making inferences about divisibility on the basis of factors. Such an
exploration should lead to the correct generalization that combining
criteria for divisibility, which worked with divisibility by 6, works only
when the two factors are relatively prime.

What should be the teacher’s role in developing
reasoning and proof in grades 6 through 87

Teachers in the middle grades can help students appreciate and use
the power of mathematical reasoning by regularly engaging students in
thinking and reasoning in the classroom. Fostering a mathematically
thoughtful environment is vital to supporting the development of stu-
dents’ facility with mathematical reasoning.

The teacher plays an important role by creating or selecting tasks
that are appropriate to the ages and interests of middle-grades students
and that call for reasoning to investigate mathematical relationships.
Tasks that require the generation and organization of data to make, val-
idate, or refute a conjecture are often appropriate. For example, the ex-
amination of patterns associated with figurate numbers discussed above
shows how a teacher can use the task both to stimulate student investi-
gation and to develop facility with mathematical reasoning and argu-
mentation. Suitable tasks can arise in everyday life, although many will
arise within mathematics itself.

"Teachers also serve as monitors of students’ developing facility with
reasoning. In order to use inductive reasoning appropriately, students
need to know its limitations as well as its possibilities. Because many el-
ementary and middle-grades tasks rely on inductive reasoning, teachers
should be aware that students might develop an incorrect expectation
that patterns always generalize in ways that would be expected on the
basis of the regularities found in the first few terms. The following hy-
pothetical example shows how a teacher could help students develop a
healthy appreciation for the power and limits of inductive reasoning.

Standards for Grades 6—8: Reasoning and Proof

Students need to know
the limitations of
inductive reasoning as

well as its possibilities.
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A teacher asks students to determine how many segments of differ-
ent lengths can be made by connecting pegs on a square geoboard
that is 5 units on each side (a 5 X 5 square geoboard). Because the
number of segments is large and some students will have difficulty
being systematic in representing the segments on their geoboards,
the teacher encourages the students to examine simpler cases to de-
velop a systematic way to generate the different segments. The stu-
dents approach this task by examining the number of segments on
various subsquares on a 5 X 5 geoboard, looking at the growth
from a 1 % 1 square to a 4 x 4 square, as shown in figure 6.34.

Fig. 6.34.
Segments of different lengths on a
geoboard
1x1 2x2 3x3 4x4
The teacher helps the students see that each successive square con-
tains the previous square within it. Thus, the number of segments
on a 3 x 3 square can be found by adding the number of segments
found on a 2 x 2 square to the number of new segments that can be
created using the “new” pegs within the 3 x 3 square. The teacher
has the students verify—by direct measurement or by treating the
diagonal lengths as hypotenuses of right triangles—that all seg-
ments are really of different lengths. The students then record the
number of segments of different lengths in each square and note
the pattern of growth, as shown in figure 6.35.
Fig. 6.35. -
) ) Size of Number of Segments of Total Number of
Students can record in a table like Square Different Lengths: Old + New| Different Lengths
this one data about the number of
segments of different lengths on a 1x1 2 2
geoboard.
2x2 2+3 5
3x3 (2+3)+4 9
4% 4 (2+3+4)+5 14
5x5 ? ?
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The teacher orchestrates a class discussion about the numbers in
the table. Most students quickly detect a pattern of growth and are
prepared to predict the answer for a 5 x 5 geoboard—20 different
segments—because 2 + 3 +4 + 5) + 6 = 14 + 6 = 20. In fact, many
students are prepared to state a more general conjecture: The
number of segments for an N x N square geoboard is the sum
2+3 4+ +(N+1).
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After the students have made their prediction, the teacher asks
them to check its accuracy by actually making all the possible seg-
ments of different lengths on a 5 x 5 geoboard, as in figure 6.36.
Because of their prior experience in systematically generating all
possible segments, most of the students are able to find all the pos-
sibilities. In fact, most recognize that they need only to count the
“new” segments and check to be sure that the segments are of dif-
ferent lengths from one another and from the segments already
counted in the previous cases. The students note that there are
twenty segments, as predicted, and most are content with the ob-
servation that all the new segments are of different lengths. But
some students discover that two segments—AB and CD in figure
6.36—are both five units long. Thus, there are only nineteen
different lengths, rather than twenty as predicted. Most of the stu-
dents are surprised at this result, although they recognize that it is
correct.

A teacher can use an example such as this as a powerful reminder that
students should be cautious when generalizing inductively from a small
number of cases, because not all patterns generalize in ways that we
might wish or expect from early observations. This important lesson al-
lows students to develop a healthy skepticism in their work with pat-
terns and generalization.

"Teachers need to monitor students’ developing facility not only with
inductive reasoning but also with deductive reasoning. In the middle
grades, students begin to consider assertions such as the following: The
diagonals of any given rectangle are equal in length. (See the “Geometry”
section of this chapter for more discussion of how this assertion might be
generated and verified by students.) An assertion such as this is tricky, at
least in part because it is an implicitly conditional statement: If a shape is
a rectangle, then its diagonals are equal in length. Thus, it is probably not
surprising that some students will misapply this idea by inferring that any
quadrilateral with diagonals of equal length must be a rectangle. Doing
so reflects the erroneous view that if a statement is true then its converse
is true. In this instance, the converse is not true because nonrectangular
isosceles trapezoids also have diagonals of equal length, as do many other
quadrilaterals.

"Teachers in the middle grades need to be mindful of complexities in
logical thinking and be alert in order to help students reason correctly.
In this example, a teacher might have students use dynamic geometry
software to investigate which types of quadrilaterals have diagonals of
equal length. The software could allow students to see changes in the
lengths of the diagonals instantly as they change the shape of the
quadrilateral. A teacher might have students investigate quadrilaterals
in general and particular types of quadrilaterals, including rectangles,
squares, parallelograms, rhombuses, and trapezoids. The teacher might
ask students to note which shapes have diagonals of equal length. If no
one found such a shape, the teacher could ask them to construct an
isosceles trapezoid with a given set of vertices, and the students would
then see that this trapezoid has diagonals of equal length. This type of
investigation can lead students to understand that even when a state-
ment is true, its converse may be false.

Standards for Grades 6—8: Reasoning and Proof

Fig. 6.36.

Line segments on a 5 X 5 geoboard
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Communication

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Organize and consolidate their
mathematical thinking through
communication

Communicate their mathematical
thinking coherently and clearly to
peers, teachers, and others

Analyze and evaluate the mathe-
matical thinking and strategies of
others

Use the language of mathematics
to express mathematical ideas
precisely

268

Grades

6—8

In classrooms where students are challenged to think and reason
about mathematics, communication is an essential feature as students
express the results of their thinking orally and in writing. This type of
environment is desirable at all grade levels, but there are a few distinc-
tive features of such classrooms in the middle grades. For example, the
mathematics under discussion in grades 6-8 is generally more complex
and perhaps more abstract than the mathematics in the lower grades.

A second distinctive feature relates to the norms for evaluating the
thinking of members of a classroom learning community. When students
in grades 6-8 explain their thinking, they can be held to standards that
are more stringent than would likely be applied to younger students,
though not as demanding as might be applied in high school. Each stu-
dent should be expected not only to present and explain the strategy he
or she used to solve a problem but also to analyze, compare, and contrast
the meaningfulness, efficiency, and elegance of a variety of strategies. Ex-
planations should include mathematical arguments and rationales, not
just procedural descriptions or summaries (Yackel and Cobb 1996).

A third distinguishing feature pertains to the social norms in a
middle-grades classroom rather than to the content of the students’
discussions. During adolescence, students are often reluctant to do
anything that causes them to stand out from the group, and many mid-
dle-grades students are self-conscious and hesitant to expose their
thinking to others. Peer pressure is powerful, and a desire to fit in is
paramount. Teachers should build a sense of community in middle-
grades classrooms so students feel free to express their ideas honestly
and openly, without fear of ridicule.

What should communication look like in grades 6
through 87

Consider an extended example (adapted from Silver and Smith
[1997]) of mathematical communication in a middle-grades classroom.

The students began by working collaboratively in pairs to solve the
following problem, adapted from Bennett, Maier, and Nelson (1998):

A certain rectangle has length and width that are whole numbers of
inches, and the ratio of its length to its width is 4 to 3. Its area is 300
square inches. What are its length and width?

Principles and Standards for School Mathematics



As the students worked on the problem, the teacher circulated
around the room, monitoring the work of the pairs and responding
to their questions. She also noted different approaches that were
used by the students and made decisions about which students she
would ask to present solutions.

After most students had a chance to solve the problem, the teacher

asked Lee and Randy to present their method. They proceeded to Teachers should build a
the overhead projector to explain their work. After briefly restating .
the problem, Lee indicated that 3 times 4 is equal to 12 and that sense OfCOWWWZL‘)/ mn

they needed “a number that both 3 and 4 would go into.” The
teacher asked why they had multiplied 3 by 4. Randy replied that
the ratio of the length to the width was given as “4 to 3” in the
problem. Lee went on to say that they had determined that “3 goes

middle-grades classrooms

so students feel free to

into 15 five times and that 4 goes into 20 five times.” Since 15 7
express their ideas
times 20 is equal to 300, the area of the given rectangle, they con- P
cluded that 15 inches and 20 inches were the width and length of hone Stl)/ and open [y,
the rectangle. _ o
The teacher asked if there were questions for Lee or Randy. Echo- without fEﬂV Of ridicule.

ing the teacher’s query during the presentation of the solution, Ty-
ronne said that he did not understand their solution, particularly
where the 12 had come from and how they knew it would help
solve the problem. Neither Lee nor Randy was able to explain why
they had multiplied 3 by 4 or how the result was connected to their
solution. The teacher then indicated that she also wondered how
they had obtained the 15 and the 20. The boys reiterated that they
had been looking for a number “that both 3 and 4 went into.” In
reply, Darryl asked how the boys had obtained the number 5. Lee
and Randy responded that 5 was what “3 and 4 go into.” At this
point, Keisha said “Did you guys just guess and check?” Lee and
Randy responded in unison, “Yeah!” Although Lee and Randy’s
final answer was correct and although it contained a kernel of good
mathematical insight, their explanation of their solution method
left other students confused.

"To address the confusion generated by Lee and Randy, the teacher
decided to solicit another solution. Because the teacher had seen
Rachel and Keisha use a different method, she asked them to ex-
plain their approach. Keisha made a sketch of a rectangle, labeling
the length 4 and the width 3. She explained that the 4 and 3 were
not really the length and width of the rectangle but that the num-
bers helped remind her about the ratio. Then Rachel explained that
she could imagine 12 squares inside the rectangle because 3 times 4
is equal to 12, and she drew lines to subdivide the rectangle accord-
ingly. Next she explained that the area of the rectangle must be
equally distributed in the 12 “inside” squares. Therefore, they di-
vided 300 by 12 to determine that each square contains 25 square
inches. At the teacher’s suggestion, Rachel wrote a 25 in each square
in the diagram to make this point clear. Keisha then explained that
in order to find the length and width of the rectangle, they had to
determine the length of the side of each small square. She argued
that since the area of each square was 25 square inches, the side of
each square was 5 inches. Then, referring to the diagram in figure
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o Fig. 6.37. 6.37, she explained that the length of the rectangle was 20 inches,
o Rachel’s and Keisha’s method since it consisted of the sides of four squares. Similarly, the width
é was found to be 15 inches. To clarify their understanding of the so-
E lution, a few students asked questions, which were answered well by
— 5251|2525 | 25 Keisha and Rachel.

I At this point the teacher might ask the girls if they think their ap-
é 15 S [25]25|25 (25 proach would work for similar problems: What if the ratio were not 4
— to 37 What if the area were not 300? Other students might be invited
Z S22 [25] to ask questions: What would happen if the product of the length-

£ width ratio numbers does not divide evenly into the area of the rec-
£ 5 5 5 5 . ; :

g L ~ J tangle? Such questions could generate lively exchange that would in-
— 20 clude several students and could invite comparison to methods used
= by other students. The teacher could encourage students to consider
E generalizations and work to engage the entire class in this kind of

5 thinking. For homework, students might be asked to come up with

s some possible generalizations. In the final few minutes of the class,
= the students could record in their journals their observations about
2z what they had learned during the lesson along with any lingering

5 questions they might have.
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o . .

< What should be the teacher’s role in developing

(2] . . .

D communication in grades 6—-87?

©

- The previous example illustrates several important facets of the

2 teacher’ role in supporting communication, particularly a whole-class
a discussion, which was portrayed in the example. One is establishing

@ norms within a classroom learning community that support the learn-
s ing of all students. Another is selecting and using worthwhile mathe-
@ matical tasks that allow significant communication to occur. And a third
& is guiding classroom discussion on the basis of what is learned by moni-
8 toring students’ learning.
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The middle-grades mathematics teacher should strive to establish a
communication-rich classroom in which students are encouraged to
share their ideas and to seek clarification until they understand. In
such a classroom community, communication is central to teaching
and learning mathematics and to assessing students’ knowledge. The
focus in such classrooms is trying to make sense of mathematics to-
gether. Explaining, questioning, debating, and sense making are thus
natural and expected activities. To achieve this kind of classroom,
teachers need to establish an atmosphere of mutual trust and respect,
which can be gained by supporting students as they assume substantial
responsibility for their own mathematics learning and that of their
peers. When teachers build such an environment, students understand
that it is acceptable to struggle with ideas, to make mistakes, and to be
unsure. This attitude encourages them to participate actively in trying
to understand what they are asked to learn because they know that
they will not be criticized personally, even if their mathematical think-
ing is critiqued.

Communication should be focused on worthwhile mathematical
tasks. Teachers should identify and tasks that—

¢ relate to important mathematical ideas;
* are accessible to multiple methods of solution;
¢ allow multiple representations;

¢ afford students opportunities to interpret, justify, and conjecture.

Although the task in the example was in many ways quite simple, it pro-
vided students with an opportunity to use their understanding of area
and ratio—important ideas in the middle grades. The task was simple
enough that all students could do it, difficult enough to challenge stu-
dents to think and reason, and rich enough to allow students to engage
at different levels.

"Teachers also need to monitor students’ learning in order to direct
classroom discourse appropriately. Facilitating students’ mathematics
learning through classroom discussion requires skill and good judg-
ment. In the example, to be sure her objectives were met, the teacher
skillfully steered the “mathematical direction” of the conversation by
calling on particular students to present a different solution. Teachers
must consider numerous issues in orchestrating a classroom conversa-
tion. Who speaks? When? Why? For how long? Who doesn’t? Why
not? It is important that everyone have opportunities to contribute, al-
though it is not necessary to give equal speaking time to all students.

Clearly, the students in the example were accustomed to being asked
regularly, not only by the teacher but also by other students, to explain
their mathematical thinking and reasoning. The teacher and several
students pressed for justification and explanation as each solution was
presented. Because not all students regularly participate in whole-class
discussions, teachers need to monitor their participation to ensure that
some are not left entirely out of the discussion for long periods. But en-
couraging all students to speak can sometimes conflict with advancing
the mathematical goals of a lesson because students’ contributions may
occasionally be irrelevant or lack mathematical substance. But even
when this happens, the teacher and students can derive some benefit. It
can be productive for the teacher to pick up on and probe incorrect or

Standards for Grades 6—8: Communication

Facilitating students’
mathematics learning
through classroom
discussion requires skill

and good judgment.
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Working in pairs is
often a very effective
approach with students
in the middle grades.
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incomplete responses. Only by examining misconceptions and errors
can students deal with them appropriately.

"Teachers can use class discussions as opportunities for ongoing as-
sessment of their teaching and of students’ learning. Making mental
notes about missed teaching opportunities and about students’ difficul-
ties or confusions may help in making decisions about follow-up
lessons.

Classroom communication can contribute to multiple goals. The les-
son in the example generated at least four instructional directions. In
the next few lessons, the teacher and her class explored the use of alge-
braic representations and solution methods for related problems as they
sought a method that would work for a larger range of values for the
areas and the ratios of the sides. The teacher later examined with the
class how the area of a rectangle is affected when its length and width
are each multiplied by the same factor. The teacher’s informal assess-
ment of the students’ understanding during work on the task led her to
take Lee and Randy aside later in the week to help them clarify their
thinking. Finally, to acquaint her students with the scoring guidelines
that would be used on the state proficiency test, she had them prepare
written solutions for this problem and then score one another’s solu-
tions using the guidelines. In this way, they learned valuable lessons
about the need for accuracy, precision, and completeness in their writ-
ten communication.

Teachers can use oral and written communication in mathematics to
give students opportunities to—

¢ think through problems;

* formulate explanations;

* try out new vocabulary or notation;

* experiment with forms of argumentation;

* justify conjectures;

® critique justifications;

¢ reflect on their own understanding and on the ideas of others.

"To help students reflect on their learning, teachers can ask them to
write commentaries on what they learned in a lesson or a series of
lessons and on what remains unclear to them. To strive for clarity in ex-
plaining their ideas, students can write a letter to a younger student ex-
plaining a difficult concept (e.g., “Here’s what it means for two figures
to be similar. Let me start with rectangles....”). In the example, journal
writing and individual homework offered all the students opportunities
for individual reflection and communication. Working in pairs also af-
forded opportunities for communication. This approach is often very
effective with students in the middle grades because they can try out
their ideas in the relative privacy of a small group before opening them-
selves up to the entire class.

Even when students are working in small groups, the teacher has an
important role to play in ensuring that the discourse contributes to the
mathematics learning of the group members and helps to further the
teacher’s mathematical goals. For example, when students ask questions
about the task requirements or about the correctness of their work, the
teacher should respond in ways that keep their focus on thinking and

Principles and Standards for School Mathematics



reasoning rather than only on “getting the right answer.” Teachers
should resist students’ attempts to have the teacher “do the thinking for
them.” In the incident related in the example when the students were
working in pairs, the teacher generally responded to questions with
suggestions (e.g., “Iry to think of some way to use a diagram”) or her
own questions (e.g., “What do you know about the relationship be-
tween the area of a rectangle and its length and width? How can you
use what you know?”). Teachers also must be sure that all members are
participating in the group and understanding its work.

Standards for Grades 6—-8: Communication 2 73
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Connections

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize and use connections
among mathematical ideas

Understand how mathematical
ideas interconnect and build on one
another to produce a coherent
whole

Recognize and apply mathematics
in contexts outside of mathematics

274

Grades

6—8

Thinking mathematically involves looking for connections, and mak-
ing connections builds mathematical understanding. Without connec-
tions, students must learn and remember too many isolated concepts
and skills. With connections, they can build new understandings on
previous knowledge. The important mathematical foci in the middle
grades—rational numbers, proportionality, and linear relationships—
are all intimately connected, so as middle-grades students encounter di-
verse new mathematical content, they have many opportunities to use
and make connections.

This chapter on grades 6-8 mathematics contains numerous illustra-
tions of mathematical connections. Many of the formulas students de-
velop and use in the “Measurement” section draw on their knowledge
of algebra, geometry, and measurement. The kite example in the
“Geometry” section engages students in examining the perimeter and
area of similar figures to investigate proportional relationships. Several
examples in the “Data Analysis” section illustrate how gathering, repre-
senting, and analyzing data can help students develop insights into
other mathematical ideas, including variation and change, probability,
and ratio and proportion. The “cellular telephone” problem in the “Al-
gebra” section demonstrates how connections among various forms of
representation provide insights into patterns and regularities in prob-
lem situations. Clearly, rich problem contexts involve connections to
other disciplines (e.g., science, social studies, art) as well as to the real
world and to the daily life experiences of middle-grades students.

What should connections look like in grades 6 through 8?

Mathematics classes in the middle grades should continually provide
opportunities for students to experience mathematics as a coherent
whole through the curriculum used and the questions teachers and
classmates ask. Students reveal the ways they are connecting ideas when
they answer questions such as, What made you think of that? Why does
that make sense? Where have we seen a problem like this before? How
are these ideas related? Did anyone think about this in a different way?
How does today’s work relate to what we have done in earlier units of
study? From these discussions, students can develop new connections
and enhance their own understanding of mathematics by listening to
their classmates’ thinking.

Principles and Standards for School Mathematics



If curriculum and instruction focus on mathematics as a discipline of
connected ideas, students learn to expect mathematical ideas to be re-
lated. Rich mathematical tasks prompt students to use and develop
mathematical understandings and connections. Challenging problems
encourage students to think about how familiar concepts and proce-
dures can be applied in new situations. In classrooms where students
are expected to reason mathematically and to communicate clearly
about significant mathematical tasks, new ideas surface quite naturally
as extensions of previously learned mathematics. With prompting from
their teacher, students routinely ask themselves, “How is this problem
like what I have done before? How is it different?”

Consider an expanded version of a summary (adapted from NCTM,
Algebra Working Group [1998, p. 155]) of a lesson on ratio and pro-
portion. The intent of this lesson was to begin developing students’ un-
derstanding of methods for comparing ratios. The students had not
previously been taught such methods, so the teacher wanted to uncover
whether and how students could apply what they had already learned
about number and ratio. The lesson was centered on the following task,
which was adapted from Lappan et al. (1998, p. 27):

Southwestern Middle School Band is hosting a concert. The seventh-
grade class is in charge of refreshments. One of the items to be served is
punch. The school cook has given the students four different recipes call-
ing for sparkling water and cranberry juice.

RECIPE A RECIPE B

4 cups cranberry juice
8 cups sparkling water

2 cups cranberry juice
3 cups sparkling water

RECIPE C RECIPE D

1 cup cranberry juice
4 cups sparkling water

3 cups cranberry juice
5 cups sparkling water

1. Which recipe will make punch that has the strongest cranberry flavor?
Explain your answer.

2. Which recipe will make punch that has the weakest cranberry flavor?
Explain your answer.

3. The band director says that 120 cups of punch are needed. For each
recipe, how many cups of cranberry juice and how many cups of
sparkling water are needed? Explain your answer.

The students worked on the first two questions in groups of two or
three. When the groups had finished, they came together as a
whole class to share and explain their answers.

The groups had attempted to figure out which recipe has the
strongest cranberry flavor in different ways. Some examined the
part-whole relationships of the number of cups of juice to the total
number of cups in the recipe (these ratios are 2/5, 4/12, 3/8, 1/5 for
recipes A-D, respectively). Others looked at the part-part ratios of
juice to water (2/3, 4/8, 3/5, 1/4). Still others, failing to consider
that the recipes, as given, make different amounts of punch, incor-
rectly considered only the number of cups of juice in each recipe (2,
4,3, 1). After questioning and challenging one another’ solutions

Standards for Grades 6—8: Connections

Without connections,
students must learn and
remember too many

isolated concepts and

skills.
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Fig. 6.38.

Chart for punch recipes

and comparing methods, the class decided to move on to the last
question to see if they could resolve the differences in their answers.
Each group was assigned to determine the amounts of juice and
water needed for just one of the recipes. Below are four of the
strategies the groups used to work through this part of the problem.

Group with recipe A

We figured out that each recipe would make 5 cups: 2 of juice and 3
of water. So to make 120 cups, it would take 120 divided by 5, and
that is 24, the number of recipes needed. Since we need 2 cups of
juice and 3 cups of water for one recipe, we need 2 x 24 = 48 cups of
juice and 3 X 24 = 72 cups of water for the 24 recipes. And since 48
cups of juice + 72 cups of water makes 120 cups of punch that must
be right.

Group with recipe B

We thought that 4 cups of juice and 8 cups of water is the same
ratio as 1 cup of juice and 2 cups of water. We then thought about
the 120 cups of punch as divided into three groups of 40 cups each:
40 + 40 + 40 = 120. We need 1 part juice, so that is 40 cups, and 2
parts water, so that is 80 cups. This makes 120 cups of punch, and
you still have a ratio of 1 part juice to 2 parts water.

Group with recipe C

We tried to double the recipe, but that was not enough. So we
added another batch and that still was not enough. So we just kept
adding recipes and seeing how many total cups of punch we had.
We kept up this pattern until we got 120 cups. So we had [a table
like that shown in fig. 6.38]. That means we had 45 cups of juice
and 75 cups of water.

Cups of juice 3 6 9 12 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45
Cups of water | 5 10 | 15 | 20 | 25 | 30 |35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75
Cups of punch | 8 16 [ 24 | 32 |40 | 48 |56 [ 64 | 72 | 80 | 88 | 96 [104 [112 [120

276

Later in the class discussion, this group noticed that they could
have gone directly from 3/5 to 45/75 by multiplying the numerator
and denominator by 15 because they needed 15 recipes.

Group with recipe D

We tried various numbers. First we tried 20 cups of juice. This
means we needed 4 times as much water or 80 cups of water. But
this was too small because 20 + 80 is only 100. So we tried 30 cups
of juice, so that meant 30 x 4 = 120 cups of water. This time we had
too much punch, 30 + 120 = 150. Next we tried 25 cups of juice.
And 25 x 4 =100, so we had 100 cups of water. But this made 125
cups of punch, which was close but too much. So we tried 24 cups
of juice, which needed 24 x 4 = 96 cups of water. This worked be-
cause 24 + 96 = 120 cups of punch.

Principles and Standards for School Mathematics



After the groups had shared their approaches to the third question,
the teacher continued the conversation by encouraging the class to
talk about the similarities and differences among the strategies.

The “making punch” problem had brought numerous mathematical
ideas to the forefront: fractions, ratios, proportions, operations, magni-
tude, scaling, number sense, patterns, and so on. By bringing previously
understood mathematical ideas or processes to bear on this problem,
the students were developing understandings that laid a foundation for
the later study of such topics as rates of change and linear relationships.

Since the task required the students to explain their strategies, all the
students had an opportunity to enhance their understanding of ratios by
listening to the others’ different ideas. For example, the group with
recipe D used a “guess and check” approach to solve the problem. The
group with recipe C made a table and used the ideas of scaling ratios
and adding iteratively in the same way that students find equivalent
fractions. The groups with recipes A and B thought about comparing
quantities and using ratios.

None of the students mentioned that the answers to the first two
questions would have been more obvious if they had solved the third
problem first. For each recipe, we can add the number of cups of cran-
berry juice to the number of cups of water to determine how much
punch one recipe makes. We divide this number into 120 to determine
the multiples—24, 10, 15, and 24, respectively—of the ingredients that
are needed. Because recipes A-D use 2, 4, 3, and 1 cup of cranberry
juice initially, they will use 48, 40, 45, and 24 cups of cranberry juice,
respectively, when multiplied to serve 120 people. Clearly, recipe D has
the weakest cranberry flavor and recipe A has the strongest. This find-
ing confirms the students’ previous answers and approaches.

What should be the teacher’s role in developing
connections in grades 6 through 87

The teacher’s role includes selecting problems that connect mathe-
matical ideas within topics and across the curriculum; it also includes
helping students build on their current mathematical ideas to develop
new ideas. The teacher’s orchestration of the “making punch” lesson
allowed the students to make the connections explicit and to focus on
the relationships and commonalities among their strategies. The
teacher took advantage of an opportunity to foster the students’ dispo-
sition to look for connections as well as to use connections. In situa-
tions like this, it is essential that the teacher recognize and understand
the mathematical concepts being developed, not just to teach the ab-
stract manipulation but also to orchestrate the conversation. The
teacher needs to be able to make quick decisions about next steps. It is
also important to encourage students to use words and notation appro-
priately to support their understanding of new concepts, such as pro-
portionality and algebra.

It is sometimes quite effective to revisit a problem to help students
connect familiar ideas to new concepts or skills. Indeed, the “making
punch” problem has potential for connections to proportionality and
linearity. For instance, students could make a graph, plotting values

Standards for Grades 6—8: Connections
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with teachers of other subjects to develop integrated units of study. For
example, middle-grades science classes might study populations of
wildlife such as deer, fish, eagles, or sharks (see Curcio and Bezuk
[1994]). If students will be expected to use sampling techniques in sci-
ence class to determine the population of a species, it is important that
the mathematics and science teachers discuss students’ understanding of
different sampling techniques and of the idea of randomness. It is also
important that science teachers understand that students are likely to
use scaling and equivalent ratios to estimate the total population rather
than cross multiplication and formal algebraic symbol manipulation to
find their solutions.

In the same spirit, mathematics teachers can build on and connect to
disciplines other than science and social studies. For example, language
arts teachers can describe the strategies they teach for writing convinc-
ing arguments. The mathematics teachers may then be able to help stu-
dents use the strategies when appropriate in formulating mathematical
arguments. They may also be better able to help students recognize and
analyze forms of argumentation and justification that are peculiar to
mathematics. Again, students benefit from teachers’ efforts to under-
stand how other subjects are taught and to make connections between
the subjects explicit.

Conversations about students’ experiences, understandings, and fa-
miliarity with procedures give teachers of other subjects an opportu-
nity to learn about elements of the mathematics curriculum, such as al-
gorithms and the level of abstract symbol manipulation that students
might use. Without such conversations, those who are not mathe-
matics teachers may expect students to understand and use procedures
that are not part of their repertoire or teachers may fail to build on
ideas with which students are already conversant. Students may miss
an opportunity to apply and extend their reasoning skills or to see that
mathematical ideas can be used in other disciplines. This is not to
imply that merely applying mathematics in science, social studies, or
any other discipline constitutes a sufficient middle-grades mathematics
curriculum. The point is that interdisciplinary experiences serve as
ways to revisit mathematical ideas and they help students see the use-
fulness of mathematics both in school and at home. If all the middle-
grades teachers in a school do their best to connect content areas,
mathematics and other disciplines will be seen as permeating life and
not as just existing in isolation.

Standards for Grades 6—8: Connections

Merely applying
mathematics in other
disciplines does not
constitute a sufficient
mathematics

curriculum.
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Representation

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Create and use representations to
organize, record, and communicate
mathematical ideas

Select, apply, and translate among
mathematical representations to
solve problems

Use representations to model and
interpret physical, social, and
mathematical phenomena

280

Grades

6—8

Representation is central to the study of mathematics. Students can
develop and deepen their understanding of mathematical concepts and
relationships as they create, compare, and use various representations.
Representations—such as physical objects, drawings, charts, graphs,
and symbols—also help students communicate their thinking.

Representations are ubiquitous in the middle-grades mathematics
curriculum proposed here. The study of proportionality and linear rela-
tionships is intertwined both with students’ learning to use variables
flexibly in order to represent unknowns and with their learning to em-
ploy tables, graphs, and equations as tools for representation and analy-
sis. Middle-grades students who are taught with this Standard in mind
will learn to recognize, compare, and use an array of representational
forms for fractions, decimals, percents, and integers. They also will
learn to use representational forms such as exponential and scientific
notation when working with large and small numbers and to use a vari-
ety of graphical tools to represent and analyze data sets.

What should representation look like in grades 6
through 87

Students in the middle grades solve many problems in which they
create and use representations to organize and record their thinking
about mathematical ideas. For example, they use representations to de-
velop or apply their understanding of proportionality when they make
or interpret scale drawings of figures or scale models of objects, when
they connect the geometric notion of similarity with numerical ratios,
and when they draw relative-frequency histograms for data sets. While
solving challenging problems, students might use standard representa-
tions, but they can also develop and use nonstandard representations
that work well for a particular problem.

When solving problems involving proportionality, students can cre-
ate representations that blend visual and numerical information to de-
pict relationships among quantities. Consider the following problem:

The Copy Cat printing shop has a printer that uses only black, red, and
blue cartridges. All the cartridges print the same number of pages. The
black cartridges are replaced 4 times as often as the red ones. And during
the time in which 3 red cartridges need to be replaced, 5 blue cartridges
will also need to be replaced.

Principles and Standards for School Mathematics



1. What fraction of Copy Cat’s printing is in black?
2. What percent of the printing is in blue?

3. In a month, 60 black cartridges are used. What is the total number of
red and blue cartridges used in that month?

Students can use a variety of approaches to represent and solve this
problem, including both standard and nonstandard forms of representa-
tion. Some students will find it natural to develop and use a discrete
model like the one shown in figure 6.40. With such a representation,
students can merge the information from the two ratios in the problem
statement. They can see that in every set of 20 cartridges used at Copy
Cat, 12 are black, 3 are red, and 5 are blue. They can conclude that
12720 (or 6/10, 3/5, or 0.6) of the printing is in black, which answers
the first question. To answer the second question, a student might
imagine replicating this set of 20 five times to see that Copy Cat uses 25
blue cartridges in every 100 used. Thus, 25 percent of the printing is in
blue. To answer the third question, students could note that a set of 60
black cartridges comprises 5 sets of 12 cartridges and that a total of 8
red and blue cartridges are used in the time that 12 black cartridges are
used. Thus, it follows that 40 red and blue cartridges—15 red and 25
blue—are used in the time that it takes to use 60 black cartridges.

3.5

Black Red
12 3

4:1

Black Red

~

vs)
0 O © @ O
@

Fig. 6.40.

This representation for the “printing
cartridges” problem combines visual
and numerical information.

"The power of representations that blend visual and numerical infor-
mation can be appreciated in solving many problems involving ratios,
proportions, and percents. Consider the following problem:

A group of students has $60 to spend on dinner. They know that the total
cost, after adding tax and tip, will be 25 percent more than the food prices
shown on the menu. How much can they spend on the food so that the
total cost will be $60?

Of the various ways this problem might be represented, many students
would find the representation in figure 6.41 useful. In this figure, a rec-
tangular bar represents the total of $60. This total must include the
price of the food plus 25 percent more for tax and tip. To show this re-
lationship, the bar is segmented into five equal parts, of which four rep-
resent the price of the food and one the tax and tip. Because there are
five equal parts and the total is $60, each part must be $12. Therefore,

Standards for Grades 6—8: Representation
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the total price allowed for food is $48. This type of visual representa-
tion for numerical quantities is quite adaptable and can be used to solve
many problems involving fractions, percents, ratios, and proportions
(see, e.g., some problems in Curriculum Development Institute of Sin-
gapore 1997, or Bennett, Maier, and Nelson 1988). For example, the
representation in figure 6.41 could also help students see and under-
stand that when one quantity is 125 percent of a second quantity, then
the second is 80 percent of the first.

Fig. 6.41.

One possible representation for the
“food, tax, and tip” problem

O == E-example B'ZKE

Comparing Cost Functions
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$60

v v

T— Cost of food 4T L Tax —T

and tip

"The study of linear functions, with the associated patterns and rela-
tionships, is another major focus in the middle grades. By considering
problems in a variety of contexts, students should become familiar with a
range of representations for linear relationships, including tables, graphs,
and equations. Students need to learn to use these representations flexibly
and appropriately. In the “Algebra” section of this chapter, several exam-
ples are discussed, notably the “cellular telephone” problem, through
which students could develop a repertoire of representations.

Students also need to examine relationships among representations
for linear functions. The use of graphing calculators or appropriate
computer software can greatly facilitate such an examination and can
allow students to see such important relationships as the one between
the value of % in the equation y = kx and the slope of the corresponding
line.

Students will be better able to solve a range of algebra problems if
they can move easily from one type of representation to another. In the
middle grades, students often begin with tables of numerical data to ex-
amine a pattern underlying a linear function, but they should also learn
to represent those data in the form of a graph or equation when they
wish to characterize the generalized linear relationship. Students should
also become flexible in recognizing equivalent forms of linear equations
and expressions. This flexibility can emerge as students gain experience
with multiple ways of representing a contextualized problem. For ex-
ample, consider the following problem, which is adapted from Ferrini-
Mundy, Lappan, and Phillips (1997):

A rectangular pool is to be surrounded by a
ceramic-tile border. The border will be one
tile wide all around. Explain in words, with
numbers or tables, visually, and with sym-
bols the number of tiles that will be needed
for pools of various lengths and widths.

Some students would solve this problem by using a table to record the
values for various lengths and widths of rectangular pools and for the
corresponding number of tiles on the border. From the table, they could

Principles and Standards for School Mathematics



discern a generalization and then express it as an equation, as is sug-
gested in the response and the accompanying work shown in figure 6.42.

The formula for the number of tiles is T=2(L + W) + 4. | made a
table with columns for L, W, and T. | drew some pictures. Then |
counted the tiles for those pictures, filled in the numbers in the table,
and looked for a pattern. It's easy! You always just add the length to the
width, double that answer, and then add 4.

Width 4
Pool Pool Number
Length Width of Tiles
1 1 8
2 1 10 2
3 1 12 :%’
3 2 14 —
3 3 16
3 4 18

Fig. 6.42.

Student work for the “tiled pool”
problem

Other students might reason about the situation geometrically (or vi-
sually) rather than numerically. Here are three other possible student
responses:

I drew several pictures and saw this pattern. You need L + 2 tiles
across the top and the same number across the bottom. And you
also need W tiles on the left and I tiles on the right. So all to-
gether, the number of tiles needed is 7= 2(L + 2) + 2.

I pictured it in my head. First, place one tile at each of the corners
of the pool. Then you just need L tiles across the top and the bot-
tom, and W tiles along each of the sides. So all together, the num-
ber of tiles needed is 4 + 2L + 2.

You can find the number of tiles needed by finding the area of the
whole rectangle (pool plus tile border) and then subtracting off
the area of the pool. The area of the pool and deck together is

(L + 2)(W + 2). The area of the pool alone is LIV. So all together,
the number of tiles needed is (L + 2)(W + 2) — LW.

These three responses differ in the way in which particular geometric
(visual) features are considered. For example, in the first two solutions,
the tile border is related to the perimeter of the large rectangle com-
prising the tiles and the pool but with different decompositions of the
perimeter. In contrast, the third response considers the area of the large
rectangle and derives the number of tiles as the area of the border,
which is legitimate because the tiles are unit squares.

By working on problems like the “tiled pool” problem, students gain ex-
perience in relating symbolic representations of situations and relationships
to other representations, such as tables and graphs. They also see that sev-
eral apparently different symbolic expressions often can be used to repre-
sent the same relationship between quantities or variables in a situation.
"The latter observation sets the stage for students to understand equivalent

Standards for Grades 6—8: Representation
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Middle-grades

students have
opportunities to solve
relatively large-scale,
motivating, and
significant problems that

involve modeling.
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symbolic expressions as different symbolic forms that represent the same
relationship. In the “tiled pool” problem, for example, a class could discuss
why the four expressions obtained for the total number of tiles should be
equivalent. They could then examine ways to demonstrate the equivalence
symbolically. For example, they might observe from their sketches that
adding two lengths to two widths (2L + 21/) is actually the same as adding
the length and width and then doubling: 2(L + 17). They should recognize
this pictorial representation for the distributive property of multiplication
over addition—a useful tool in rewriting variable expressions and solving
equations. In this way, teachers may be able to develop approaches to alge-
braic symbol manipulation that are meaningful to students.

Finally, it is important that middle-grades students have opportunities
to use their repertoire of mathematical representations to solve relatively
large-scale, motivating, and significant problems that involve modeling
physical, social, or mathematical phenomena. The goal of this sort of
mathematical modeling is for students to gain experience in using the
mathematics they know and an appreciation of its utility for understanding
and solving applied problems. For example, students might decide to in-
vestigate problems associated with trash disposal and recycling by collect-
ing data on the volume of paper discarded in their classroom or home over
a period of weeks or months. After organizing their data using graphs, ta-
bles, or charts, the students could think about which representations are
most useful for illuminating regularities in the data. From their observa-
tions, the students might be able to offer thoughtfully justified estimates of
the volume and types of paper discarded in their entire school, school dis-
trict, or city in a week, month, or year. Drawing on what they have learned
in science and social studies, they might then make recommendations for
reducing the flow of paper into landfills or incinerators.

What should be the teacher’s role in developing
representation in grades 6 through 87

Mathematics teachers help students learn to use representations flexibly
and appropriately by encouraging them as they create and use representa-
tions to support their thinking and communication. Teachers help stu-
dents develop facility with representations by listening, questioning, and
making a sincere effort to understand what they are trying to communi-
cate with their drawings or writings, especially when idiosyncratic, uncon-
ventional representations are involved. Teachers need to use sound profes-
sional judgment when deciding when and how to help students move
toward conventional representations. Although using conventional repre-
sentational forms has many advantages, introducing representations be-
fore students are able to use them meaningfully can be counterproductive.

Teachers play a significant role in helping students develop meaning
for important forms of representation. For example, middle-grades stu-
dents need many experiences to develop a robust understanding of the
very complex notion of variable. Teachers can help students move from
a limited understanding of variable as a placeholder for a single number
to the idea of variable as a representation for a range of possible values
by providing experiences that use variable expressions to describe nu-
merical data (Demana and Leitzel 1988).

"Teachers need to give students experiences in using a wide range of
visual representations and introduce them to new forms of representa-

Principles and Standards for School Mathematics



tions that are useful for solving certain types of problems. Vertex-edge
graphs, for instance, can be used to represent abstract relationships
among people or objects in many different kinds of situations. Take a
situation in which several students might be working in different
groups (for math review, history research, and a science project) or in-
volved in different activities (basketball team and band). Each group
wants to arrange a different meeting time to accommodate the stu-
dents who are involved in more than one group. To help solve this
scheduling problem, a teacher might suggest that students make a
graph in which the vertices represent the groups and an edge between
two groups indicates that there is some student who is a member of
both groups. Figure 6.43 shows a possible vertex-edge graph involving
the five groups, where an edge represents a relationship—common
membership. This graph illustrates that no student participates in both
the math-review group and history-research group (e.g., there is no
edge joining those vertices) and that at least one student participates in
both the math-review group and band practice (e.g., there is an edge
between those vertices). The information in this graph can identify the
potential scheduling conflicts so they can be avoided by scheduling all
connected activities at different times.

Another new type of representation that teachers might wish to in-
troduce their students to is a NOW-NEXT equation, which can be
used to define relationships among variables iteratively. The equation
NEXT = NOW + 10 would mean that each term in a pattern is found
by adding 10 to the previous term. This notational form can be used as
an alternative to the equation form of the general term when a recur-
sive relationship is being highlighted. The data in figure 6.44 can be
represented in a summarized form both as y = 10x (where x must be a
whole number) and as NEXT = NOW + 10.

The teacher thus has an important role in helping middle-grades stu
dents develop confidence and competence both in creating their own
representations when they are needed to solve a challenging problem
and in selecting flexibly and appropriately from an extensive repertoire
of conventional representations. Whether helping students to use their
own invented representations or introducing them to conventional
forms, teachers should help students use representations meaningfully.
By encouraging students to discuss the graphs, pictures, or symbols
they are using in their work, teachers can monitor their developing flu-
ency with representations. When students see how others interpret
what they have written and how others have represented the same
ideas, they can evaluate representations thoughtfully and recognize
characteristics that make a representation flexible, appropriate, and use-
ful. Through such a process, most students will come to appreciate the
simplicity and effectiveness of conventional forms of representation and
the role of representations in enabling communication with others.

Standards for Grades 6—8: Representation

Fig. 6.43.

A vertex-edge graph used to identify
potential scheduling conflicts

Basketball
practice

Band
practice

Math-review
group

Science-project
group

History-research
group

Fig. 6.44.

Values for the terms in a pattern rep-
resented by a NOW = NEXT equation

10

20

30

N W [N || Xx

40

y=10x
NEXT = NOW +10

285

4
c
3
o
o
=
R0
o
O
(2]
=
0
=
o
3
(2]
=
(e}
(1)
o
=
[
Q)
o
o
3
0]
o
<
=
1]
[\
(2]
c
=
o
3
(0]
3
-
O
0
=3
[
>
3
=
<
@
(]
R0
0
=
o
o
(Y
=
=
<
0
=
o
g
(0]
3
wn
S
=
3
(e}
P
(]
[\
(]
o
=
3
(e}
R0
O
=
o
o
=h
(@)
o
=
3
c
3,
0
o
=
o
3
(®)
o
3
3
[0
Q
(=5
o
3
(]
A
o
°
=
[
(73
o
=]
=
o
(=
o
3




1o ensure that students will have a wide range
of career and educational choices, the secondary school

mathematics program must be both broad and deep.




CHAPTER

Standards for
Grades 9-12

Students in secondary school face choices and decisions that will deter-
mine the course of their lives. As they approach the end of required school-
ing, they must have the opportunity to explore their career interests—
which may change during high school and later—and their options for
postsecondary education. To ensure that students will have a wide range of
career and educational choices, the secondary school mathematics program
must be both broad and deep.

The high school years are a time of major transition. Students enter
high school as young teenagers, grappling with issues of identity and with
their own mental and physical capacities. In grades 9-12, they develop in
multiple ways—becoming more autonomous and yet more able to work
with others, becoming more reflective, and developing the kinds of per-
sonal and intellectual competencies that they will take into the workplace
or into postsecondary education.

These Standards describe an ambitious foundation of mathematical
ideas and applications intended for all students. Through its emphasis on
fundamental mathematical concepts and essential skills, this foundation
would give all students solid preparation for work and citizenship, positive
mathematical dispositions, and the conceptual basis for further study. In
grades 9-12, students should encounter new classes of functions, new geo-
metric perspectives, and new ways of analyzing data. They should begin to
understand aspects of mathematical form and structure, such as that all
quadratic functions share certain properties, as do all functions of other
classes—linear, periodic, or exponential. Students should see the interplay
of algebra, geometry, statistics, probability, and discrete mathematics and
various ways that mathematical phenomena can be represented. Through
their high school experiences, they stand to develop deeper understandings
of the fundamental mathematical concepts of function and relation, invari-
ance, and transformation.
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All students are
expected to study
mathematics each of the
four years that they are
enrolled in high school.
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In high school, students should build on their prior knowledge,
learning more-varied and more-sophisticated problem-solving tech-
niques. They should increase their abilities to visualize, describe, and
analyze situations in mathematical terms. They need to learn to use a
wide range of explicitly and recursively defined functions to model the
world around them. Moreover, their understanding of the properties of
those functions will give them insights into the phenomena being mod-
eled. Their understanding of statistics and probability could provide
them with ways to think about a wide range of issues that have impor-
tant social implications, such as the advisability of publicizing anecdotal
evidence that can cause health scares or whether DNA “fingerprinting”
should be considered strong or weak evidence.

Secondary school students need to develop increased abilities in jus-
tifying claims, proving conjectures, and using symbols in reasoning.
They can be expected to learn to provide carefully reasoned arguments
in support of their claims. They can practice making and interpreting
oral and written claims so that they can communicate effectively while
working with others and can convey the results of their work with clar-
ity and power. They should continue to develop facility with such tech-
nological tools as spreadsheets, data-gathering devices, computer alge-
bra systems, and graphing utilities that enable them to solve problems
that would require large amounts of computational time if done by
hand. Massive amounts of information—the federal budget, school-
board budgets, mutual-fund values, and local used-car prices—are now
available to anyone with access to a networked computer (Steen 1997).
Facility with technological tools helps students analyze these data. A
great deal is demanded of students in the program proposed here, but
no more than is necessary for full quantitative literacy.

All students are expected to study mathematics each of the four years
that they are enrolled in high school, whether they plan to pursue the
further study of mathematics, to enter the workforce, or to pursue
other postsecondary education. The focus on conceptual understanding
provides the underpinnings for a wide range of careers as well as for
further study, as Hoachlander (1997, p. 135) observes:

Most advanced high school mathematics has rigorous, interesting
applications in the work world. For example, graphic designers rou-
tinely use geometry. Carpenters apply the principles of trigonome-
try in their work, as do surveyors, navigators, and architects....
Algebra pervades computing and business modeling, from everyday
spreadsheets to sophisticated scheduling systems and financial plan-
ning strategies. Statistics is a mainstay for economists, marketing
experts, pharmaceutical companies, and political advisers.

With the experience proposed here in making connections and solving
problems from a wide range of contexts, students will learn to adapt flexi-
bly to the changing needs of the workplace. The emphasis on facility with
technology will result in students’ ability to adapt to the increasingly tech-
nological work environments they will face in the years to come. By learn-
ing to think and communicate effectively in mathematics, students will be
better prepared for changes in the workplace that increasingly demand
teamwork, collaboration, and communication (U.S. Department of Labor
1991; Society for Industrial and Applied Mathematics 1996). Note that
these skills are also needed increasingly by people who will pursue careers

Principles and Standards for School Mathematics



in mathematics or science. With its emphasis on fundamental concepts,
thinking and reasoning, modeling, and communicating, the core is a foun-
dation for the study of more-advanced mathematics. Consider, for exam-
ple, the recommendations for precalculus courses generated at the Prepar-
ing for a New Calculus conference (Gordon et al. 1994, p. 56):

Courses designed to prepare students for the new calculus should:
* cover fewer topics ... with more emphasis on fundamental concepts.
* place less emphasis on complex manipulative skills.

¢ teach students to think and reason mathematically, not just to perform
routine operations....

* emphasize modeling the real world and develop problem-solving skills.

* make use of all appropriate calculator and computer technologies....

* promote experimentation and conjecturing.

* provide a solid foundation in mathematics that prepares students to
read and learn mathematical material at a comparable level on their
own.

A central theme of Principles and Standards for School Mathematics is
connections. Students develop a much richer understanding of mathe-
matics and its applications when they can view the same phenomena
from multiple mathematical perspectives. One way to have students see
mathematics in this way is to use instructional materials that are inten-
tionally designed to weave together different content strands. Another
means of achieving content integration is to make sure that courses ori-
ented toward any particular content area (such as algebra or geometry)
contain many integrative problems—problems that draw on a variety of
aspects of mathematics, that are solvable using a variety of methods,
and that students can access in different ways.

High school students with particular interests could study mathematics
that extends beyond what is recommended here in various ways. One ap-
proach is to include in the program material that extends these ideas in
depth or sophistication. Students who encounter these kinds of enriched
curricula in heterogeneous classes will tend to seek different levels of un-
derstanding. They will, over time, learn new ways of thinking from their
peers. Other approaches make use of supplementary courses. For instance,
students could enroll in additional courses concurrent with the program.
Or the material proposed in these Standards could be included in a three-
year program that allows students to take supplementary courses in the
fourth year. In any of these approaches, the curriculum can be designed so
that students can complete the foundation proposed here and choose from
additional courses such as computer science, technical mathematics, statis-
tics, and calculus. Whatever the approach taken, all students learn the
same core material while some, if they wish, can study additional mathe-
matics consistent with their interests and career directions.

These Standards are demanding. It will take time, patience, and skill
to implement the vision they represent. The content and pedagogical
demands of curricula aligned with these Standards will require extended
and sustained professional development for teachers and a large degree
of administrative support. Such efforts are essential. We owe our chil-
dren no less than a high degree of quantitative literacy and mathematical
knowledge that prepares them for citizenship, work, and further study.

Standards for Grades 9—-12: Introduction
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Number and Operations

Grades

Instructional programs from
prekindergarten through grade 12 =
should enable all students to—

In grades 9-12 all students should—

Understand numbers, ways of rep- * develop a deeper understanding of very large and very small numbers and
resenting numbers, relationships of various representations of them;

among numbers, and number » compare and contrast the properties of numbers and number systems,
systems including the rational and real numbers, and understand complex numbers

as solutions to quadratic equations that do not have real solutions;

* understand vectors and matrices as systems that have some of the
properties of the real-number system;

* use number-theory arguments to justify relationships involving whole

numbers.
Understand meanings of operations * judge the effects of such operations as multiplication, division, and
and how they relate to one another computing powers and roots on the magnitudes of quantities;

* develop an understanding of properties of, and representations for, the
addition and multiplication of vectors and matrices;

* develop an understanding of permutations and combinations as counting

techniques.
Compute fluently and make reason- * develop fluency in operations with real numbers, vectors, and matrices,
able estimates using mental computation or paper-and-pencil calculations for simple cases

and technology for more-complicated cases.
* judge the reasonableness of numerical computations and their results.
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Number and Operations

In high school, students’ understanding of number is the foundation
for their understanding of algebra, and their fluency with number oper-
ations is the basis for learning to operate fluently with symbols. Stu-
dents should enter high school with an understanding of the basic oper-
ations and fluency in using them on integers, fractions, and decimals. In
grades 9-12, they will develop an increased ability to estimate the re-
sults of arithmetic computations and to understand and judge the rea-
sonableness of numerical results displayed by calculators and comput-
ers. They should use the real numbers and learn enough about complex
numbers to interpret them as solutions of quadratic equations.

High school students should understand more fully the concept of a
number system, how different number systems are related, and whether
the properties of one system hold in another. Their increased ability to
use algebraic symbolism will enable them to make generalizations about
properties of numbers that they might discover. They can study and use
vectors and matrices. They need to develop deeper understandings of
counting techniques, which further develops the conceptual underpin-
nings for the study of probability.

Understand numbers, ways of representing numbers,
relationships among numbers, and number systems

High school students should become increasingly facile in dealing
with very large and very small numbers as part of their deepening un-
derstanding of number. Such numbers occur frequently in the sciences;
examples are Avogadro’s number (6.02 x 10**) in chemistry or the very
small numbers used in describing the size of the nucleus of a cell in bi-
ology. As citizens, students will need to grasp the difference between
$1 billion, the cost of a moderate-sized government project, and
$1 trillion, a significant part of the national budget.

They need to become familiar with different ways of representing
numbers. As part of their developing technological facility, students
should become adept at interpreting numerical answers on calculator or
computer displays. They should recognize 1.05168475E-12 as a very
small number given in scientific notation, 6.66666667 as the approxi-
mate result of dividing 20 by 3, and ERROR as a response for either an
invalid operation or a number that overflows the capacity of the device.

Students’ understanding of the mathematical development of num-
ber systems—from whole numbers to integers to rational numbers and
then on to real and complex numbers—should be a basis for their work
in finding solutions for certain types of equations. Students should un-
derstand the progression and the kinds of equations that can and cannot
be solved in each system. For example, the equation 3x = 1 does not
have an integer solution but does have a rational-number solution; the
equation x’ = 2 does not have a rational-number solution but does have
a real-number solution; and the equation x* + 4 = 0 does not have a
real-number solution but does have a complex-number solution.

Whereas middle-grades students should have been introduced to irra-
tional numbers, high school students should develop an understanding
of the system of real numbers. They should understand that given an
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High school students
should understand fully
the concept of a number

systems.

291

4
=
3
o
®
=
R0
o
Nl
o
=
Y
=
o
3
(7]
=
«Q
1)
o
=
[
[
[0
o
3
()
o~
<
=
1]
o
(2]
(=
=
o
3
1)
3
-
o)
o
=
Q
>
3
=
<
.
(]
R
0
=
(]
o
(V)
S.
=
<
0
=
()
g
®
3
n
S
=
=
«
P
[0
Q
[72]
[e]
=
=
«Q
R0
0
=
[}
[e]
=h
(@)
[e)
3
3
(=
=
(2]
Q
=7
[e]
=)
(@)
[e)
3
=
[0
Q
[=
[e]
3
(]
Py
[¢]
T
=
o
(2]
1)
3
=
Q
=7
[e]
=




0
=
.0
=
©
I
(]
o
(@]
]
S
(]
Q2
£
=)
=
©
1
Q2
Q
ke
<
>
S
=
(]
£
(]
Q
()
=)
[=
(]
£
(]
S
3
(2]
©
(]
=
>
=
o
©
Q
(o]
S
o
o3
0
0
>
®
[ =
<
©
8
©
a
(o]
£
=
(o}
n
=
o
Q2
o
<
a1
S
o
o
S
a8
o3
(o))
£
[ =
]
0
©
(]
o
[ =
o
S
©
Q
(=
3
=
£
]
(3]
(2]
(=
S
e
[$)
(]
[=
=
o}
(3]
c
S
=
©
T
[ =
(]
(0]
(]
S
Q
(4]
o

292

origin and a unit of measure, every point on a line corresponds to a real
number and vice versa. They should understand that irrational numbers
can only be approximated by fractions or by terminating or repeating
decimals. They should understand the difference between rational and
irrational numbers. Their understanding of irrational numbers needs to
extend beyond Ttand /2.

High school students can use their understanding of numbers to ex-
plore new systems, such as vectors and matrices. By working with ex-
amples that include forces or velocities, students can learn to appreci-
ate vectors as a means of simultaneously representing magnitude and
direction. Using matrices, students can also see connections among
major strands of mathematics: they can use matrices to solve systems of
linear equations, to represent geometric transformations (some of
which can involve creating computer graphics), and to represent and
analyze vertex-edge graphs.

Properties that hold in some systems may not hold in others. So
teachers and students should explicitly discuss the associative, commu-
tative, and distributive properties, and students should learn to examine
whether those properties hold in the systems they study. The explo-
ration of the properties of matrices may be particularly interesting,
since the system of matrices is often the first that students encounter in
which multiplication is not commutative.

In grades 9-12, students can use algebraic arguments in many areas,
including in their study of number. Consider, for example, a simple
number-theory problem such as the following:

What can you say about the number that results when you subtract 1 from
the square of an odd integer?

It is easy to verify that the number that results is even, and that it is
divisible by 4. But if students try a few examples, such as starting with 3
or 5, they may note that the results they obtain are divisible by 8. They
might wonder if this property will hold in general. Proving that it does
involves finding useful representations. If students decide to express an
arbitrary odd integer as 2z + 1 and the resulting number as 4, some
quick computations show that 4 = 2z + 1) = 1 = 4%’ + 4n = 4(n)(n + 1).
The observation that either z or (7 + 1) must be even gives an addi-
tional factor of 2, showing that 4 must be divisible by 8. Working such
problems deepens students’ understanding of number while providing
practice in symbolic representation, reasoning, and proof.

Understand meanings of operations and how they
relate to one another

As high school students’ understanding of numbers grows, they
should learn to consider operations in general ways, rather than only in
particular computations. The questions in figure 7.1 call for reasoning
about the properties of the numbers involved rather than for following
procedures to arrive at exact answers. Such reasoning is important in
judging the reasonableness of results. Although the questions can be ap-
proached by substituting approximate values for the numbers repre-
sented by # through b, teachers should encourage students to arrive at
and justify their conclusions by thinking about properties of numbers.

Principles and Standards for School Mathematics



For example, to determine the point whose coordinate is closest to 45, a
teacher might suggest considering the sign of #b and whether the mag-
nitude of ab is greater or less than that of 4. Likewise, students should
be able to explain why, if ¢ is positioned as given in figure 7.1, the mag-
nitude of 4 e is greater than that of e. Listening to students explain their
reasoning gives teachers insights into the sophistication of their argu-
ments as well as their conceptual understanding.

a b c de f g h

-2 -1 0 1 2

Given the points with coordinates a, b, ¢, d, e, f, g, and h as shown,
Which point is closest to ab? Tolc|? To 1/f? To JE ? To JE ?
Explain your reasoning.

Fig. 7.1.

These questions call for reasoning
without exact values.

Developing understandings of the properties of numbers can also
help students solve problems like the following:

1. The graphs of the functions f(x) = x, g(¥) = x, h(x) = ¥*, and j(x) = «’
are shown [in fig. 7.2]. Identify which function corresponds to which

graph and explain why.
2. Given f(x) = 30/x* and > 0, which is larger: f(a) or f(a + 2)? Explain
why.

The first question is answered easily if one notices that if x is between 0
and 1, »’ <x’ <x < Jx. To answer the second, a student would have to
recognize that x” is an increasing function for positive x and then be
able to reason that if «x is positive, 30/x* decreases as x increases. Hence,
f(@)>f(a +2)fora>0.

Students should also extend their understanding of operations to
number systems that are new to them. They should learn to represent
two-dimensional vectors in the coordinate plane and determine vector
sums (see fig. 7.3). Dynamic geometry software can be used to illustrate
the properties of vector addition. As students learn to represent systems
of equations using matrices, they should recognize how operations on
the matrices correspond to manipulations of such systems.

The organized lists and tree diagrams that students will have used in
the elementary and middle grades to count outcomes or compute prob-
abilities can be used in high school to work on permutations and com-
binations. Consider, for example, the task of determining how many

Fig. 7.2.
Graphs of four functions

1.0

1
T

0.8 +

0.6 +

04 4+

0.2 +

02 04 06 08 1.0

| E-example 7.1 Kg

Exploring Vectors and Vector Sums

(a+c b+d)
(a, b)

(c. d)
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Fig. 7.3.

A simple vector sum
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Students should be

able to decide whether a
problem calls for a
rough estimate, an
approximation, or an

exact answer.
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two-person committees can be chosen from a group of seven people.
Students should learn that the tree diagram they draw to represent the
number of possibilities has a multiplicative structure: there are seven
main branches, representing the first choice of committee member, and
six branches off each of those, representing the choice of the second
member. They also need to understand that this method of enumerat-
ing committees results in “double counting”: each committee of the
form (person 1, person 2) is also represented as (person 2, person 1).
Hence the number of two-person subcommittees is

O 7x6

BH 2
The students should also understand and be able to explain why the
number of two-person committees is the same as the number of five-
person committees that can be chosen from a group of seven people.
This kind of reasoning provides the conceptual underpinnings for work
in probability.

Compute fluently and make reasonable estimates

Students should be able to decide whether a problem calls for a
rough estimate, an approximation to an appropriate degree of precision,
or an exact answer. They should select a suitable method of computing
from among mental mathematics, paper-and-pencil computations, and
the use of calculators and computers and be proficient with each
method. Electronic computation technologies provide opportunities for
students to work on realistic problems and to perform difficult compu-
tations, for example, computing roots and powers of numbers or per-
forming operations with vectors and matrices. However, students must
be able to perform relatively simple mental computations as the basis
for making reasonable estimates and sensible predictions and to spot
potential sources of error. Suppose, for example, that a student wants to
know the cube root of 49, enters the expression 491/3 into a calcula-
tor, and the number 16.3333333 is displayed in response. The student
should note immediately that there has been an error, because the cube
root of 49 should be between 3 and 4, and 16 « 16 « 16 is much larger
than 49. To have the calculator compute the cube root, the student
would need to have entered 49/(1/3).
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Algebra

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Understand patterns, relations, and
functions

Represent and analyze mathemati-
cal situations and structures using
algebraic symbols

Use mathematical models to repre-
sent and understand quantitative
relationships

Analyze change in various contexts
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Grades

9-12

In grades 9-12 all students should—

* generalize patterns using explicitly defined and recursively defined
functions;

» understand relations and functions and select, convert flexibly among, and
use various representations for them;

* analyze functions of one variable by investigating rates of change,
intercepts, zeros, asymptotes, and local and global behavior;

* understand and perform transformations such as arithmetically combining,
composing, and inverting commonly used functions, using technology to
perform such operations on more-complicated symbolic expressions;

» understand and compare the properties of classes of functions, including
exponential, polynomial, rational, logarithmic, and periodic functions;

* interpret representations of functions of two variables.

* understand the meaning of equivalent forms of expressions, equations,
inequalities, and relations;

* write equivalent forms of equations, inequalities, and systems of equations
and solve them with fluency—mentally or with paper and pencil in simple
cases and using technology in all cases;

* use symbolic algebra to represent and explain mathematical relationships;

* use a variety of symbolic representations, including recursive and
parametric equations, for functions and relations;

* judge the meaning, utility, and reasonableness of the results of symbol
manipulations, including those carried out by technology.

* identify essential quantitative relationships in a situation and determine the
class or classes of functions that might model the relationships;

* use symbolic expressions, including iterative and recursive forms, to
represent relationships arising from various contexts;

» draw reasonable conclusions about a situation being modeled.

* approximate and interpret rates of change from graphical and numerical data.

Principles and Standards for School Mathematics



Algebra

In the vision of school mathematics in these Standards, middle-grades
students will learn that patterns can be represented and analyzed mathe-
matically. By the ninth grade, they will have represented linear functions
with tables, graphs, verbal rules, and symbolic rules and worked with
and interpreted these representations. They will have explored some
nonlinear relationships as well.

In high school, students should have opportunities to build on these
earlier experiences, both deepening their understanding of relations and
functions and expanding their repertoire of familiar functions. Students
should use technological tools to represent and study the behavior of
polynomial, exponential, rational, and periodic functions, among oth-
ers. They will learn to combine functions, express them in equivalent
forms, compose them, and find inverses where possible. As they do so,
they will come to understand the concept of a class of functions and
learn to recognize the characteristics of various classes.

High school algebra also should provide students with insights into
mathematical abstraction and structure. In grades 9-12, students should
develop an understanding of the algebraic properties that govern the
manipulation of symbols in expressions, equations, and inequalities.
They should become fluent in performing such manipulations by ap-
propriate means—mentally, by hand, or by machine—to solve equa-
tions and inequalities, to generate equivalent forms of expressions or
functions, or to prove general results.

The expanded class of functions available to high school students for
mathematical modeling should provide them with a versatile and pow-
erful means for analyzing and describing their world. With utilities for
symbol manipulation, graphing, and curve fitting and with programma-
ble software and spreadsheets to represent iterative processes, students
can model and analyze a wide range of phenomena. These mathemati-
cal tools can help students develop a deeper understanding of real-
world phenomena. At the same time, working in real-world contexts
may help students make sense of the underlying mathematical concepts
and may foster an appreciation of those concepts.

Understand patterns, relations, and functions

High school students’ algebra experience should enable them to cre-
ate and use tabular, symbolic, graphical, and verbal representations and
to analyze and understand patterns, relations, and functions with more
sophistication than in the middle grades. In helping high school stu-
dents learn about the characteristics of particular classes of functions,
teachers may find it helpful to compare and contrast situations that are
modeled by functions from various classes. For example, the functions
that model the essential features of the situations in figure 7.4 are quite
different from one another. Students should be able to express them
using tables, graphs, and symbols.

For the first situation, students might begin by generating a table of
values. If C'is the cost in cents of mailing a letter and P is the weight of
the letter in ounces, then the function C =33 + (P - 1)(22) describes C as
a function of P for positive integer values of P up through 13. Students

Standards for Grades 9—12: Algebra

High school algebra
should provide students
with insights into
mathematical
abstraction and

Structure.
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Fig. 74.

Three situations that can be modeled
by functions of different classes

Situation 1: In February 2000 the cost of sending a letter by first-class mail
was 33¢ for the first ounce and an additional 22¢ for each additional ounce or
portion thereof through 13 ounces.

Number of
SRS 1 2 3 4 5 2
Cost in cents 33 33+22 |33+2(22)|33+3(22)|33+4(22)]| ... | 33+ (P-1)(22)

Situation 2: During 1999 the population of the world hit 6 billion. The expected
average rate of growth is predicted to be 2 percent a year.

Situation 3: A table of data gives the number of minutes of daylight in
Chicago, lllinois, every other day from 1 January 2000 through 30 December
2000.

551, 553, 555, 557, 559, 562, 565, 568, 571, 575, 579, 582, 586, 591, 595, 599, 604, 609, 614, 619,
624, 629, 634, 639, 644, 650, 655, 661, 666, 672, 677, 683, 689, 694, 700, 706, 711, 717, 723, 728,
734, 740, 745, 751, 757, 762, 768, 773, 779, 785, 790, 796, 801, 806, 812, 817, 822, 827, 832, 837,
842, 847, 852, 856, 861, 865, 870, 874, 878, 881, 885, 889, 892, 895, 898, 901, 903, 905, 907, 909,
911, 912, 913, 914, 914, 914, 914, 914, 914, 913, 912, 911 909, 907, 905, 903, 901, 898, 895, 892,
889, 885, 882, 878, 874, 870, 866, 861, 857, 852, 848, 843, 838, 833, 828, 823, 818, 813, 807, 802,
797, 791, 786, 781, 775, 770, 764, 758, 753, 747, 742, 736, 731, 725, 719, 714, 708, 703, 697, 691,
686, 680, 675, 669, 664, 658, 653, 648, 642, 637, 632, 627, 622, 617, 612, 607, 603, 598, 594, 590,
585, 581, 578, 574, 571, 567, 564, 561, 559, 557, 554, 553, 551, 550, 549, 548, 547, 547, 547, 548,
548, 549, 550

Fig. 7.5.
A comparison of step and linear
functions
240 +
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should understand that this situation has some linear qualities. For real-
number values of P, the points on the graph of C =33 + (P—1)(22) lie on
a line, and the rate of change is constant at 22 cents per ounce. However,
the actual cost of postage and the linear function agree only at positive
integer values of P. Students must realize that the graph of postal cost as a
function of weight is a step function, as seen in figure 7.5.

For the second situation described in figure 7.4, teachers could en-
courage students to find a general expression for the function and note
how its form differs from the step function that describes the postal
cost. Some students might generate an iterative or recursive definition
for the function, using the population of a given year (NOW) to deter-
mine the population of the next year (NEXT):

NEXT = (1.02) « NOW), start at 6 billion

(See the discussion of NOW-NEXT equations in the “Representation”
section of chapter 6.) Moreover, students should be able to recognize
that this situation can be represented explicitly by the exponential func-
tion f(n) = 6(1.02)", where f(n) is the population in billions and 7 is the
number of years since 1999. A discussion of whether this formula is
likely to be a good model forever would help students see the limita-
tions of mathematical models.

For the third situation, students could begin by graphing the given
data. It will help them to know that everywhere on earth except at the
equator, the period of sunlight during the day increases for six months
of the year and decreases for the other six. From the graph, they should
be able to see that the daily increase in daylight is nonconstant over the
first half of the year and that the decrease in the second half of the year
also is nonconstant. Students could be asked to find a function that
models the data well. The teacher could tell them that the length of
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daylight can indeed be modeled by a function of the form 7(¢) = T, +
T40) sin(w? + ¢), where ¢ is measured in months, 7, = average day-
light time = 12 hours; 73(6) = amplitude, depending on latitude 6
(changes sign at the equator); w = frequency = 211/12, and ¢ = phase (de-
pending on choice of the initial time, #,). Students will see such formu-
las in their physics courses and need to understand that formulas ex-
press models of physical phenomena. It is also important to note that
the parameters in physical equations have units.

After exploring and modeling each of the three situations individu-
ally, students could be asked to compare the situations. For example,
they might be asked to find characteristics that are common to two or
more of the functions. Some students might note that over the inter-
vals given, the first function is nondecreasing, the second is strictly in-
creasing, and the third both increases and decreases. Students need to
be sensitive to the facts that functions that are increasing over some
intervals don’t necessarily stay increasing and that increasing func-
tions may have very different rates of increase, as these three examples
illustrate.

Students could also be asked to consider the advantages and disad-
vantages of the different ways the three functions were represented.
The teacher should help students realize that depending on what one
wants to know, different representations of these functions can be more
or less useful. For instance, a table may be the most convenient way to
initially represent the postage function in the first example. The same
may be so for the third example if the goal is to determine quickly how
much sunlight there will be on a given day. Despite the convenience of
being able to “read” a value directly, however, the table may obscure the
periodicity of the phenomenon. The periodicity becomes apparent
when the function is represented graphically or symbolically. Similarly,
although students may first create tables when presented with the sec-
ond situation, graphical and symbolic representations of the exponen-
tial function may help students develop a better understanding of the
nature of exponential growth.

High school students should have substantial experience in exploring
the properties of different classes of functions. For instance, they
should learn that the function f(x) = x* — 2x - 3 is quadratic, that its
graph is a parabola, and that the graph opens “up” because the leading
coefficient is positive. They should also learn that some quadratic equa-
tions do not have real roots and that this characteristic corresponds to
the fact that their graphs do not cross the x-axis. And they should be
able to identify the complex roots of such quadratics.

In addition, students should learn to recognize how the values of
parameters shape the graphs of functions in a class. With access to
computer algebra systems (CAS)—software on either a computer or
calculator that carries out manipulations of symbolic expressions or
equations, can compute or approximate values of functions or solu-
tions to equations, and can graph functions and relations—students
can easily explore the effects of changes in parameter as a means of
better understanding classes of functions. For example, explorations
with functions of the form y = ax’ + bx + ¢ lead to some interesting re-
sults. The consequences of changes in the parameters # and ¢ on the
graphs of functions are relatively easy to observe. Changes in 4 are not
as obvious: changing 4 results in a translation of the parabola along a

Standards for Grades 9—12: Algebra
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Fig. 7.6.

Graphs of exponential functions of
the form flx) =a « b* + ¢

nonvertical line. Moreover, a trace of the vertices of the parabolas
formed as & is varied forms a parabola itself. Exploring functions of
the form f(x) = a(x — h)* + b(x — b) + ¢ and seeing how their graphs
change as the value of 4 is changed also provides a basis for under-
standing transformations and coordinate changes.

As high school students study several classes of functions and become
familiar with the properties of each, they should begin to see that classi-
tying functions as linear, quadratic, or exponential makes sense because
the functions in each of these classes share important attributes. Many
of these attributes are global characteristics of the functions. Consider,
for example, the graphs of the three exponential functions of the form
f)=a<b"+c,witha>0andb > 1, given in figure 7.6.
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To help students notice and describe characteristics of these three
functions, teachers might ask, “What happens to each of these func-
tions for large positive values of x? For large negative values of x?
Where do they cross the y-axis?” One student might note that the val-
ues of each function increase rapidly for large positive values of x. An-
other student could point out that the y-intercept of each graph appears
to be # + ¢. Teachers should then encourage students to explore what
happens in cases where 2 < 0 or 0 </ < 1. Students should find that
changing the sign of # will reflect the graph over a horizontal line,
whereas changing 4 to 1/b will reflect the graph over the y-axis. The
graphs will retain the same shape. This type of exploration should help
students see that all functions of the form f(x) = # « b* + ¢ share certain
properties. Through analytic and exploratory work, students can learn
the properties of this and other classes of functions.

Represent and analyze mathematical situations and
structures using algebraic symbols

Fluency with algebraic symbolism helps students represent and solve
problems in many areas of the curriculum. For example, proving that the
square of any odd integer is 1 more than a multiple of 8 (see the related
discussion in the “Number” section of this chapter) can involve repre-
senting odd numbers and operating on that representation algebraically.
Likewise, the equations in figure 7.7 suggest an algebraic justification of

Principles and Standards for School Mathematics



c? = (a-b)* + 4 E%abg

a visual argument for the Pythagorean theorem. And many geometric
conjectures—for example, that the medians of a triangle intersect at a
point—can be proved by representing the situation using coordinates
and manipulating the resulting symbolic forms (see the “Geometry” sec-
tion of this chapter). Straightforward algebraic arguments can be used to
show how the mean and standard deviation of a data set change if sample
measurements are converted from square meters to square feet (see the
“Reasoning and Proof” section of this chapter).

Students should be able to operate fluently on algebraic expressions,
combining them and reexpressing them in alternative forms. These
skills underlie the ability to find exact solutions for equations, a goal
that has always been at the heart of the algebra curriculum. Even solv-
ing equations such as

(x+1) +(x =2)+7 =3(x =3)" +4(x +5) +1
requires some degree of fluency. Finding and understanding the mean-
ing of the solution of an equation such as

et =47 43

calls for seeing that the equation can be written as a quadratic equation
by making the substitution « = ¢**. (Such an equation deserves careful
attention because one of the roots of the quadratic is negative.)
Whether they solve equations mentally, by hand, or using CAS, stu-
dents should develop an ease with symbols that enables them to repre-
sent situations symbolically, to select appropriate methods of solution,
and to judge whether the results are plausible.

Being able to operate with algebraic symbols is also important be-
cause the ability to rewrite algebraic expressions enables students to re-
express functions in ways that reveal different types of information about
them. For example, given the quadratic function f(x) = x* — 2x - 3, some
of whose graphical properties were discussed earlier, students should be
able to reexpress it as f(x) = (x — 1)* — 4, a form from which they can eas-
ily identify the vertex of the parabola. And they should also be able to
express the function in the form f(x) = (x — 3)(x + 1) and thus identify its
roots asx = 3 and x = —1.

"The following example of how symbol-manipulation skills and the abil-
ity to interpret graphs could work in concert is a hypothetical composite
of exploratory classroom activities, inspired by Waits and Demana (1998):

Standards for Grades 9—12: Algebra

Fig. 7.7.

An algebraic explanation of a visual
proof of the Pythagorean theorem
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A teacher asks her students to analyze the function

F@) = 20 + 1lx + 6
x -2
and make as many observations about it as they can. Some students
begin by trying to graph the function, plotting points by hand.
Some students use a CAS and others perform long division by

Fig. 7.8. hand, producing the equivalent form
Different views of the function 36

f(x):2x2+11x+6 f(x) = 20+ 15 + —(x—Z).

¥-2 Some graph the original function or the equivalent form on a com-
. puter or on graphing calculators; the zoom feature enables them to
see various views of the graph, as seen in figure 7.8.

/\2 It is hard to interpret some of the graphs near x = 2, a matter the class
/ B \ Do returns to later. Focusing on a graph where the zoom-out feature has

been used a number of times (see fig. 7.8¢c), some students observe,
“The graph looks like a straight line.” The teacher asks the class to
L decide whether it is a line and, if so, what the equation of the line

(@) might be. To investigate the question, the teacher suggests that they
find several values of f(x) for large positive and negative values of «x
r L/ and use curve-fitting software to find the equation of the line passing

) through those points. Different groups choose different x-values and,

as a result, obtain slightly different values for the slope and the y-in-
nnnnnnn R e tercept. However, when the class discusses their findings, they dis-
cover that the lines that fit those points all seemed “close” to the line
y=2x+ 15. Some students point out that this function is part of the
result they obtained after performing the long division.

(b) The class concludes that the line y = 2x + 15 is a good approximation
to f(x) for large x-values but that it is not a perfect fit. This conclu-
sion leads to the question of how the students might combine the
graphs of g(x) = 2x + 15 and h(x) = 36/(x — 2) to deduce the shape of
the graph of f(x). Hand-drawn and computer plots help students ex-

o T T plore how the graph of each function “contributes to” the graph of
the sum. Examining the behavior of
ha) = 2O
(c) x -2

leads to a discussion of what “really” happens near x = 2, of why the
function appears to be linear for large values of x, and of the need
to develop a sense of how algebraic and graphical representations of
functions are related, even when graphing programs or calculators
are available.

Students in grades 9-12 should develop understandings of algebraic
concepts and skill in manipulating symbols that will serve them in situa-
tions that require both. Success in the example shown in figure 7.9, for
example, requires more than symbol manipulation. There are several
ways to approach this problem, each of which requires understanding al-
gebraic concepts and facility with algebraic symbols. For example, to
complete the first row of the table, students need only know how to
evaluate f(x) and g(x) for a given value of x. However, to complete the
second row, students must know what it means to compose functions,
including the role of the “inner” and “outer” function and the numbers

302 Principles and Standards for School Mathematics
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If f(x) = x2— 1 and g(x) = (x + 1)2, complete the table below.

X f(x) 9ix) flgx) | g(fx))
2 80 16
4 81

on which they act in a composition. They also must understand how to
read the symbols f(g(x)) and g(f(x)). Students might reason, using an in-
tuitive understanding of the inverse of a function, that because g(x) = 4,
x must be either 1 or —3. They can then determine that x cannot be 1,
because g(f(1)) is not 81.

Use mathematical models to represent and understand
quantitative relationships

Modeling involves identifying and selecting relevant features of a
real-world situation, representing those features symbolically, analyzing
and reasoning about the model and the characteristics of the situation,
and considering the accuracy and limitations of the model. In the pro-
gram proposed here, middle-grades students will have used linear func-
tions to model a range of phenomena and explored some nonlinear
phenomena. High school students should study modeling in greater
depth, generating or using data and exploring which kinds of functions
best fit or model those data.

Teachers may find that having students generate data helps generate
interest in creating mathematical models. For example, students could
conduct an experiment to study the relationship between the time it
takes a skateboard to roll down a ramp of fixed length and the height
of the ramp (Zbiek and Heid 1990). Teams of students might set ramps
at different heights and repeatedly roll skateboards down the ramps
and measure the time. Once students have gathered and plotted the
data, they can analyze the physical features of the situation to create
appropriate mathematical models. Their knowledge of the characteris-
tics of various classes of functions should help them select potential
models. In this situation, as the height of the ramp is increased, less
time is needed, suggesting that the function is decreasing. Students can
discuss the suitability of linear, quadratic, exponential, and rational
functions by arguing from their data or from the physics of the situa-
tion. Curve-fitting software allows students to generate possible mod-
els, which they can examine for suitability on the basis of the data and
the situation.

In making choices about what kinds of situations students will model,
teachers should include examples in which models can be expressed in
iterative, or recursive, form. Consider the following example, adapted
from National Research Council (1998, p. 80), of the elimination of a
medicine from the circulatory system.

A student strained her knee in an intramural volleyball game, and her doc-
tor prescribed an anti-inflammatory drug to reduce the swelling. She is to

Standards for Grades 9—12: Algebra

Fig. 7.9.

A composition-of-functions problem
(Adapted from Tucker [1995])

O

E-example 7.2

Medicine: Applying Graphs, Tables
and Equations
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L
L A B
1 440
2 616
3 686.4
4 714.56
5 725.824
6 730.3296
7 732.13184
8 732.852736
9 733.1410944
10 733.2564376
11 733.3025751
12 733.32103
13 733.328412
14 733.3313648
15 733.3325459
16 733.3330184
17 733.3332073
18 733.3332829
19 733.3333132
20 733.3333253
21 733.3333301 :II}
22 733.333332
23 733.3333328
24 733.3333331
25
Fig. 7.10.
A spreadsheet computation of the
“drug dosage” problem
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take two 220-milligram tablets every 8 hours for 10 days. If her kidneys fil-
tered 60% of this drug from her body every 8 hours, how much of the
drug was in her system after 10 days? How much of the drug would have
been in her system if she had continued to take the drug for a year?

Teachers might ask students to conjecture about how much of the
drug would be in the volleyball player’s system after 10 days. They
might also ask about whether the drug keeps accumulating noticeably
in the athlete’s system. Students will tend to predict that it does, and
they can be asked to examine the accumulation in their analysis.

Students might begin by calculating a few values of the amount of
the drug in the player’ system and looking for a pattern. They can pro-
ceed to model the situation directly, representing it informally as

NEXT = 0.4NOW) + 440, start at 440
or more formally as
=440 and 2,,, = 0.44, +440 for 1< n <31,

where 7 represents the dose number (dose 31 would be taken at 240
hours, or 10 days) and #,, represents the amount of the drug in the sys-
tem just after the nth dose. By looking at calculator or spreadsheet com-
putations like those in figure 7.10, students should be able to see that
the amount of the drug in the bloodstream reaches an after-dosage
“equilibrium” value of about 733 1/3 milligrams. Students should learn
to express the relationship in one of the iterative forms given above.
Then the mathematics in this example can be pursued in various ways.
At the most elementary level, the students can simply verify the equilib-
rium value by showing that 0.4(733 1/3) + 440 = 733 1/3 milligrams.
They can be asked to predict what would happen if the initial dose of
the anti-inflammatory drug were different, to run the simulation, and
to explain the result they obtain.

This investigation opens the door to explorations of finite sequences
and series and to the informal consideration of limits. (For example,
spreadsheet printouts for “large 7” for various dosages strongly suggest
that the sequence {#,} of after-dosage levels converges.) Expanding the
first few terms reveals that this is a finite geometric series:

2 = 440 = 440(1)

4y = 440 + 0.4(440) = 440(1 + 0.4)

(
y

(440) = (1 + 0.4+(0.4)Z)

w&
1]

) =
440 + 0.4(440) + (04
)

a, = 440 + 0.4(440) + (0.4)'(440) «
440(1 + 04+(04) +(o.4)3)

(0.4)'(440)

Students might find it interesting to pursue the behavior of this series.
"To investigate other aspects of the modeling situation, students could
also be asked to address questions like the following:

* If the athlete stops taking the drug after 10 days, how long does it take
for her system to eliminate most of the drug?

* How could you determine a dosage that would result in a targeted after-
dosage equilibrium level, such as 500 milligrams?

Principles and Standards for School Mathematics



Students should also be made aware that problems such as this describe
only one part of a treatment regimen and that doctors would be alert to
the possibility and implications of various complicating factors.

In grades 9-12, students should encounter a wide variety of situa-
tions that can be modeled recursively, such as interest-rate problems or
situations involving the logistic equation for growth. The study of re-
cursive patterns should build during the years from ninth through
twelfth grade. Students often see trends in data by noticing change in
the form of differences or ratios (How much more or less? How many
times more or less?). Recursively defined functions offer students a nat-
ural way to express these relationships and to see how some functions
can be defined recursively as well as explicitly.

Analyze change in various contexts

Increasingly, discussions of change are found in the popular press
and news reports. Students should be able to interpret statements such
as “the rate of inflation is decreasing.” The study of change in grades
9-12 is intended to give students a deeper understanding of the ways in
which changes in quantities can be represented mathematically and of
the concept of rate of change.

The “Algebra” section of this chapter began with examples of three
different real-world contexts in which very different kinds of change
occurred. One situation was modeled by a step function, one by an ex-
ponential function, and one by a periodic function. Each of these func-
tions changes in different ways over the interval given. As discussed ear-
lier, students should recognize that the step function is nonlinear but
that it has some linear qualities. To many students, the kind of change
described in the second situation sounds linear: “Each year the popula-
tion changes by 2 percent.” However, the change is 2 percent of the
previous year’s population; as the population grows, the increase grows
as well. Students should come to realize that functions of this type grow
very rapidly. In the third example, students can see that not only is the
function periodic but because it is, its rate of change is periodic as well.

Chapter 6 gives an example in which middle-grades students are asked
to compare the costs of two different pricing schemes for telephone calls:
a flat rate of $0.45 a minute versus a rate of $0.50 a minute for the first 60
minutes and $0.10 a minute for each minute thereafter. In examples of
this type, the dependent variable typically changes (over some interval) a
fixed amount for each unit change in the independent variable. In high
school, students should analyze situations in which quantities change in
much more complex ways and in which the relationships between quanti-
ties and their rates of change are more subtle. Consider, for example, the
situation (adapted from Carlson [1998, p. 147]) in figure 7.11.

Working problems of this type builds on the understandings of
change developed in the middle grades and lays groundwork for the
study of calculus. Because students tend to confuse velocity with posi-
tion, teachers should help them think carefully about which variables are
represented in the diagram and about how they change. First, for exam-
ple, students must realize that the variable on the vertical axis is velocity,
rather than position. To answer part # of the question, they need to rea-
son that because the velocity of car A is greater than that of car B at
every point in the interval 0 < ¢ < 1, car A has necessarily traveled a

Standards for Grades 9—12: Algebra

Increasingly, discussions

of change are found in

the popular press and

news reports.
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The given graph represents velocity vs. time for two cars. Assume
that the cars start from the same position and are traveling in the same

direction.

(a) State the relationship between the position of car A and that of car

B at t=1 hr. Explain.

(b) State the relationship between the velocity of car A and that of

car B at t=1 hr. Explain.

CarA

Speed

CarB

(c) State the relationship between the acceleration of car A and that of 1

car B at t= 1 hr. Explain.

t=0hr. t=1hr

(d) How are the positions of the two cars related during the time Time in Hours
interval between t =0.75 hr.and t =1 hr.? (That is, is one
car pulling away from the other?) Explain.

Fig. 7.11.

A problem requiring a sophisticated
understanding of change
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greater distance than car B. They can read the answer to part 4 directly
off the graph: at = 1 hour, both cars are traveling at the same velocity.
Answering part ¢ calls for at least an intuitive understanding of instanta-
neous rate of change. Acceleration is the rate of change of velocity. At

t = 1 hour, the velocity of car B is increasing more rapidly than that of
car A, so car B is accelerating more rapidly than car A at ¢ = 1 hour. Part
d is particularly counterintuitive for students (Carlson 1998). Since car B
is accelerating more rapidly than car A near ¢ = 1 hour, students tend to
think that car B is “catching up” with car A, and it is, although it is still
far behind. Some will interpret the intersection of the graphs to mean
that the cars meet. Teachers need to help students focus on the relative
velocities of the two cars. Questions such as “Which car is moving faster
over the interval from # = 0.75 hour to ¢ = 1 hour?” can help students re-
alize that car A is not only ahead of car B but moving faster and hence
pulling away from car B. Car B starts catching up with car A only after

t =1 hour.
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(Geometry

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Analyze characteristics and proper-
ties of two- and three-dimensional
geometric shapes and develop
mathematical arguments about
geometric relationships

Specify locations and describe
spatial relationships using coordinate
geometry and other representational
systems;

Apply transformations and use
symmetry to analyze mathematical
situations

Use visualization, spatial reasoning,
and geometric modeling to solve
problems

308

Grades

9-12

In grades 9-12 all students should—

* analyze properties and determine attributes of two- and three-dimensional
objects;

* explore relationships (including congruence and similarity) among classes of
two- and three-dimensional geometric objects, make and test conjectures
about them, and solve problems involving them;

* establish the validity of geometric conjectures using deduction, prove
theorems, and critique arguments made by others;

* use trigonometric relationships to determine lengths and angle measures.

* use Cartesian coordinates and other coordinate systems, such as
navigational, polar, or spherical systems, to analyze geometric situations;

* investigate conjectures and solve problems involving two- and three-
dimensional objects represented with Cartesian coordinates.

* understand and represent translations, reflections, rotations, and dilations of
objects in the plane by using sketches, coordinates, vectors, function
notation, and matrices;

* use various representations to help understand the effects of simple
transformations and their compositions.

* draw and construct representations of two- and three-dimensional
geometric objects using a variety of tools;

* visualize three-dimensional objects from different perspectives and analyze
their cross sections;

* use vertex-edge graphs to model and solve problems;

* use geometric models to gain insights into, and answer questions in, other
areas of mathematics;

* use geometric ideas to solve problems in, and gain insights into, other
disciplines and other areas of interest such as art and architecture.

Principles and Standards for School Mathematics



Geometry

In programs that adopt the recommendations in Principles and Stan-
dards, middle-grades students will have explored and discovered rela-
tionships among geometric shapes, often using dynamic geometry soft-
ware. Using features of polygons and polyhedra, they will have had
experience in comparing and classifying shapes. High school students
should conduct increasingly independent explorations, which will allow
them to develop a deeper understanding of important geometric ideas
such as transformation and symmetry. These understandings will help
students address questions that have always been central to the study of
Euclidean geometry: Are two geometric figures congruent, and if so,
why? Are they similar, and if so, why? Given that a geometric object has
certain properties, what other properties can be inferred?

Geometry offers a means of describing, analyzing, and understanding
the world and seeing beauty in its structures. Geometric ideas can be
useful both in other areas of mathematics and in applied settings. For
example, symmetry can be useful in looking at functions; it also figures
heavily in the arts, in design, and in the sciences. Properties of geomet-
ric objects, trigonometric relationships, and other geometric theorems
give students additional resources to solve mathematical problems.

High school students should develop facility with a broad range of
ways of representing geometric ideas—including coordinates, networks,
transformations, vectors, and matrices—that allow multiple approaches
to geometric problems and that connect geometric interpretations to
other contexts. Students should recognize connections among different
representations, thus enabling them to use these representations flexibly.
For example, in one set of circumstances it might be most useful to think
about an object’s properties from the perspective of Euclidean geometry,
whereas in other circumstances, a coordinate or transformational ap-
proach might be more useful. This ability to use different representations
advantageously is part of students’ developing geometric sophistication.

Geometry has always been a rich arena in which students can dis-
cover patterns and formulate conjectures. The use of dynamic geome-
try software enables students to examine many cases, thus extending
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their ability to formulate and explore conjectures. Judging, constructing,
and communicating mathematically appropriate arguments, however,
remain central to the study of geometry. Students should see the power
of deductive proof in establishing the validity of general results from
given conditions. The focus should be on producing logical arguments
and presenting them effectively with careful explanation of the reason-
ing, rather than on the form of proof used (e.g., paragraph proof or two-
column proof). A particular challenge for high school teachers is to inte-
grate technology in their teaching as a way of encouraging students to
explore ideas and develop conjectures while continuing to help them un-
derstand the need for proofs or counterexamples of conjectures.

Analyze characteristics and properties of two- and three-
dimensional geometric shapes and develop mathematical
arguments about geometric relationships

Students should enter high school understanding the properties of,
and relationships among, basic geometric objects. In high school, this
knowledge can be extended and applied in various ways. Students
should become increasingly able to use deductive reasoning to establish
or refute conjectures and should be able to use established knowledge
to deduce information about other situations. For example, a teacher
might ask students to solve problems like that in figure 7.12.

Fig. 7.12.

A geometric problem requiring
deduction and proof
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A
In this figure, AB || DE and DF O] CE. 13“5

F E
Determine the perimeter of /A ABC B C (]
and the perimeter of /A CDE. Explain
completely how you found your 48 5
answers and how you know they are
correct.

D

Students need to put together a number of logical deductions in
order to solve this problem. The following proof demonstrates an abil-
ity to select and focus on important elements in the diagram, and it
shows a solid understanding of the concepts involved and how they can
be assembled to solve the problem. Note particularly how the fictional
student finds different connections to be sure her reasoning is sound.

First, I noticed that since AB and DE are parallel, angles B and E
must be congruent. Also, angles ACB and DCE are congruent, since
they are vertical. So now I know that the two triangles (4BC corre-
sponds to DEC) are similar by angle-angle similarity. But that tells
me that their corresponding sides are proportional. Since DE =
4(AB), I know that all the sides of triangle DEC are 4 times as large
as the corresponding sides of triangle ABC, so CD = 4(15) = 60.

Now I just need to find the other side of triangle DEC to find its
perimeter. But DF makes it into 2 right triangles, so I can use the

Principles and Standards for School Mathematics



Pythagorean theorem on each of those. FE* + 48’ = 52°, so FE is 20.
(Actually, I just noticed that this is just 4 times a 5-12-13 triangle, but
I saw that too late.) Then looking at CDF, this is 12 times a 3-4-5 tri-
angle, so CF must be 36. (I checked using the Pythagorean theorem
and got the same answer.) So the perimeter is 52 + 60 + 56 = 168.

Once I find the perimeter of ABC, I'm done. But that’s easy, since
the scale factor from DEC to ABC is 25%. I can just divide 168 by 4
and get 42. The reason that works is that each of the sides of ABC is
25% of its corresponding side in DEC, so the whole perimeter of
ABC will be 25% of DEC. We already proved that in class anyway.

High school students should begin to organize their knowledge
about classes of objects more formally. Finding precise descriptions of
conditions that characterize a class of objects is an important first step.
For example, students might define a trapezoid as a quadrilateral with
at least one pair of parallel sides. They should realize that such a defini-
tion includes parallelograms, rectangles, and squares as special classes of
trapezoids. Students might also ask, “How much information do I need
to be sure a quadrilateral is a trapezoid? Do I need also to know some-
thing about its diagonals and angles? Can I get by with just some of this
information?” As their ability to make logical deductions grows, stu-
dents should be able to develop characterizations that follow directly
from the properties of parallel lines and similar triangles. Alternatively,
the class of trapezoids could be characterized in terms of its diagonals:
If the diagonals of a quadrilateral cut each other so that the ratios of the
corresponding segments of the diagonal are equal, then the quadrilat-
eral is a trapezoid.

A teacher might ask a class to consider, on the basis of this character-
ization, how trapezoids are related to other classes of quadrilaterals. In
considering parallelograms, students may note that the diagonals bisect
each other, so each is cut in a 1:1 ratio and therefore the parts are pro-
portional. The obvious conclusion that parallelograms (and many other
classes of quadrilaterals) may be considered a special kind of trapezoid
may seem unusual to those who think of a trapezoid as a quadrilateral
with exactly one pair of parallel sides. However, it is important for stu-
dents to see that the definition chosen will determine the conclusions
that can be drawn.

One of the most important challenges in mathematics teaching has
to do with the roles of evidence and justification, especially in increas-

ingly technological environments. Using dynamic geometry software, Usin g dynﬂmzc geornetry
students can quickly generate and explore a range of geometric exam-

ples. If they have not learned the appropriate uses of proof and mathe- S OﬁWﬂ%’ , Students can
matical argumentation, they might argue that a conjecture must be .

valid simply because it worked in all the examples they tried. Despite qut ck l_)/ generate a nd

the possibility of students’ developing such a misconception, in a class-
room in which students understand the roles of experimentation, con-
jecture, and proof, being able to generate and explore many examples
can result in deeper and more-extended mathematical investigations
than might otherwise be possible. The following hypothetical example
illustrates how students might investigate relationships in a dynamic
geometry environment and justify or refute conclusions.

explore a range of

geometric examples.

The students are asked to draw a triangle, construct a new triangle
by joining the midpoints of its three sides, and calculate the ratio of
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Fig. 7.13.

Exploring and extending the results
of connecting the midpoints of the
adjacent sides of polygons

@)

(b)

©)

]

E-example 7.3»(%

Midpoint Connections and Area
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the area of the midpoint triangle to the area of the original triangle
(see fig. 7.13a). As they drag one vertex to create many different tri-
angles, the students notice that the ratio of the two areas appears to
remain constant at 0.25.

Jake says he thinks that this relationship will always hold. He says
that since the base of each of the four small triangles is a midline,
each side of the midpoint triangle should be half as long as the par-
allel side of the large triangle. Each midline cuts the altitude in half,
so the height of each small triangle is half that of the large triangle.
Dividing each of these lengths by 2 divides the area by 4, so the area
of the small triangle is one-fourth of the area of the large one.

Berta agrees with Jake’s answer and thinks she can show that it must
be true. She explains how she has extended the midlines and the
sides of the triangles to form three pairs of parallel lines and is now
able to determine many pairs of congruent angles. She reasons,
using parallelism, that the corresponding sides are congruent and
determines that the three small triangles formed at the vertices of
the original triangle are congruent by angle-side-angle. She is con-
fident that the midpoint triangle should be congruent to the other
three, but when the teacher asks her how she can be sure, she is un-
able to give an explanation. The teacher asks one question: “Do you
know anything about the sides of that triangle?” Her friend Dawn
quickly notes that all its sides are shared with the sides of the other
three, which indicates that it would have to be the same size.

Hope has a somewhat different way of looking at the situation. She
notices that the lengths of the corresponding sides of the midpoint
triangle and the original triangle are in a ratio of 1:2, so they must
be similar. Thus, the area of the midpoint triangle must be one-
fourth the area of the original on the basis of the class’s earlier ob-
servation that the areas of similar triangles are related by the square
of their scale factor. The teacher asks the class to think about the
relationship between Hope’s method and Jake’s method.

The students decide to test whether a constant ratio exists for the
area of a “midpoint” quadrilateral to the area of a convex quadrilat-
eral (see figure 7.13b). It appears that the area ratio in this case is
0.5. They are able to prove this relationship by dividing a quadrilat-
eral into two triangles and employing the methods they used in the
previous investigation. The students begin to wonder whether they
have discovered a big idea. Does a constant ratio hold for other
polygons? For the first few convex pentagons they try (see fig.
7.13c), the area ratio appears to be constant at 0.7 (see Zbiek [1996]
for a discussion about how this problem can be solved using tech-
nology). When they are unable to generate a proof, they decide to
check more examples. When they do so, they begin to see some
variation in the ratios. This development is disappointing to the
students, who were hoping that the result they proved for triangles
and quadrilaterals would be general. Their teacher points out that
they really should be encouraged by their results. They have made a
series of conjectures, produced proofs of some conjectures, and pro-
duced counterexamples to show when other conjectures do not
hold. That kind of careful thinking, he says, is truly mathematical.
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Applied problems can furnish both rich contexts for using geometric
ideas and practice in modeling and problem solving. For example, right-
triangle trigonometry is useful in solving a range of practical problems.
"Teachers can introduce students to problems such as the following,
which is adapted from Hamilton and Hamilton (1993):

People working in the building trades sometimes need to divert their con-
struction around obstacles. Although they often use simple offsets of 90°, 45°,
or 30°, other angles are sometimes needed in areas where space is limited.

A construction worker needs to reroute an underground pipe in order to
avoid the root systems of two trees. She needs to raise the path of her pipe
23 inches over a distance of over 86 inches [see fig. 7.14], and then con-
tinue on a course parallel to that of the original pipe. What angles should
she cut in order to accomplish this?

Fig. 7.14.

The rerouting of an underground
pipe

23 inches

86 inches

When a section of pipe is cut at an angle, the cross section is an ellipse. If one
of the two resulting pieces is rotated 180 degrees about the axis going through
the center of the pipe and then repositioned, the elliptical cross sections
match each other, so the two pipes can be joined smoothly [see fig. 7.15].

A second cut will be needed to send the pipe on in the original direction, as
in [figure 7.14]. The angles marked 0 are equal in measure, as are the angles
marked @. In order to proceed, the pipe fitter needs to find the two angles at
which to cut the materials as well as the length C of the connecting piece.

To find 6 and @, students need to observe that 20 + B = 180°, 2@ +
(90° — B) = 270°, and tan(P) = 23/86. Working through this kind of prob-
lem can help students develop visualization skills and see how what they
have learned can be applied in meaningful contexts.

Specify locations and describe spatial relationships using
coordinate geometry and other representational systems

Geometric problems can be presented and approached in various
ways. For example, many problems from Euclidean geometry, such as
showing that the medians of any triangle intersect at a point, can be
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Fig. 7.15.

Cutting and repositioning a pipe
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approached through coordinate geometry. Although it is possible to
use a different variable for the coordinates of each vertex (especially if
a CAS package is effectively used), a “without loss of generality” argu-
ment can be used to lower the level of symbolic complexity. This type
of argument relies on conveniently placing a coordinate plane over a
general triangle (or other figure), often so that the coordinate axis co-
incides with a side of the triangle. By making clever choices about
naming the coordinates of the vertices, taking care, of course, to be
sure that the choices do not introduce unintended conditions, the cal-
culations can be quite reasonable. Once they have obtained a repre-
sentation like that in figure 7.16, students could determine the equa-
tions of two of the medians, find the point at which they intersect,
and show that the third median passes through that point. Although
proofs of this kind can be difficult for high school students, grappling
with them may stimulate growth in students’ understanding of geom-
etry, algebraic variables, and generality.

Fig. 7.16.

A diagram that shows the use of
coordinate geometry to prove that
the medians of a triangle intersect
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y @b, 2¢)

(b, c) (@a+b, 0

(2a, 0)

(0, 0) (a, 0) X

In grades 9-12 students should also explore problems for which
using other coordinate systems is helpful. They should have some fa-
miliarity with spherical and simple polar coordinate systems, as well as
with systems used in navigation. Using rectangular coordinates, for ex-
ample, students should learn to represent points that lie on a circle of
radius 3 centered at the origin as

(x, + \/ﬁ)

for —3 < x < 3. With polar coordinates, these pairs are represented more
simply as (3, ) for 0 < 8 < 211, where Bis measured in radians. Students
should be able to explain why both of these forms describe the points
on a circle. The polar-coordinate representation is simpler in this ex-
ample and may be more useful for solving certain problems.

Apply transformations and use symmetry to analyze
mathematical situations

Middle-grades students should have had experience with such basic
geometric transformations as translations, reflections, rotations, and di-
lations (including contractions). In high school they will learn to repre-
sent these transformations with matrices, exploring the properties of
the transformations using both graph paper and dynamic geometry

Principles and Standards for School Mathematics



tools. For example, students who are familiar with matrix multiplication
could be introduced to matrix representations of transformations

through tasks such as the one in figure 7.17.

-4.7)

Consider a triangle ABC with vertices ‘.
A=(-5,1), B=(-4,7),and C= (-8, 5).

Reflect the triangle over the line y = x to it
obtain the triangle A'B’'C'as shown.

Determine a matrix M such that MA= A’, .
MB = B', and MC = C', where the points R (1,-5)

are represented as vectors. L Al B
Explore the properties of the matrix M. /,’

Fig. 7.17.

Representing a reflection using a ma-
trix (See a similar example in Senk
etal. [1996].)

By graphing the triangle and its image, students can see that the first
question amounts to determining P, Q, R, and S in the following trans-
formation matrix, where the vertices of the triangles are collected into a
2 x 3 matrix for convenience:

80 01 7 50

(P QOS5 -4 B

R OSHAL 7 SH 5 -4 -8H
They might solve the resulting set of equations, showing that the trans-
formation matrix is

0 10
1 of

Alternatively, they might observe that they need to find an M so that

&0 O
M-oo=00O
0 O

and explore various possibilities until observing that

0 10&0 OO

4 odbd &0
Other transformations with easily accessible matrix representations in-
clude reflections over either axis and about the line y = —, rotations
about the origin that are multiples of 90 degrees, and dilations from the
origin. Students should understand that multiplying transformation
matrices corresponds to composing the transformations represented.
They should also understand that transformations have many practical
applications.

Use visualization, spatial reasoning, and geometric
modeling to solve problems

Creating and analyzing perspective drawings, thinking about how lines
or angles are formed on a spherical surface, and working to understand
orientation and drawings in a three-dimensional rectangular coordinate
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system all afford opportunities for students to think and reason spatially.
With the expanding role of computer graphics in the workplace, students
will have increased needs and opportunities to use visualization as a
problem-solving tool. Schooling should provide rich mathematical settings
in which they can hone their visualization skills. Visualizing a building rep-
resented in architectural plans, the shape of a cross section formed when a
plane slices through a cone (a conic section) or another solid object, or the
shape of the solid swept out when a plane figure is rotated about an axis be-
come easier when students work with physical models, drawings, and soft-
ware capable of manipulating three-dimensional representations.

Geometric relationships explain procedures used by artists for draw-
ing in perspective (see Smith [1995]), as demonstrated by the following
perspective problem adapted from Consortium for Mathematics and Its
Applications (1999, pp. 65-67):

Fig. 7.18. An artist wants to draw a set of evenly spaced telephone poles along the
side of a straight road, starting with two telephone poles as shown in figure
7.18a below. Where should the third telephone pole be placed so that it

Locating telephone poles so that they
appear equidistant in a perspective

drawing appears as far from the second as the second is from the first?
(a) The two telephone poles  (b) The vanishing point, the (c) The diagonals of a (d) The three telephone
horizon, and the center of rectangle determine the poles in perspective
the rectangle location of the third

telephone pole.

The intersection of the line through the bottoms of the telephone
poles with the line through their tops is the vanishing point for this
family of mutually parallel lines in the perspective drawing. Since the
tops and bottoms of the two telephone poles are corners of a rectangle
and since the type of transformation used in producing perspective
drawings preserves intersections, drawing the diagonals of the trans-
formed rectangle locates the image of its center under the transforma-
tion. Drawing the line through the center to the vanishing point locates
the midpoints of the telephone poles (fig. 7.18b).

The midpoint of the second telephone pole is also the center of the
rectangle whose sides are the first and third telephone poles (fig. 7.18c).
Thus the line from the top of the first telephone pole through the mid-
point of the second pole intersects the ground at the bottom of the
third telephone pole (fig. 7.18¢); the top of the third pole can be located
similarly. Finally, removing the lines used in the construction yields the
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desired perspective drawing (fig. 7.18d). The process can be continued
to locate other telephone poles along the same line.

Although problems formulated for mathematics classes are typically
stated with great precision, underspecified problems that students need
to formulate clearly for themselves also play an important role. The fol-
lowing problem (Keynes 1998, p. 109) draws on students’ knowledge of
geometric and trigonometric relationships and on their spatial-visual-
ization skills. The way it is posed compels students to determine what
additional information is needed, an important aspect of working prob-
lems in real-world contexts.

You are installing track lighting in an old warehouse that is being remod-
eled into a restaurant. The lights can adequately illuminate up to 15 feet
from the bulbs and, at that distance, illuminate a circle with a 6-foot diam-
eter. Figure out where to place the tracks and the bulbs to provide for
maximum illumination of the customer area.

Students might compile a list of questions such as these: Is the ceil-
ing flat or vaulted? What is the height of the ceiling? What is the
square footage of the customer area? A discussion of this type furthers
students’ abilities to solve real problems, which are typically much more
open-ended than those found in textbooks.

The following problem comes from discrete mathematics. Vertex-
edge graphs can be used to find optimal solutions to problems involving
paths, networks, or relationships among a finite number of objects.
This example, adapted from Coxford et al. (1998, p. 326), illustrates
these ideas.

Seven small towns in Smith County are connected to one another by dirt
roads, as shown in the diagram in figure 7.19. (The diagram depicts only
the beginnings, ends, and lengths of the roads. The roads may be straight
or curved.) The distances are given in kilometers. The county, which has a
limited budget, wants to pave some roads so that people can get from
every town to every other town on paved roads, either directly or indi-
rectly, but they want to minimize the total number of kilometers paved.
Find a network of paved roads that will fulfill these requirements.

A

10 \
= |
2
14
E

15
B \
25 c 5
20
3 y
b 19

Fig. 7.19.

A vertex-edge graph depicting the
lengths of roads between towns

The diagram in figure 7.19 is a vertex-edge graph modeling the road
network. The goal is to find a subnetwork of the given network that is
connected, contains no circuits, includes all the cities (vertices), and
minimizes the sum of the distances represented by each edge in the net-
work. Such a network is called a minimal spanning tree. There are many
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ways to approach this problem, and students should be encouraged to
share as many different approaches as possible with the class. Students
can and will approach this problem in many ways, many of which will
match the standard, formal solution methods. Students should first be
given the opportunity to think about the characteristics of a paved road
network that will satisfy the given requirements. This will often lead
them to formulate the definition of a minimal spanning tree for them-
selves. Then they can begin to find a solution systematically. For exam-
ple, students often proceed as follows: First, choose the shortest edge
(AB). Then choose the shortest remaining edge (BD). Continue in this
way, but never choose an edge that closes a circuit. One solution found
by using this method is AB, BD, EF, BF, FG, CD (total length = 88).

Another commonly tried method is to start at 4, then go to the
“nearest neighbor,” then the nearest neighbor from there, and so on.
"This leads to AB, BD, DC, and then a dead end, since moving on from
C creates a circuit. Students might try to resolve this dead-end problem
by starting at a different vertex, or they might try to modify their
method by finding the nearest neighbor to any vertex that has already
been reached (and, as always, not creating a circuit). This latter ap-
proach leads to AB, BD, DC, BF, EF, FG (total length = 88). As students
try these different methods, they should be encouraged to fully specify
their methods as algorithms, compare algorithms with other students,
and consider which algorithms produce the desired results and which
seem to be easier or more efficient. As it turns out, these two solution
methods commonly used by students are the two most commonly used
standard algorithms, namely, Kruskal’s algorithm and Prim’s algorithm.

Students should learn how to formulate and apply other vertex-
edge-graph models to solve problems. For example, they can use criti-
cal paths to optimally schedule large projects like a school dance or a
construction project. Using each edge exactly once (an Euler path), stu-
dents can plan an optimal snow-plowing route or an optimal layout for
moving people efficiently through a museum. Using each vertex ex-
actly once (a Hamiltonian path), students can find an optimal route for
collecting money from AT'M machines or an optimal path for a robot
to follow in a manufacturing plant. Vertex-coloring methods can be
used to solve problems that involve conflict management, such as opti-
mally assigning frequencies to radio stations or scheduling committee
meetings.
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Measurement

Grades

Instructional programs from
prekindergarten through grade 12 —
should enable all students to—

In grades 9-12 all students should—

Understand measurable attributes * make decisions about units and scales that are appropriate for problem
of objects and the units, systems, situations involving measurement.
and processes of measurement

Apply appropriate techniques, * analyze precision, accuracy, and approximate error in measurement
tools, and formulas to determine situations;
measurements * understand and use formulas for the area, surface area, and volume of

geometric figures, including cones, spheres, and cylinders;

* apply informal concepts of successive approximation, upper and lower
bounds, and limit in measurement situations;

* use unit analysis to check measurement computations.
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Measurement

Students should enter grades 9-12 with a good understanding of
measurement concepts and well-developed measurement skills. In addi-
tion to reading measurements directly from instruments, students
should have calculated distances indirectly and used derived measures,
such as rates.

Opportunities to use and understand measurement arise naturally
during high school in other areas of mathematics, in science, and in
technical education. Measuring the number of revolutions per minute
of an engine, vast distances in astronomy, or microscopic molecular dis-
tances extends students’ facility with derived measures and indirect
measurement. Calculator- and computer-based measurement instru-
ments facilitate the collection, storage, and analysis of real-time mea-
surement data. Through logarithmic scaling, students can graphically
represent a relatively large range of measurements. Insight into formu-
las for the volume or surface area of a cone or a sphere can be gained by
applying methods of successive approximation. These aspects of mea-
surement, along with considerations of precision and error, are impor-
tant in the students’ high school experience.

Understand measureable attributes of objects and the
units, systems, and processes of measurement

Students should enter high school adept at using rates to express mea-
surements of some attributes. Cars and buses travel at velocities expressed
in miles per hour or kilometers per hour, the growth of plants is recorded
in centimeters per day, and birth rates are often reported in births per
1000 people. By the time students reach high school, they should be ready
to make sound decisions about how quantities should be measured and
represented, depending on the situation and the problem under considera-
tion. For example, the velocity of an insect measured as 4 centimeters a
second is easier to understand than a velocity of 0.00004 kilometers a sec-
ond, although they are equal. Students extend their understanding of mea-
surement in the sciences, where many measurements are indirect. For ex-
ample, they can determine the height of a bridge if they know it takes
three seconds for a ball dropped off the bridge to hit the water below.

With the widespread use of calculator and computer technologies for
gathering and displaying data, students should understand that selec-
tions of scale and viewing window become important choices. For ex-
ample, the line f(x) = x appears to intersect the two coordinate axes at
an angle of 45 degrees only when the horizontal and vertical scales are
the same. Likewise, circles viewed on screens where the horizontal and
vertical scales differ look like ellipses. The local and global behavior of
a function shown in different viewing windows can appear very differ-
ent; at times, small differences in choices can lead to significant differ-
ences in the visual messages. Teachers can help students understand
how to make strategic choices about scale and viewing window so that
they can solve the problems they are addressing most effectively.

Nonlinear scales help represent some naturally occurring phenom-
ena. For example, human ears have the ability to differentiate among
sounds of low intensity that are very close together, but they do not

Standards for Grades 9—12: Measurement

Opportunities to use
and understand
measurement arise
naturally during high
school in other areas of
mathematics, in science,
and in technical

education.
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Fig. 7.20.

A chart showing that the decibel
scale is logarithmic

distinguish as well among sounds of high intensity. Consequently, mea-
sures of sound intensity are often displayed on a logarithmic scale, tied
to equally spaced decibel units as shown in the chart in figure 7.20
(units are in newtons per square meter). Students should be able to
compare, for example, the loudness of a whisper (20 decibels) with that
of a vacuum cleaner (80 decibels), noting that for each ten-decibel in-
crease, the sound intensity increases by a factor of 10.

Barely audible
whisper

\

Listening to
Walkman

Jet engines heard
from nearby

\ \ \

Vacuuming

Decibels 0 10

20

30 [ 40 |50 | 60 | 70 | 80 | 90 |100 |110 [120 | 130|140

Sound intensity in

5| .4
newtons per m? 107/10

1073

102 |107| 10°| 10! | 10% | 10% | 10* | 10° | 120° | 107 | 108 | 10°
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Apply appropriate techniques, tools, and formulas to
determine measurements

High school students should be able to make reasonable estimates
and sensible judgments about the precision and accuracy of the values
they report. Teachers can help students understand that measurements
of continuous quantities are always approximations. For example, sup-
pose a situation calls for determining the mass of a bar of gold bullion
in the shape of a rectangular prism whose length, width, and height are
measured as 27.9 centimeters, 10.2 centimeters, and 6.4 centimeters,
respectively. Knowing that the density is 19 300 kilograms per cubic
meter, students might compute the mass as follows:

Mass = (density) I:Grolume)

_0O kg H1 m'O
= [19300 EH@[F EE[(]SZIBIZ cm3)
=35.1513216 kg

The students need to understand that reporting the mass with this
degree of precision would be misleading because it would suggest a de-
gree of accuracy far greater than the actual accuracy of the measure-
ment. Since the lengths of the edges are reported to the nearest tenth of
a centimeter, the measurements are precise only to 0.05 centimeter.
That is, the edges could actually have measures in the intervals 27.9 +
0.05,10.2 £ 0.05, and 6.4 = 0.05. If students calculate the possible maxi-
mum and minimum mass, given these dimensions, they will see that at
most one decimal place in accuracy is justified.

As suggested by the example above, units should be reported along
with numerical values in measurement computations. The following
problem requires both an understanding of derived measurements and
facility in unit analysis—keeping track of units during computations:

While driving through Canada in the late 1990s, a U.S. tourist put 60
liters of gas in his car. The gas cost Can$0.50 a liter (Can$ stands for

Canadian dollars). The exchange rate at that time was Can$1.49 for each
US$1.00 (United States dollar). The price for a gallon of gasoline in the

Principles and Standards for School Mathematics



United States was US$0.99. The driver wanted to compare prices and de-
cide whether a tank of gas was cheaper in the United States or Canada.

The cost of the gasoline in Canada follows:
Can$0.50
LE”
Teachers can help students recognize that in order to compute the
cost of the same quantity of gasoline in the United States, it is necessary
to convert between both monetary systems and units of volume. Thus,
in addition to knowing the exchange rate, it is necessary to know that

there are approximately 3.79 liters in each gallon of gas. The cost of 60
liters of gasoline at the U.S. price can then be seen to be

158099 1 gat” Can$1.49
lgatt  3.79K ot 1J8$1.00

so the gas is less expensive in the United States. This computation illus-
trates how unit analysis can be helpful in keeping track of the conversions.

An important measurement idea, which also helps to establish the
groundwork for some fundamental ideas of calculus, is that the measure-
ments of some quantities can be determined by sequences of increas-
ingly accurate approximations. For example, suppose that students are
exploring ways to find the volumes of three-dimensional solids. Students
should know that the volume of any right cylinder is the product of its
height and the area of its base. Thus the volume of a right circular cylin-
der would be Tv-*h, where 7 is the radius of its base and 4 is its height.
But how could students determine the volume of a cone?

To illustrate, the right circular cone shown in figure 7.21 has base ra-
dius 5 centimeters and height 10 centimeters. Using similar triangles,
students should be able to see that slicing the cone parallel to the base
at 2-centimeter intervals yields four nearly cylindrical disks and a small
cone, each of height 2 centimeters. Each of those five figures would fit
completely inside a cylinder that is 2 centimeters high and that has the
same radius as its bottom cross section. Hence, the cumulative volume
islessthan 2(Mx F+ x4+ xF+mx 2+ 1 x F)em’ = 110mmem’.
At the same time, each of the five figures contains as a subset a cylinder
that has the radius of its top cross section. Thus the cumulative volume
must be atleast 2(M X # + M x F+ M x 2 + U X P + 11 % (F) cm® = 6071
cm’. Repeating the process with 1-centimeter-thick slices would help
students see that as they take thinner slices of the cone, the overesti-
mates and underestimates of the volume get increasingly close to each
other. (Indeed, the averages of the underestimates and overestimates
rapidly approach the actual volume of (83 1/3)Ttcm’.) Informally, such
experiences serve as an introduction to the idea of approximation by
using upper and lower bounds and to the idea of limits. Whether or not
these ideas are pursued later in formal coursework, they can introduce
powerful ways of thinking about mathematical phenomena and help
students establish a basic familiarity with core ideas of calculus.

« 60.F = CAN$30.00

= Can$23.35,

_ 2cm{@
2cm{ icm

2cm{
T — 3cm
‘ 4 cm
e —
5cm

Standards for Grades 9—12: Measurement

Fig. 7.21.

Slices of a cone can be used to ap-
proximate the volume of the cone by
using upper and lower bounds.
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Data Analysis and Probability

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Formulate questions that can be
addressed with data and collect,
organize, and display relevant data
to answer them

Select and use appropriate statisti-
cal methods to analyze data

Develop and evaluate inferences
and predictions that are based on
data

Understand and apply basic
concepts of probability

324

Grades

9-12

In grades 9-12 all students should—

understand the differences among various kinds of studies and which types
of inferences can legitimately be drawn from each;

know the characteristics of well-designed studies, including the role of
randomization in surveys and experiments;

understand the meaning of measurement data and categorical data, of
univariate and bivariate data, and of the term variable;

understand histograms, parallel box plots, and scatterplots and use them to
display data;

compute basic statistics and understand the distinction between a statistic
and a parameter.

for univariate measurement data, be able to display the distribution, describe
its shape, and select and calculate summary statistics;

for bivariate measurement data, be able to display a scatterplot, describe its
shape, and determine regression coefficients, regression equations, and
correlation coefficients using technological tools;

display and discuss bivariate data where at least one variable is categorical;

recognize how linear transformations of univariate data affect shape, center,
and spread;

identify trends in bivariate data and find functions that model the data or
transform the data so that they can be modeled.

use simulations to explore the variability of sample statistics from a known
population and to construct sampling distributions;

understand how sample statistics reflect the values of population parameters
and use sampling distributions as the basis for informal inference;

evaluate published reports that are based on data by examining the design of the
study, the appropriateness of the data analysis, and the validity of conclusions;

understand how basic statistical techniques are used to monitor process
characteristics in the workplace.

understand the concepts of sample space and probability distribution and
construct sample spaces and distributions in simple cases;

use simulations to construct empirical probability distributions;

compute and interpret the expected value of random variables in simple cases;
understand the concepts of conditional probability and independent events;
understand how to compute the probability of a compound event.



Data Analysis and Probability

Students whose mathematics curriculum has been consistent with the
recommendations in Principles and Standards should enter high school
having designed simple surveys and experiments, gathered data, and
graphed and summarized those data in various ways. They should be fa-
miliar with basic measures of center and spread, able to describe the
shape of data distributions, and able to draw conclusions about a single
sample. Students will have computed the probabilities of simple and
some compound events and performed simulations, comparing the re-
sults of the simulations to predicted probabilities.

In grades 9-12 students should gain a deep understanding of the is-
sues entailed in drawing conclusions in light of variability. They will
learn more-sophisticated ways to collect and analyze data and draw
conclusions from data in order to answer questions or make informed
decisions in workplace and everyday situations. They should learn to
ask questions that will help them evaluate the quality of surveys, obser-
vational studies, and controlled experiments. They can use their ex-
panding repertoire of algebraic functions, especially linear functions, to
model and analyze data, with increasing understanding of what it means
for a model to fit data well. In addition, students should begin to under-
stand and use correlation in conjunction with residuals and visual dis-
plays to analyze associations between two variables. They should be-
come knowledgeable, analytical, thoughtful consumers of the
information and data generated by others.

As students analyze data in grades 9-12, the natural link between sta-
tistics and algebra can be developed further. Students’ understandings
of graphs and functions can also be applied in work with data.

Basic ideas of probability underlie much of statistical inference. Prob-
ability is linked to other topics in high school mathematics, especially
counting techniques (Number and Operations), area concepts (Geome-
try), the binomial theorem, and relationships between functions and the
area under their graphs (Algebra). Students should learn to determine
the probability of a sample statistic for a known population and to draw
simple inferences about a population from randomly generated samples.

Formulate questions that can be addressed with data and
collect, organize, and display relevant data to answer them

Students’ experiences with surveys and experiments in lower grades
should prepare them to consider issues of design. In high school, stu-
dents should design surveys, observational studies, and experiments that
take into consideration questions such as the following: Are the issues
and questions clear and unambiguous? What is the population? How
should the sample be selected? Is a stratified sample called for? What
size should the sample be? Students should understand the concept of
bias in surveys and ways to reduce bias, such as using randomization in
selecting samples. Similarly, when students design experiments, they
should begin to learn how to take into account the nature of the treat-
ments, the selection of the experimental units, and the randomization
used to assign treatments to units. Examples of situations students
might consider are shown in figure 7.22.

Standards for Grades 9—12: Data Analysis and Probability

In grades 9—12 students
should gain a deep
understanding of the
issues entailed in
drawing conclusions in

light of variability.
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Fig. 7.22.

Three kinds of situations in which
statistics are used

There are many
reasons to be careful in
conducting surveys and

analyzing the results.
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Survey
An opinion survey asked people, “Do you use a computer?”

Maria answered Yes because she thought the question meant had
she ever used a computer.

Eric answered No because he thought the question was asking
whether he used one regularly.

Alex answered No because he only played games on the computer
and didn’t think this counted as “using” one.

The ambiguity of the question renders the results of the survey
useless and makes any conclusions drawn from those results very
guestionable.

Observational Study

The city of New York has sufficient funds to run one additional
commuter train each weekday. Officials must decide whether it would
be better to add a train during the morning or the evening rush hour.

Determining the average number of commuters currently riding the
train from 6:00 to 9:00 am. and the average number riding from 4:00 to
6:00 rp.m. on weekdays would provide valuable information about the
habits of current riders.

However, conclusions based on this information might not take into
account people who currently drive to work to avoid overcrowding on trains.

Experiment

An experiment to determine which brand of tires lasts longest tests
one brand on the front wheels and one brand on the rear wheels of cars
in rural Montana.

Many factors could explain experimental differences; for example,
front-wheel drive or frequent or infrequent braking can systematically
cause uneven wear.

To minimize the number of extraneous or confounding factors, it
would be better to randomly assign two tires of each kind to the wheels
of each car. Also, to broaden the base of applicability, the test should be
performed under conditions that involve city as well as rural driving.

There are many reasons to be careful in conducting surveys and ana-
lyzing the results. In the survey example, the ambiguity of the question
about computer usage makes it impossible to interpret the results
meaningfully. Students designing surveys must also deal with sampling
procedures. The goal of a survey is to generalize from a sample to the
population from which it is drawn. Students must understand that a
sample is most likely to be representative when it has been randomly
chosen from the population.

Nonrandomness in sampling may also limit the conclusions that can
be drawn from observational studies. For instance, in the observational
study example, it is not certain that the number of people riding trains
reflects the number of people who would ride trains if more were avail-
able or if scheduling were more convenient. Similarly, it would be inap-
propriate to draw conclusions about the percentage of the population
that ice skates on the basis of observational studies done either in

Principles and Standards for School Mathematics



Florida or in Quebec. Students need to be aware that any conclusions
about cause and effect should be made very cautiously in observational
studies. They should also know how certain kinds of systematic obser-
vations, such as random testing of manufacturing parts taken from an
assembly line, can be used for purposes of quality control.

In designed experiments, two or more experimental treatments (or
conditions) are compared. In order for such comparisons to be valid,
other sources of variation must be controlled. This is not the situation in
the tire example, in which the front and rear tires are subjected to differ-
ent kinds of wear. Another goal in designed experiments is to be able to
draw conclusions with broad applicability. For this reason, new tires
should be tested on all relevant road conditions. Consider another de-
signed experiment in which the goal is to test the effect of a treatment
(such as getting a flu shot) on a response (such as getting the flu) for
older people. This is done by comparing the responses of a treatment
group, which gets treatment, with those of a control group, which does
not. Here, the investigators would randomly choose subjects for their
study from the population group to which they want to generalize, say,
all males and females aged 65 or older. They would then randomly as-
sign these individuals to the control and treatment groups. Note that in-
teresting issues arise in the choice of subjects (not everyone wants to or
is able to participate—could this introduce bias?) and in the concept of a
control group (are these seniors then at greater risk of getting the flu?).

Select and use appropriate statistical methods to
analyze data

Describing center, spread, and shape is essential to the analysis of both
univariate and bivariate data. Students should be able to use a variety of
summary statistics and graphical displays to analyze these characteristics.

The shape of a distribution of a single measurement variable can be
analyzed using graphical displays such as histograms, dotplots, stem-
and-leaf plots, or box plots. Students should be able to construct these
graphs and select from among them to assist in understanding the data.
They should comment on the overall shape of the plot and on points
that do not fit the general shape. By examining these characteristics of
the plots, students should be better able to explain differences in mea-
sures of center (such as mean or median) and spread (such as standard
deviation or interquartile range). For example, students should recog-
nize that the statement “the mean score on a test was 50 percent” may
cover several situations, including the following: all scores are 50 per-
cent; half the scores are 40 percent and half the scores are 60 percent;
half the scores are 0 percent and half the scores are 100 percent; one
score is 100 percent and 50 scores are 49 percent. Students should also
recognize that the sample mean and median can differ greatly for a
skewed distribution. They should understand that for data that are
identified by categories—for example, gender, favorite color, or ethnic
origin—bar graphs, pie charts, and summary tables often display infor-
mation about the relative frequency or percent in each category.

Students should learn to apply their knowledge of linear transforma-
tions from algebra and geometry to linear transformations of data. They
should be able to explain why adding a constant to all observed values in
a sample changes the measures of center by that constant but does not

Standards for Grades 9—12: Data Analysis and Probability

Describing center,
spread, and shape is
essential to the analysis
of both univariate and

bivariate data.
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change measures of spread or the general shape of the distribution.
They should also understand why multiplying each observed value by
the same constant multiplies the mean, median, range, and standard de-
viation by the same factor (see the related discussion in the “Reasoning
and Proof” section of this chapter).

The methods used for representing univariate measurement data also
can be adapted to represent bivariate data where one variable is cate-
gorical and the other is a continuous measurement. The levels of the
categorical variable split the measurement variable into groups. Stu-
dents can use parallel box plots, back-to-back stem-and-leaf, or same-
scale histograms to compare the groups. The following problem from
Moore (1990, pp. 108-9) illustrates conclusions that can be drawn from
such comparisons:

U.S. Department of Agriculture regulations group hot dogs into three types:
beef, meat, and poultry. Do these types differ in the number of calories they
contain? The three boxplots to the left display the distribution of calories
per hot dog among brands of the three types. The box ends mark the quar-
tiles, the line within the box is the median, and the whiskers extend to the
smallest and largest individual observations. We see that beef and meat hot
dogs are similar but that poultry hot dogs as a group show considerably
fewer calories per hot dog.

Analyses of the relationships between two sets of measurement data
are central in high school mathematics. These analyses involve finding
functions that “fit” the data well. For instance, students could examine
the scatterplot of bivariate measurement data shown in figure 7.23 and
consider what type of function (e.g., linear, exponential, quadratic)
might be a good model. If the plot of the data seems approximately lin-
ear, students should be able to produce lines that fit the data, to com-
pare several such lines, and to discuss what best fir might mean. This
analysis includes stepping back and making certain that what is being
done makes sense practically.

The dashed vertical line segments in figure 7.23 represent residuals—
the differences between the y-values predicted by the linear model and

Fig. 7.23.

Fitting a line to the data displayed in
a scatterplot (Adapted from Burrill
etal. [1999, pp. 14-15, 20])
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the actual y-values—for three data points. Teachers can help students ex-
plore several ways of using residuals to define best fit. For example, a can-
didate for best-fitting line might be chosen to minimize the sum of the
absolute values of residuals; another might minimize the sum of squared
residuals. Using dynamic software, students can change the position of
candidate lines for best fit and see the effects of those changes on squared
residuals. The line illustrated in figure 7.23, which minimizes the sum of
the squares of the residuals, is called the least-squares regression line. Using
technology, students should be able to compute the equation of the least-
squares regression line and the correlation coefficient, 7.

Students should understand that the correlation coefficient  gives
information about (1) how tightly packed the data are about the regres-
sion line and (2) about the strength of the relationship between the two
variables. Students should understand that correlation does not imply a
cause-and-effect relationship. For example, the presence of certain
kinds of eye problems and the loss of sensitivity in people’s feet can be
related statistically. However, the correlation may be due to an underly-
ing cause, such as diabetes, for both symptoms rather than to one
symptom’s causing the other.

Develop and evaluate inferences and predictions that
are based on data

Once students have determined a model for a data set, they can use
the model to make predictions and recognize and explain the limitations
of those predictions. For example, the regression line depicted in figure
7.23 has the equation y = 0.33x — 93.9, where x represents the number of
screens and y represents box-office revenues (in units of $10 000). To
help students understand the meaning of the regression line, its role in
making predictions and inferences, and its limitations and possible ex-
tensions, teachers might ask questions like the following:

1. Predict the revenue of a movie that is shown on 800 screens nation-
wide. Of a movie that is shown on 2 500 screens. Discuss the accuracy
and limitations of your predictions.

2. Explain the meaning of a slope of 0.33 in the screen-revenue context.

3. Explain why the y-intercept of the regression line does not have mean-
ing in the box-office-revenue context.

4. What other variables might help in predicting box-office revenues?

A parameter is a single number that describes some aspect of an en-
tire population, and a statistic is an estimate of that value computed
from some sample of the population. To understand terms such as
margin of error in opinion polls, it is necessary to understand how statis-
tics, such as sample proportions, vary when different random samples
are chosen from a population. Similarly, sample means computed from
measurement data vary according to the random sample chosen, so it is
important to understand the distribution of sample means in order to
assess how well a specific sample mean estimates the population mean.

Understanding how to draw inferences about a population from ran-
dom samples requires understanding how those samples might be dis-
tributed. Such an understanding can be developed with the aid of simu-
lations. Consider the following situation:

Standards for Grades 9—12: Data Analysis and Probability
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Fig. 7.24.

The results of a simulation of drawing
100 random samples of size 20 from a
population in which 65 percent

support Mr. Blake

Suppose that 65% of a city’s registered voters support Mr. Blake for
mayor. How unusual would it be to obtain a random sample of 20 regis-
tered voters in which at most 8 support Mr. Blake?

Here the parameter for the population is known: 65 percent of all reg-
istered voters support Mr. Blake. The question is, How likely is a random
sample with a very different proportion (at most 8 out of 20, or 40%) of
supporters? The probability of such a sample can be approximated with a
simulation. Figure 7.24 shows the results of drawing 100 random samples
of size 20 from a population in which 65 percent support Mr. Blake.

Number of registered voters
supporting Mr. Blake 0

Number of random samples 0
of size 20

330

Distribution of Voters Supporting Mr. Blake

30

25
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Number of Samples out of 100

0 —
01 2 3 456 7 8 91011 12 13 14 15 16 17 18 19 20

Number of Blake Supporters in Samples of 20 Voters

Only 2 percent of the samples had 8 or fewer registered voters sup-
porting Mr. Blake. The value 8 occurs well out on the left tail of the
histogram. One can reasonably conclude that a sample outcome of 8 or
fewer supporters out of 20 randomly selected voters is a rare event
when sampling from this population. This kind of exercise can be used
to develop the concept of hypothesis testing for a single proportion or
mean.

In the situation just described, a parameter of the population was
known and the probability of a particular sample characteristic was es-
timated in order to understand how sampling distributions work.
However, in applications of this idea in real situations, the information
about a population is unknown and a sample is used to project what
that information might be without having to check all the individuals
in the population. For example, suppose that the proportion of regis-
tered voters supporting Mr. Blake was unknown (a realistic situation)
and that a pollster wanted to find out what that proportion might be. If
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the pollster surveyed a sample of 20 voters and found that 65 percent
of them support the candidate, is it reasonable to expect that about 65
percent of all voters support the candidate? What if the sample was
200 voters? 2000 voters? As indicated above, the proportion of voters
who supported Mr. Blake could vary substantially from sample to sam-
ple in samples of 20. There is much less variation in samples of 200. By
performing simulations with samples of different sizes, students can
see that as sample size increases, variation decreases. In this way, they
can develop the intuitive underpinnings for understanding confidence
intervals.

A similar kind of reasoning about the relationship between the char-
acteristics of a sample and the population from which it is drawn lies
behind the use of sampling for monitoring process control and quality
in the workplace.

Understand and apply basic concepts of probability

In high school, students can apply the concepts of probability to pre-
dict the likelihood of an event by constructing probability distributions
for simple sample spaces. Students should be able to describe sample
spaces such as the set of possible outcomes when four coins are tossed
and the set of possibilities for the sum of the values on the faces that are
down when two tetrahedral dice are rolled.

High school students should learn to identify mutually exclusive,
joint, and conditional events by drawing on their knowledge of combi-
nations, permutations, and counting to compute the probabilities asso-
ciated with such events. They can use their understandings to address
questions such as those in following series of examples.

The diagram at the right shows the results of a two-question survey ad-
ministered to 80 randomly selected students at Highcrest High School.

¢ Of the 2100 students in the school, how many would you expect to play
a musical instrument?
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Fig. 7.25.

The sample space for the roll of two
tetrahedral dice
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* Estimate the probability that an arbitrary student at the school plays on
a sports team and plays a musical instrument. How is this related to esti-
mates of the separate probabilities that a student plays a musical instru-
ment and that he or she plays on a sports team?

* Estimate the probability that a student who plays on a sports team also
plays a musical instrument.

High school students should learn to compute expected values. They
can use their understanding of probability distributions and expected
value to decide if the following game is fair:

You pay 5 chips to play a game. You roll two tetrahedral dice with faces
numbered 1, 2, 3, and 5, and you win the sum of the values on the faces
that are not showing.

Teachers can ask students to discuss whether they think the game is
fair and perhaps have the students play the game a number of times to
see if there are any trends in the results they obtain. They can then
have the students analyze the game. First, students need to delineate
the sample space. The outcomes are indicated in figure 7.25. The num-
bers on the first die are indicated in the top row. The numbers on the
second die are indicated in the first column. The sums are given in the
interior of the table. Since all outcomes are equally likely, each cell in
the table has a probability of 1/16 of occurring.

Students can determine that the probability of a sum of 2 is 1/16;
ofa3,1/8;0fa4,3/16;0fa5,1/8;0fa6,3/16;0fa7,1/8; 0of an 8, 1/8;
of a 10, 1/16. The expected value of a player’s “income” in chips from
rolling the dice is

010,00, B0 A0 03000 A0 B o
BHeH "B "HeH BB "HeH™ B " HBH "HeHT -~ P

If a player pays a five-chip fee to play the game, on average, the
player will win 0.5 chips. The game is not statistically fair, since the
player can expect to win.

Students can also use the sample space to answer conditional proba-
bility questions such as “Given that the sum is even, what is the proba-
bility that the sum is a 6?” Since ten of the sums in the sample space are
even and three of those are 6s, the probability of a 6 given that the sum
is even is 3/10.

The following situation, adapted from Coxford et al. (1998, p. 469),
could give rise to a very rich classroom discussion of compound events.

In a trial in Sweden, a parking officer testified to having noted the position
of the valve stems on the tires on one side of a car. Returning later, the of-
ficer noted that the valve stems were still in the same position. The officer
noted the position of the valve stems to the nearest “hour.” For example,
in figure 7.26 the valve stems are at 10:00 and at 3:00. The officer issued a
ticket for overtime parking. However, the owner of the car claimed he had
moved the car and returned to the same parking place.

The judge who presided over the trial made the assumption that the
wheels move independently and the odds of the two valve stems return-
ing to their previous “clock” positions were calculated as 144 to 1. The
driver was declared to be innocent because such odds were considered
insufficient—had all four valve stems been found to have returned to
their previous positions, the driver would have been declared guilty
(Zeisel 1968).

Principles and Standards for School Mathematics



Fig. 7.26.

A diagram of tires with valves at the
10:00 and 3:00 positions

Given the assumption that the wheels move independently, students
could be asked to assess the probability that if the car is moved, two (or
four) valve stems would return to the same position. They could do so
by a direct probability computation, or they might design a simulation,
either by programming or by using spinners, to estimate this probabil-
ity. But is it reasonable to assume that two front and rear wheels or all
four wheels move independently? This issue might be resolved empiri-
cally. The students might drive a car around the block to see if its
wheels do rotate independently of one another and decide if the judge’s
assumption was justified. They might consider whether it would be
more reasonable to assume that all four wheels move as a unit and ask
related questions: Under what circumstances might all four wheels
travel the same distance? Would all the wheels travel the same distance
if the car was driven around the block? Would any differences be large
enough to show up as differences in “clock” position? In this way, stu-
dents can learn about the role of assumptions in modeling, in addition
to learning about the computation of probabilities.

Students could also explore the effect of more-precise measurements
on the resulting probabilities. They could calculate the probabilities if,
say, instead of recording markings to the nearest hour on the clockface,
the markings had been recorded to the nearest half or quarter hour.
"This line of thinking could raise the issue of continuous distributions
and the idea of calculating probabilities involving an interval of values
rather than a finite number of values. Some related questions are, How
could a practical method of obtaining more-precise measurements be
devised? How could a parking officer realistically measure tire-marking
positions to the nearest clock half-hour? How could measurement er-
rors be minimized? These could begin a discussion of operational defi-
nitions and measurement processes.

Students should be able to investigate the following question by
using a simulation to obtain an approximate answer:

How likely is it that at most 25 of the 50 people receiving a promotion are
women when all the people in the applicant pool from which the promo-
tions are made are well qualified and 65% of the applicant pool is female?

Those students who pursue the study of probability will be able to
find an exact solution by using the binomial distribution. Either way,
students are likely to find the result rather surprising.
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Problem Solving

Grades

Instructional programs from
prekindergarten through grade 12 e—
should enable all students to—

Build new mathematical knowledge

- "To meet new challenges in work, school, and life, students will have
through problem solving

to adapt and extend whatever mathematics they know. Doing so effec-
tively lies at the heart of problem solving. A problem-solving disposi-
tion includes the confidence and willingness to take on new and diffi-
cult tasks. Successful problem solvers are resourceful, seeking out
information to help solve problems and making effective use of what
they know. Their knowledge of strategies gives them options. If the
Apply and adapt a variety of appro- ﬁr§t approach to a problem fails, they can consider a secpnd ora
priate strategies to solve problems third. If those approaches fail, they know how to reconsider the prob-
lem, break it down, and look at it from different perspectives—all of
which can help them understand the problem better or make progress
Monitor and reflect on the process toward its solution. Part of being a good problem solver is being a
of mathematical problem solving good planner, but good problem solvers do not adhere blindly to
plans. Instead, they monitor progress and consider and make adjust-
ments when things are not going as well as they should (Schoenfeld
1985).

In high school, students’ repertoires of problem-solving strategies
expand significantly because students are capable of employing more-
complex methods and their abilities to reflect on their knowledge and
act accordingly have grown. Thus, students should emerge from high
school with the disposition, knowledge, and strategies to deal with the
new challenges they will encounter.

As in the earlier grades, problems and problem solving play an es-
sential role in students’ learning of mathematical content and in help-
ing students make connections across mathematical content areas.
Much of school mathematics can be seen as the codification of an-
swers to sets of interesting problems. Accordingly, much of the
mathematics that students encounter can be introduced by posing in-
teresting problems on which students can make legitimate progress.
(See, for example, the use of such an example in Mr. Robinson’s class,
as described in the “Connections” section of this chapter.) Approach-
ing the content in this way does more than motivate students. It re-
veals mathematics as a sense-making discipline rather than one in
which rules for working exercises are given by the teacher to be mem-
orized and used by students.

Solve problems that arise in mathe-
matics and in other contexts
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What should problem solving look like in grades 9
through 127

Problem solving plays a dual role in the high school curriculum. On
the one hand, solving problems that have been strategically chosen and
carefully sequenced is a fundamental vehicle for learning mathematical
content (see the “counting rectangles” problem later in this section). In
addition to carefully designing problems, teachers should seize unex-
pected opportunities (see the discussion of Ms. Rodriguez’s class later in
this section) to use problems to engage students in important mathe-
matical ideas and to develop a deep understanding of those ideas
through such engagement. Most mathematical concepts or generaliza-
tions can be effectively introduced using a problem situation that helps
students see important aspects of the idea to be generalized. For exam-
ple, rather than begin the consideration of the volume of a sphere by
reminding students of the formula or technique for computing the vol-
ume, a teacher might begin by posing a question such as “How might
you find the volume of a sphere whose radius is ten centimeters?” As
students consider possible approaches, they can come to appreciate the
difficulties inherent in what appears to be an easy question. In other in-
stances, their proposed solutions may either directly lead to the desired
conclusion or serve as a springboard to class discussions of the idea.

On the other hand, a major goal of high school mathematics is to
equip students with knowledge and tools that enable them to formulate,
approach, and solve problems beyond those that they have studied.
High school students should have significant opportunities to develop a
broad repertoire of problem-solving (or heuristic) strategies. They
should have opportunities to formulate and refine problems because
problems that occur in real settings do not often arrive neatly packaged.
Students need experience in identifying problems and articulating them
clearly enough to determine when they have arrived at solutions. The
curriculum should include problems for which students know the goal
to be achieved but for which they need to specify—or perhaps gather
from other sources—the kinds of information needed to achieve it. Re-
call, for example, the “track lighting” problem discussed in the “Geom-
etry” section of this chapter. In addressing the problem, students would
need to know about the geometry of the floor plan, about the structure
and height of the ceiling, about the positioning of the “customer area,”
and about the areas that should receive priority lighting.

The following problem serves multiple purposes. It gives students
an opportunity to build their content knowledge during the problem-
solving process, to learn or practice some heuristic strategies, and to
make connections among various ways of thinking about the same
mathematical content. It might be posed during a unit on combina-
torics or as part of an ongoing series of problems that are given out of
context so that students have to determine the relevant approaches for
themselves.

How many rectangles are there on a standard 8 x 8 checkerboard? Count
only those rectangles (including squares) whose sides lie on grid lines. For
example, there are nine rectangles on a 2 X 2 board, as shown in figure 7.27.

There are numerous ways to approach and solve this problem. Stu-
dents should be given significant latitude to explore it rather than be led

Standards for Grades 9—-12: Problem Solving
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Fig. 7.27.

Rectangles on a 2 x 2 “checkerboard”
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directly to the solution method or methods that the teacher has in
mind. With planning, a teacher can use such explorations to develop in-
teresting mathematics and to make connections that might otherwise be
overlooked.

Often students begin this problem by trying to count the number of
rectangles directly, but it is hard to keep track of which rectangles have
been counted, so they usually lose count. This situation presents an op-
portunity to discuss the need to be systematic—to find an approach that
will identify all rectangles on the board and count each only once.

Typically, some students continue to count while others look for alter-
natives. For problems such as this one, it is often useful to consider the
heuristic strategy “try an easier related problem.” But which related
problem should they try, and what is to be learned from it? Some stu-
dents will want to count rectangles on the 3 x 3 and 4 x 4 boards, look-
ing for patterns. The results for the 1 x 1,2 x 2,3 x 3, and 4 x 4 boards
are 1, 9, 36, and 100, respectively. This result suggests that the number
of rectangles on an z x 7 grid is (1 + 2 + -+ + n)*—a very nice observa-
tion that leaves unanswered the question of why the sum should be what
it seems to be. Some students might focus on developing a systematic
way to count the rectangles on the smaller grids, and then return to the
8 x 8 grid to apply what they have learned. Others will try to show that
the generalization holds by using the result from the # x z square as a
stepping-stone to counting the rectangles in the (z + 1) X (z + 1) square.
They discover that it is difficult and may need to turn their attention
elsewhere. An important lesson about problem solving is that not all ap-
proaches work and that after consideration, some need to be abandoned.

The heuristic “trying an easier related problem” can be implemented
in other ways in solving this problem. Instead of working with an # x »
board, for example, some students may look for ways to count rectan-
glesona 1 x 8 board. That the 1 x 8boardhas 1 +2+3 +4+5+6+
7 + 8 different subrectangles can be shown in a number of ways, and
students can compare notes on how efficient or compelling their meth-
ods are. When they work on the 2 x 8 board, they may notice that the
pattern of rectangles found in the 1 x 8 example can be found in the top
row, in the second row, and extending across both rows. This strategy
has a natural extension to 3 x 8 boards, and so on. Students should re-
flect on the value of strategies that can easily be generalized to other ex-
amples. Teachers can ask them to talk about and demonstrate that their
strategy works in all such instances and convince others of its validity.
As the students do so, they are exploring patterns systematically and
verifying algebraically that the patterns hold.

Simple questions such as “What determines a rectangle?”—a version
of Pélya’s (1957) heuristic strategy “look at the unknown,” tailored to
this situation—can help students reformulate the problem. Some stu-
dents may recognize that it is possible to characterize a rectangle on a

Principles and Standards for School Mathematics



grid by specifying two opposite corners. They could then count the
number of rectangles that have a fixed upper left corner on the 8 x 8
grid as follows: Pick any corner on the grid. If there are 7z grid lines
below that corner and 7 grid lines to the right of it, the number of rec-
tangles on the grid with that point as an upper left corner is 7z X n. The
number of rectangles can then be indicated, as shown in figure 7.28,
where the product written in each square of the grid is the number of
rectangles on the whole grid that have the same upper left corner as the
square. The task becomes to add the 64 numbers in the grid. The first
column sums to 8(8 + 7 + -+ + 1), the second column to 7(8 + 7 + -+ + 1),
and so on. Hence the sum of the columnsis 8 + 7 + - + 1) 8+ 7 + -+ + 1) =
(8 + 7 + +=- + 1)>. This result confirms the conjecture that some students
had made earlier, when they examined the 1 X 1,2 x 2,3 x 3, and 4 x 4
grids, and presents an opportunity to see how one approach can shed
light on a result obtained by another method. Also, once the pattern is
apparent, the students should be encouraged to abstract and represent
their results for more-general cases. They should, for instance, be able
to conjecture that the number of rectangles on an » X 7 board is (1 +
2+ +n)(1+2+ - +m). From other work they might have done
adding sequences of consecutive integers, they should be able to repre-
sent this as [(n)(z + 1)(m2)(m + 1)/4].

8x8| 7x8| 6x8| 5x8| 4x8| 3x8| 2x8| 1x8

8x6| 7x6| 6x6| 5x6| 4x6| 3x6| 2x6| 1%x6

8x4 | 7x4| 6x4| 5x4| 4x4| 3x4| 2x4( 1x4

8x2| 7x2| 6%x2| 5x2| 4x2]| 3x2| 2x2| 1x2

Fig. 7.28.

The number of rectangles in an 8 x 8
grid

Other heuristics may also prove useful. Some students may notice that
each rectangle in the 8 x 8 grid is determined by the lines on which its
top and bottom borders lie (there are gg choices) and the lines on which
its left and right borders lie (also gE choices). So there are g% gg rectan-
gles in the 8 x 8 grid. This approach can be generalized to show that
there are g’; IE g”; IE rectangles in an 7z X 7z grid. Thus, this problem pro-

vides students with an opportunity to review counting techniques and
show their power, as well as to use their prior knowledge in other ap-
proaches to solving the problem. Moreover, just as the class has not
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Linking Representations
of a Linear Function

Fig. 7.29.

A slider screen

/%

£00) = (1.00)x + (1.00) ey
: _l ‘ [4Show Trace

Fig. 7.30.
Shelly’s screen

|
f(x) = (0.78)x + (0.78) g
— _ ‘
i
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Show Trace

finished when students have found one solution—the variety of solu-
tions is important—it has not finished when a variety of solutions have
been found. A teacher and a class with a problem-solving disposition
will be quick to formulate interesting extensions such as, What would
an analogous three-dimensional problem look like?

In addition to using carefully chosen problems with particular curric-
ular purposes in mind, teachers with problem-solving dispositions can
take advantage of events that occur in the classroom to promote further
understanding through problem solving. Such an opportunity arises in
the following story, based on Zbiek and Glass (forthcoming):

Ms. Rodriguez’s class was studying classes of functions. The focus
of the lesson was on exploring the properties of the graphs of quad-
ratic functions. To ease the students into the use of dynamic graph-
ing technology, the lesson began with parametric explorations of a
more familiar class of functions, linear functions of the form f{(x) =
mx + b. Ms. Rodriguez introduced students to the day’s goal:

M. R.: "Today, we will learn about a new family of functions
called quadratic functions. But first, you will need to be-
come familiar with a new type of computer representa-
tion. So we will begin by exploring a familiar family,
f(x) = mx + b. You will be using a computer sketch with
sliders to change the values of 7z and 4. I think you’ll
like using the sliders—they’ll save you a lot of work and
let you concentrate on big ideas.

The computer software enabled the students to change the value of
m or the value of 4 and observe the effects of these changes on the
graph of f(x) = mx + b. Ms. Rodriguez demonstrated the use of the
top slider to control the value of 7z and the bottom slider to control
the value of 4 (see fig. 7.29 for a view of the slider screen). She then
handed out a worksheet to structure the students’ activities.

As often happens, some students were exploring the graphing soft-

ware without following the instructions on the teacher’s worksheet.

Shelly was one of those students. Soon she was calling for Ms. Ro-

driguez’s attention:

Shelly: Ms. R., Ms. R.! I found something really awesome!
M. R.: That’s great, Shelly. But don't tell others what you've

seen yet. I want the others to have a chance to make
their own discoveries. Please keep track of your work
for when we compare notes.

As she approached Shelly’s desk, Ms. Rodriguez expected the trace
function on Shelly’s computer to show a set of parallel lines (if Shelly
had used the slider for #) or a set of lines that pass through the same
point on the y-axis (if Shelly had used the slider for 7). What she
saw was different (see fig. 7.30). Ms. Rodriguez was puzzled.

Ms. R.: Shelly, could you show me how you got the computer
screen to that point?

Shelly: 1 don’t really know, but for some reason, when I moved
m, b also moved.

M. R.: Can you do it again?

Principles and Standards for School Mathematics
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Shelly demonstrated, clicking on 7z and 4 in such a way that both -
sliders moved at the same time and rate. Since the 7z and b scales ]
were the same, as she moved 7z, H moved the same amount. S
Ms. R.: What's the really awesome thing you are seeing? 2
Shelly: Look! They all intersect at the same point. -

M. R.: That is really interesting! ()
Ms. Rodriguez found this observation intriguing and decided that B
exploring the situation might lead to some interesting insights. She o
asked Shelly to show the class how she created the pattern. Soon 3
Michael, intrigued by Shelly’s result, tried her technique on another ‘?"..
function, with the result shown in figure 7.31. : <
Michael: Look at what happened! I got the same thing as Shelly, Flg' 31. =
but I started with a different function. Michael’ screen o

(=

At Ms. Rodriguez’s request, Michael demonstrated his finding for ‘-3';
the class. o
M. R.: Tell us what you mean when you say you “got the same —
thing.” 5

Michael: All my lines crossed at one point. >

3

Ferod: 1 tried a different one, and mine crossed at one point! S

(2]

Ms. Rodriguez saw this development as an opportunity for group z
problem solving and knew that she could entice her students with a =
challenge. She asked, “Can anyone come up with a similar picture (x) = (-0.90)x + (-4.54) S
. b . .. | Clear Trace S

for another linear function?” The room buzzed with activity as stu- ——-! Show Trce g
dents tried Shelly’s technique. Some students helped one another =_ g
learn the technique while Ms. Rodriguez helped others. Every time -
the students applied Shelly’s technique to a linear function, their set S
of equations passed through one point. As the students compared g
their results, they began to notice that the points of intersection i
always had the x-value -1, a fact that rippled rapidly through the z
a
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classroom. Ms. Rodriguez brought the class to a close with a discus-
sion of what had been found. The class was sure that Shelly’s
method produced the same result for all linear functions, and the
students had mixed opinions about whether it would work for other
functions. A student formulated a statement of the class’s conjecture
and wrote it on the board as follows:

Applying Shelly’s technique to a linear function results in a set of
linear functions, all of which pass through the same point. The
point of intersection has an x-value of —1.

The next day, Ms. Rodriguez began the class by asking each student to
choose a linear function and apply Shelly’s technique to it. She told
the students that each person would be responsible for showing why
Shelly’s method did or did not work for his or her function. As the
students worked on symbolizing what they had done, questions arose
such as, What should I write down? I know I want to show that they
all intersect in the same place, but how do I show that? Ms. Rodriguez
suggested that students work together in small groups. At some point,
each group realized that the solution involved finding the point of in-
tersection of the graphs of two equations—the one they started with
and a second one. Karen produced the following argument:

My equation was y = 3x + 5. I moved the sliders about two units to
the right. The equation for the new line had 7 and b two units
bigger than the original. So the new line was y = 5x + 7. I found
the intersection of those two lines and got 2x + 2 = 0, so the inter-
section is at x = —1 and y = 2. [Karen wrote the following on the

chalkboard.]

3w+5=5x+7
0=2x+2
-2=2
-1=x

Pao announced excitedly that Karen’s approach worked even for an
equation as complicated as y = —3.23x + 4.577. After most of the stu-
dents had found that their equations intersect at a point with an x-
value of -1, Ms. Rodriguez led the class in a discussion of exactly
what they knew. Mike argued that since they had chosen their equa-
tions randomly, the result must be true in general. Pete said that
even though they had looked at several equations, their results were
not sufficient to prove the conjecture for every equation. Pat added
that they also hadn’t tried every possible movement of 7.

The discussion of this problem continued until the class generated a
general proof. With Ms. Rodriguez’s guidance, the students worked
to represent the result of the simultaneous slider shift of a linear
function written in the form y = mx + basy = (m + k)x + (b + k). The
students determined the point of intersection by solving the system
of equations:

y=mx+b

y=m+kx+®+k)

They then confirmed that every equation of the form y = (7 + k)x +
(b + k) passes through the point (-1, & — mz).

Principles and Standards for School Mathematics



Ms. Rodriguez may well have felt very satisfied at the end of this
episode, since her class had had an opportunity to explore a striking
graphical pattern observed by a student. The exploration had included
considering whether it would always work and if so, why. Pursuing the
answer to that question helped her students see the linkage between al-
gebraic and graphical representations of functions and understand how
algebraic arguments can be used to establish the truth of a mathemati-
cal conjecture. It gave them an opportunity to review and apply previ-
ously learned knowledge of solving systems of equations. She will have
to revise her instructional plan for the coming weeks. However, this ex-
perience has helped reinforce her students’ dispositions toward posing
and solving problems as well as their algebraic fluency. Indeed, the situ-
ation may have helped her students realize that mathematical situations
can be interesting and worthy of exploration. Thus problem posing and
problem solving led to a deeper understanding of both content and
process.

What should be the teacher’s role in developing
problem solving in grades 9 through 127?

As Halmos (1980) writes, problem solving is the “heart of mathe-
matics.” Successful problem solving requires knowledge of mathe-
matical content, knowledge of problem-solving strategies, effective
self-monitoring, and a productive disposition to pose and solve prob-
lems. Teaching problem solving requires even more of teachers, since
they must be able to foster such knowledge and attitudes in their stu-
dents. A significant part of a teacher’s responsibility consists of planning
problems that will give students the opportunity to learn important
content through their explorations of the problems and to learn and
practice a wide range of heuristic strategies. The teacher must be
courageous, for even well-planned lessons can veer into uncharted ter-
ritory. Students may make novel suggestions as they try to solve prob-
lems; they may make observations that give rise to new conjectures or
explorations; they may suggest generalizations whose validity may be
unknown to the teacher. Teachers must exercise judgment in deciding
what responses to pursue and recognize the potential for both produc-
tive learning and improved attitudes when students generate new ideas,
but they must also acknowledge that not all responses lead to fruitful
discussions and that time constraints do not allow them to pursue every
interesting idea. It is the teacher’s job to make the tough calls. The
teacher must also be reflective in order to create an environment in
which students are inclined to reflect on their work as they engage in it
(Thompson 1992). In short, teaching is itself a problem-solving activity.
Effective teachers of problem solving must themselves have the knowl-
edge and dispositions of effective problem solvers.

Standards for Grades 9—-12: Problem Solving

Teaching is itself a

problem-solving activity.
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Reasoning and Proot

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize reasoning and proof as
fundamental aspects of mathematics

Make and investigate mathematical
conjectures

Develop and evaluate mathematical
arguments and proofs

Select and use various types of
reasoning and methods of proof

342

Grades

9-12

Mathematics should make sense to students; they should see it as rea-
soned and reasonable. Their experience in school should help them rec-
ognize that seeking and finding explanations for the patterns they ob-
serve and the procedures they use help them develop deeper
understandings of mathematics. As illustrated throughout this chapter,
opportunities for mathematical reasoning and proof pervade the high
school curriculum. Students should develop an appreciation of mathe-
matical justification in the study of all mathematical content. In high
school, their standards for accepting explanations should become more
stringent, and they should develop a repertoire of increasingly sophisti-
cated methods of reasoning and proof.

What should reasoning and proof look like in grades 9
through 127

Reasoning and proof are not special activities reserved for special
times or special topics in the curriculum but should be a natural, ongo-
ing part of classroom discussions, no matter what topic is being studied.
In mathematically productive classroom environments, students should
expect to explain and justify their conclusions. When questions such as,
What are you doing? or Why does that make sense? are the norm in a
mathematics classroom, students are able to clarify their thinking, to
learn new ways to look at and think about situations, and to develop
standards for high-quality mathematical reasoning (Collins et al. 1989).

Consider the following hypothetical classroom scenario:

Mr. Hamilton’s class at Manorville High School has established
e-mail contact with a high school class in Osaka, Japan. The two
groups of students begin by gathering and sharing information
about their classes. They exchange data about the number of people
in each student’s family, about how far each student lives from the
school, and about the number and type of pets each student has.
The Japanese students have heard that houses and apartments in
North America are very large, and they want to compare the living
areas of the students in Manorville with their own. Each class makes
a list of the floor areas in their families’ houses or apartments. They
compute the mean, the median, the mode, the range, and the stan-
dard deviation for their data and share them electronically.

Principles and Standards for School Mathematics



When the data arrive from their Japanese friends, Mr. Hamilton’s
students realize that they will have to do a bit more work before a
comparison can be made. It has not occurred to them that the in-

formation from the Japanese students would be reported in square Reasonin g and pr 00f6l7/' e
meters whereas all their measurements are recorded as square feet. . L
At first Angela thinks that they will need to get the original data not spec ial activities

about the Japanese room sizes, convert the measurements to feet,
and recompute the size of each living area before they can deter-
mine the statistics. Shanika points out that a spreadsheet would do
the conversions quickly but thinks that they will still have to ask for
the original data. Mr. Hamilton suggests that before asking the
Japanese students to enter all those extra data, they might work
with the summary statistics they have and see if they can find a way
to compare them directly with their own.

The class decides to focus first on the mode. They know that the
mode of the areas corresponds to the measurement of an actual liv-
ing area. They think that if they figure out how to convert that
value from square meters to square feet, they might be able to get
started on the other statistics. Jacob observes that a meter is roughly
equal to 3.3 feet. He proposes that they multiply the mode of the
Japanese data by 3.3 to convert square meters to square feet. Mr.
Hamilton asks the class if they agree. Several students nod, but
Shanika objects. She points out that they aren’t thinking about the
fact that the mode is given in square meters and that 1 square meter
is equal to about 10.9 square feet. Angela says she doesn’t under-
stand where that number comes from so Shanika draws her a dia-
gram (see fig. 7.32) and explains. “See, suppose this is 1 meter by 1
meter. We could make it 3.3 feet by 3.3 feet, then when we multiply
to find the area, we get about 10.9 square feet.” Her reasoning
makes sense to the rest of the class, so they convert the mode value.

reserved for special times

mn the curviculum.

1 meter 3.3 feet Fig. 7.32.
Shanika’s diagram for explaining the
conversion from square meters to
=10.9 square square feet

feet

1 square
meter

1 meter
3.3 feet

Mr. Hamilton asks them to think about which of the other statistics
could be converted in the same way. Angela says that they can use
the same method to convert the median. At that point, two more
students join the conversation.

Chuen: You can do it with the average of two numbers. The
first number would get multiplied by 10.9, and so
would the second, then you average them. But if you
just factor out the 10.9, you get the average of the two
numbers you had times 10.9.

Robert: 1f it works when we average two numbers that way, it
ought to work when we average more numbers.

Standards for Grades 9-12: Reasoning and Proof 343
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Chuen tries the mean of three numbers and announces that the
method works in that case also. Mr. Hamilton asks the class to show
it would always work. With some help, they argue that for any values
xl, X7, and X3,

10.9x, +10.9x, +10.9x; =10.9(, +x, +x3).

Shanika then observes, “It doesn’t matter how many x’s you have.
You can always factor out the 10.9.”

The discussion of standard deviation is similar. Damon says he tried
the method with some simple numbers and it worked, so he
thought it should be true. “OK,” says Mr. Hamilton. “So we think
it’s likely to be true. But how do we know it will be? Are there any
hints in anything we have written down?” Damon then suggests
that they write out the formula for standard deviation and replace
all the values of x with 10.9x. It takes a while to work through the
details, but the class ultimately shows that if every number in a data
set is multiplied by a constant, the standard deviation of the result-
ing data set equals the standard deviation of the original data set
multiplied by the same constant.

An important point in this example is that reasoning and proof en-
abled students to abstract and codify their observations. Chuen’s initial
observation was that if each of two numbers is multiplied by 10.9, the
mean of the resulting numbers is 10.9 times the mean of the original
numbers. The reasoning he used ultimately produced the argument that
if every number in a data set is multiplied by a constant, the mean of the
) ) resulting data set equals the mean of the original data set multiplied by
Sometimes develapm g that constant. The fact that this argument could be made algebraically
. furnished a mechanism for making a similar argument about the stan-

a p7/'00f is a natural way dard deviation. In this way, results with similar justifications can emerge.
g Sometimes developing a proof is a natural way of thinking through a

Of thinki ng th roug ha problem. For examplle):, agtealz:her posed the prob%]em of ﬁndilglg fourgcon—
secutive integers whose sum is 44. The students tried the task and de-
cided it was impossible. The teacher responded, “OK, so you couldn’t
find the integers. How do you know that someone else won’t be able to
find them?” The students worked quietly for a few minutes, and one
student offered, “Look, if you call the first number 7, the next three are
n+ 1,7+ 2,and n + 3. Add those four numbers and set them equal to
44. You get 4n + 6 = 44, and the solution to that equation is z = 9 1/2.
So no whole number does it.” Here the proof works nicely to explain
why something is impossible.

The habit of asking why is essential for students to develop sound
mathematical reasoning. In one class, imagine a student wants to divide
an 8 1/2 inch x 11 inch sheet of paper into three columns of equal
width. The student is ready to measure off lengths of 2 5/6 inches, but
the teacher says, “Let me show you a carpenter’s trick.” He places a 12-
inch ruler at an angle on the page so that the 0-inch and 12-inch marks
on the ruler are on the left- and right-hand edges, respectively, and
makes marks at the 4- and 8-inch points on the ruler. He then repeats
the procedure, with the ruler farther down the page. Drawing lines
through the 4-inch marks and the 8-inch marks divides the page neatly
into three equal parts. The teacher then says, “Carpenters use this trick
to divide boards into thirds (see fig. 7.33). My questions to you are,

problem.
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Fig. 7.33.

A carpenter’s method for trisecting a

board

Why does it work? Can you find similar procedures to divide a board
into four, five, or any number of equal parts?

The repertoire of proof techniques that students understand and use
should expand through the high school years. For example, they should
be able to make direct arguments to establish the validity of a conjecture.
Such reasoning has long been at the heart of Euclidean geometry, but it
should be used in all content areas: consider, for example, the number-
theory arguments discussed in the “Number and Operations” section of
this chapter or the arguments given about the effect on some statistics of
a data set of multiplying every element in the data set by a given constant.
Students should understand that having many examples consistent with a
conjecture may suggest that the conjecture is true but does not prove it,
whereas one counterexample demonstrates that a conjecture is false. Stu-
dents should see the power of deductive proofs in establishing results.
They should be able to produce logical arguments and present formal
proofs that effectively explain their reasoning, whether in paragraph,
two-column, or some other form of proof.

Because conjectures in some situations are not conducive to direct
means of verification, students should also have some experience with in-
direct proofs. And since iterative and recursive methods are increasingly
common (see, e.g., the “drug dosage” problem discussed in the “Algebra”
section in this chapter), students should learn that certain types of results
are proved using the technique of mathematical induction.

Students should reason in a wide range of mathematical and applied
settings. Spatial reasoning gives insight into geometric results, espe-
cially in two- and three-dimensional geometry. Probabilistic reasoning
is helpful in analyzing the likelihood that an event will occur. Statistical
reasoning allows students to assess risks and make generalizations about
a population by using representative samples drawn from that popula-
tion. Algebra is conducive to symbolic reasoning. Students who can use
many types of reasoning and forms of argument will have resources for
more-effective reasoning in everyday situations.

What should be the teacher’s role in developing
reasoning and proof in grades 9 through 127

"To help students develop productive habits of thinking and reason-
ing, teachers themselves need to understand mathematics well (Borko
and Putnam 1996). Through the classroom environments they create,
mathematics teachers should convey the importance of knowing the
reasons for mathematical patterns and truths. In order to evaluate the

Standards for Grades 9-12: Reasoning and Proof
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validity of proposed explanations, students must develop enough confi-
dence in their reasoning abilities to question others’ mathematical argu-
ments as well as their own. In this way, they rely more on logic than on
external authority to determine the soundness of a mathematical argu-
ment.

As in other grades, teachers of mathematics in high school should
strive to create a climate of discussing, questioning, and listening in
their classes. Teachers should expect their students to seek, formulate,
and critique explanations so that classes become communities of in-
quiry. Teachers should also help students discuss the logical structure of
their own arguments. Critiquing arguments and discussing conjectures
are delicate matters: plausible guesses should be discussed even if they
turn out to be wrong. Teachers should make clear that the ideas are at
stake, not the students who suggest them. With guidance, students
should develop high standards for accepting explanations, and they
should understand that they have both the right and the responsibility
to develop and defend their own arguments. Such expectations were
visible in the Manorville High School episode: Informal reasoning and
a few calculations suggested to students how a summary statistic given
in one unit seemed to be related to the same statistic given in a different
unit. In that classroom, however, informal reasoning and supporting ex-
amples were a starting point rather than an end point. In a supportive
environment, students were encouraged to furnish a carefully reasoned
argument for verifying their conjecture that would meet the standards
of the broader mathematics community.

Principles and Standards for School Mathematics
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Communication

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Organize and consolidate their
mathematical thinking through
communication

Communicate their mathematical
thinking coherently and clearly to
peers, teachers, and others

Analyze and evaluate the mathe-
matical thinking and strategies of
others

Use the language of mathematics
to express mathematical ideas
precisely

348

Grades

9-12

Changes in the workplace increasingly demand teamwork, collabora-
tion, and communication. Similarly, college-level mathematics courses
are increasingly emphasizing the ability to convey ideas clearly, both
orally and in writing. To be prepared for the future, high school students
must be able to exchange mathematical ideas effectively with others.

However, there are more-immediate reasons for emphasizing mathe-
matical communication in high school mathematics. Interacting with
others offers opportunities for exchanging and reflecting on ideas;
hence, communication is a fundamental element of mathematics learn-
ing. For that reason, it plays a central role in all the classroom episodes
in this chapter. Sharing ideas and building on the work of others were
essential ingredients in the ability of Ms. Rodriguez’s class to provide an
analytic explanation of a surprising visual result (see the discussion in the
“Problem Solving” section). Communication was also important in the
episode about converting the unit of measurement for various statistics
in the “Reasoning and Proof” section where informal observations led
to discussions of specific cases that were ultimately abstracted and
proved as general results. Making connections among the various geo-
metric examples in the upcoming “Connections” section depends heav-
ily on the exchange of information. Students’ written work is valuable
for assessment, as readers will see in the discussion in the “Representa-
tion” section, where the students’ incorrect distance-versus-time graph
gives the teacher insights into their misconceptions. In all these exam-
ples, the act of formulating ideas to share information or arguments to
convince others is an important part of learning. When ideas are ex-
changed and subjected to thoughtful critiques, they are often refined and
improved (Borasi 1992; Moschkovich 1998). In the process, students
sharpen their skills in critiquing and following others’ logic. As students
develop clearer and more-coherent communication (using verbal expla-
nations and appropriate mathematical notation and representations),
they will become better mathematical thinkers.

What does communication look like in grades 9
through 127

In high school, there should be substantial growth in students’ abili-
ties to structure logical chains of thought, express themselves coherently

Principles and Standards for School Mathematics



and clearly, listen to the ideas of others, and think about their audience
when they write or speak. The relationships students wish to express
symbolically and with graphs, as well as the notation and representations
for expressing them, should become increasingly sophisticated. Conse-
quently, communication in grades 9-12 can be distinguished from that
in lower grades by higher standards for oral and written exposition and
by greater mathematical sophistication.

High school students should be good critics and good self-critics.
They should be able to generate explanations, formulate questions, and
write arguments that teachers, coworkers, or mathematicians would
consider logically correct and coherent. Whether they are making their
points using spreadsheets, geometric diagrams, natural language, or al-
gebraic symbols, they should use mathematical language and symbols
correctly and appropriately. Students also should be good collaborators
who work effectively with others.

Proofs should be a significant part of high school students’ mathe-
matical experience, as well as an accepted method of communication.
The following episode, drawn from real experience, illustrates the part
that mathematical communication plays in the development of in-
creased understanding.

Marta and Nancy attended the biweekly mathematics competition
in their school district’s mathematics league and encountered the
following problem:

A string is stretched corner to corner on a floor tiled with square tiles. If
the floor is 28 tiles long and 35 tiles wide, over how many tiles does the
string pass?

They didn’t solve the problem, but they reported to their faculty
sponsor, Ms. Koech, that they had heard a fellow contestant say that
he got the answer by adding the two sides and subtracting their
greatest common divisor. Not content with a formula “dropped
from the sky,” Ms. Koech encouraged the girls to see if this method
always works and if so, why. Over a period of days the girls devel-
oped some intuitions about the problem and tried various ways of
sharing them with their teacher. Marta, who had a broken leg,
demonstrated one emerging insight by dragging her cast along the
tiles on the classroom floor.

Marta: See? The string crosses everything!

Ms. Koech: I'm not sure I know what you
mean.

Nancy: Watch this part of the floor (she
outlines a 3 x 2 tile pattern like
that shown and points to the points
of intersection of the imagined /
string and the edges of the tiles).

Here it crosses. Here it crosses. /

It hits the lines five times—and

that comes from the 2 and the
3! (Nancy has counted the number
of points of intersection of the
string with the vertical and hori-
zontal line segments and notices

Standards for Grades 9—12: Communication

1o be prepared for the
future, high school
students must be able to
exchange mathematical
ideas effectively with

others.
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that the total is the same as the sum of 2 and 3.)

M. Koech: That’s interesting! Have you seen that happen in other
cases?

Marta: Yes! It works for most small numbers.
Ms. Koech: What do you mean—most?

Marta: WEell, it didn’t work for this one. (Marta shows Ms. Koech
a drawing of a 3 X 6 tiling pattern for which there are seven
points of intersection.)

Nancy: Why is this one different?

Ms. Koech suggested that the students pursue Nancy’s question.
Over a period of days they determined that the relationship breaks
down when the string passes through a corner of a tile “inside” the
pattern. Gradually and after pursuing some approaches that led
nowhere, they realized that whenever the number of intersections
was the same as the sum of the dimensions of the rectangle, the di-
mensions of the room are relatively prime. Thinking back to
Marta’s cast clicking over the tiles—each time it clicked, she
touched another tile—they realized that they could trace along the
string and see how many times the string “exits” a tile. Except at the
start of the path, the string exits a tile each time it crosses either a
vertical or a horizontal line segment. Moreover, the string has to
cross every vertical and horizontal line segment as it traverses the
tiled room from one corner to the other. So the number of tiles the
string crosses can be determined by the number of horizontal and
vertical line segments in the tile configuration. After a number of
attempts—first for specific cases such as the 3 x 2 and 3 x 4 config-
urations and then in general—the students were able to show that if
n and 7 (the dimensions of the rectangle) are relatively prime, the
string passes over (2 + n — 1) tiles.

With this result established, they returned to the general problem.

Fig. 7.34. A close look at the 9 x 6 tile configuration (see fig. 7.34) shows that
A 9 x 6 tile configuration the area the string passes through can be considered as three 3 x 2
configurations. Thus the string passes over three times as many tiles

in the 9 x 6 configuration as it passes over in the 3 x 2 configura-
tion. This happens to be 3(2 + 3 — 1) = 6 + 9 — gcd(6, 9) tiles, which
7 conforms with the method they had heard from their fellow contes-
/ tant. From this analysis, the generalization to 7 + n — gcd(mz, n) was
a natural next step. The students wrote up their results for a re-
gional student mathematics publication.

A formal explanation follows: Suppose # and 7z have a ged of g. The
smaller, relatively prime grid is (n/g) % (m/g). The students discovered
that the number of grid lines crossed there is (#/g) + (m/g) — 1, which
indicates that when a string passes through g of them, it passes through
gl(n/g) + (m/g) — 1] = n + m — g grid lines.

In this example, communication serves at least two purposes. First,
it is motivational: Marta and Nancy kept working at the problem in
/ part because it was a collaborative effort, and they were discussing
/ their work. Second, repeated attempts to explain their reasoning to
each other and to their teacher helped Marta and Nancy clarify their
thinking and focus on essential elements of the problem. Notice that

350 Principles and Standards for School Mathematics
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the teacher offered some key observations and questions: “I’m not sure
what you mean.” “Have you seen this happen in other cases?” “What
do you mean, most?” Nancy then asked the question that launched the
girls’ exploration: “Why is this one different?” This focus was a major
factor in their success in eventually solving the problem.

What should be the teacher’s role in developing
communication in grades 9 through 127

High school teachers can help students use oral communication to
learn and to share mathematics by creating a climate in which all stu-
dents feel safe in venturing comments, conjectures, and explanations.
Teachers must help students clarify their statements, focus carefully on
problem conditions and mathematical explanations, and refine their
ideas. Orchestrating classroom conversations so that the appropriate
level of discourse and mathematical argumentation is maintained re-
quires that teachers know mathematics well and have a clear sense of
their mathematical goals for students. Teachers should help students
become more precise in written mathematics and have them learn to
read increasingly technical text. In both written and oral communica-
tion, teachers need to attend to their students and carefully interpret
what the students know from what they say or write.

Communication can be used in many ways as a vehicle for assessment
and learning. Early in a mathematics course or when a new topic is
being introduced, teachers can request information about the students’
knowledge of the topic. At the beginning of a tenth-grade unit on cir-
cles, for example, a teacher might ask students to tell her everything they
know about circles. The teacher could then compile the responses, dis-
tribute copies of them the next day, and ask the students to agree or dis-
agree with each of the statements. Students should justify the stance they
took. The teacher could look at students’ incorrect observations and de-
sign a lesson to address those misconceptions. In this way, the students’
knowledge becomes a starting point for instruction, and the teacher can
establish the idea that the students are expected to have reasons for their
mathematical opinions. Activities such as this can serve to establish a

Standards for Grades 9—12: Communication

Teachers should help

students learn to read

increasingly

technical text.
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classroom climate conducive to the respectful exchange of ideas. More
generally, having students present work to the class at the chalkboard,
overhead projector, or flip chart—and having the class respond to what
is presented rather than having only the teacher judge the correctness of
what has been said—can be a valuable way to foster classroom commu-
nication. Over time, such activities help students sharpen their ideas
through attempts to communicate orally and in writing.

There are various ways that teachers can help students communicate
effectively using written mathematics. Problems that require explana-
tions can be assigned regularly, and the class can discuss and compare
the adequacy of those explanations. The following exercises can help
students sharpen their mathematical writing skills:

* Imagine you are talking to a student in your class on the telephone and
want the student to draw some figures. The other student cannot see the
figures. Write a set of directions so that the other student can draw the
figures exactly as shown [in figure 7.35]. (California State Department of
Education 1989, p. 7)

* Suppose you are hired as a consultant to help a business choose between
two options (e.g., which taxicab company is the better one to use or
which telephone plan is a better buy). Write a memo saying which op-
tion is better and why. (For a similar activity, see Balanced Assessment
for the Mathematics Curriculum [2000, pp. 16-17].)

* Make a design plan for a dog house. The dog house will be made out of
wood cut from a 4' by 8' sheet of plywood, and its volume should be rea-
sonably large. Explain why you made the choices you have made in
putting together the design plan (adapted from National Research
Council [1989, p. 32]).

Such exercises also serve as good assessment devices that can help
teachers understand students’ thinking.

Fig. 7.35.

Figures to be described orally so they

can be reproduced
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Writing is a valuable way of reflecting on and solidifying what one
knows, and several kinds of exercises can serve this purpose. For example,
teachers can ask students to write down what they have learned about a
particular topic or to put together a study guide for a student who was ab-
sent and needs to know what is important about the topic. Students who
have done a major project or worked on a substantial long-range problem
can be asked to compare some of their early work with later work and ex-
plain how the later work reflects greater understanding. In these ways,
teachers can help students develop skills in mathematical communication
that will serve them well both inside and outside the classroom. Using
these skills will in turn help students develop deeper understandings of the
mathematical ideas about which they speak, hear, read, and write.

Principles and Standards for School Mathematics



Blank Page



Connections

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Recognize and use connections
among mathematical ideas

Understand how mathematical
ideas interconnect and build on one
another to produce a coherent
whole

Recognize and apply mathematics
in contexts outside of mathematics

354

Grades

9-12

When students can see the connections across different mathematical
content areas, they develop a view of mathematics as an integrated whole.
As they build on their previous mathematical understandings while learn-
ing new concepts, students become increasingly aware of the connections
among various mathematical topics. As students’ knowledge of mathe-
matics, their ability to use a wide range of mathematical representations,
and their access to sophisticated technology and software increase, the
connections they make with other academic disciplines, especially the sci-
ences and social sciences, give them greater mathematical power.

What should connections look like in grades 9
through 127

Students in grades 9-12 should develop an increased capacity to link
mathematical ideas and a deeper understanding of how more than one
approach to the same problem can lead to equivalent results, even
though the approaches might look quite different. (See, e.g., the
“counting rectangles” problem in the “Problem Solving” section in this
chapter.) Students can use insights gained in one context to prove or
disprove conjectures generated in another, and by linking mathematical
ideas, they can develop robust understandings of problems.

The following hypothetical example highlights the connections
among what would appear to be very different representations of, and
approaches to, a mathematical problem.

The students in Mr. Robinson’s tenth-grade mathematics class sus-
pect they are in for some interesting problem solving when he starts
class with this story: “I have a dilemma. As you may know, I have a
faithful dog and a yard shaped like a right triangle. When I go away
for short periods of time, I want Fido to guard the yard. Because 1
don’t want him to get loose, I want to put him on a leash and secure
the leash somewhere on the lot. I want to use the shortest leash pos-
sible, but wherever I secure the leash, I need to make sure the dog
can reach every corner of the lot. Where should I secure the leash?”

After Mr. Robinson responds to the usual array of questions and
comments (such as “Do you really have a dog?” “Only a math
teacher would have a triangle-shaped lot—or notice that the lot was

Principles and Standards for School Mathematics



triangular!” “What type of dog is it?”), he asks the students to work
in groups of three. All their usual tools, including compass, straight-
edge, calculator, and computer with geometry software, are avail-
able. They are to come up with a plan to solve the problem.
Jennifer dives into the problem right away, saying, “Let’s make a

sketch using the computer.” With her group’s agreement, she pro-
duces the sketch in figure 7.36.

c Fig. 7.36.

m DC = 2.12 inches Jennifer’s computer-drawn sketch of
—_ i the “dog in the yard” problem
m DB = 3.12 inches

m DA = 1.70 inches

D
A B When students can see
As Mr. Robinson circulates around the room, he observes each the connections across
group long enough to monitor its progress. On his first pass, Jen-
nifer’s group seems to be experimenting somewhat randomly with content areas, tl?e_)/
dragging the point D to various places, but on his second pass, their devel .
work seems more systematic. To assess what members of the group evelop a view Of

understand, he asks how they are doing: mathematics as an

M. R: Joe, can you bring me up-to-date on the progress of _
your group? mtegmted whole.
Foe: We're trying to find out where to put the point.

Feff: We don’t want the point too close to the corners of the
triangle.

Fennifer: 1 get it! We want all the lengths to be equal! They all
work against each other.

Before moving on to work with other groups, Mr. Robinson works
with the members of Jennifer’s group on clarifying their ideas, using
more-standard mathematical language, and checking with one an-
other for shared understanding. Jennifer clarifies her idea, and the
group decides that it seems reasonable. They set a goal of finding
the position for D that results in the line segments DA, DB, and DC
all being the same length. When Mr. Robinson returns, the group
has concluded that point D has to be the midpoint of the hy-
potenuse, otherwise, they say, it could not be equidistant from B
and C. (Mr. Robinson notes to himself that the group’s conclusion is
not adequately justified, but he decides not to intervene at this
point; the work they will do later in creating a proof will ensure that
they examine this reasoning.)

Mpr. R: What else would you need to know?

Jeff: We're not sure yet whether D is the same distance from
all three vertices.

Standards for Grades 9—12: Connections 355
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Fennifer: It has to be! At least I think it is. It looks like it’s the
center of a circle.

Small-group conversations continue until several groups have made
observations and conjectures similar to those made in Jennifer’s
group. Mr. Robinson pulls the class back together to discuss the
problem. When the students converge on a conjecture, he writes it
on the board as follows:

Conjecture: The midpoint of the hypotenuse of a right triangle is equi-
distant from the three vertices of the triangle.

He then asks the students to return to their groups and work to-
ward providing either a proof or a counterexample. The groups
continue to work on the problem, settling on proofs and selecting
group members to present them on the overhead projector. As al-
ways, Mr. Robinson emphasizes the fact that there might be a num-
ber of different ways to prove the conjecture.

Remembering Mr. Robinson’s mantra about placing the coordinate
system to “make things eeeasy,” one group places the coordinates
as shown in figure 7.37a, yielding a common distance of +4? +5* .
Alfonse, who is explaining this solution, proudly remarks that it re-
minds him of the Pythagorean theorem. Mr. Robinson builds on
that observation, noting to the class that if the students drop a per-
pendicular from M to AC, each of the two right triangles that result
has legs of length # and 4; thus the length of the hypotenuses, MC
and MA, are indeed + 2> + 5° .

Jennifer’s group returns to her earlier comment about the three
points 4, B, and C being on a circle. After lengthy conversations
with, and questions from, Mr. Robinson, that group produces a sec-
ond proof based on the properties of inscribed angles (fig. 7.37b).

Fig. 7.37.

Diagrams corresponding to four B
proofs of the midpoint-of- B(0, 2b)
hypotenuse theorem

M (a, b)

A (2a, 0) A
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Pedro presents his group’s solution showing how they constructed a
rectangle that includes the three vertices of the right triangle (fig.
7.37¢) and reasoned about the properties of the diagonals of a rec-
tangle. Anna presents a solution using transformational geometry
(figure 7.37d). Since M and M" are the midpoints of AB and A'B’,
respectively, the triangle MAM' is similar to the triangle BAB', with
each of the sides of the smaller triangle half the length of the corre-
sponding side of the larger triangle. The same relationship holds
for triangles BMC and BAB'. Using this fact and the fact that BAB'
is isosceles (since BA reflects onto B'A), Anna shows that triangle
MAM' is congruent to triangle CMB, from which it follows that
CM and MA are the same length.

Mr. Robinson congratulates the students on the quality of their
work and on the variety of approaches they used. He points out that
some basic mathematical ideas such as congruence were actually
part of the mathematics in a number of their solutions and that
some of their thinking, such as Alfonse’s comment about the
Pythagorean theorem, highlighted connections to other mathemati-
cal ideas. Taking a step backward to reflect, the students begin to
see how different approaches—using coordinate geometry, Euclid-
ean geometry, and transformational geometry—are all connected.
Mr. Robinson notes that it is good to have all these ways of thinking
in their mathematical “tool kit.” Any one of them might be the key
to solving the next problem they encounter.

Although the students learned a great deal from working on the prob-
lem, the class was not yet finished with it. Mr. Robinson had selected
this problem for the class to work on because it supports a number of in-
teresting explorations and because the students would be exploring the
properties of triangles and circles as they worked on it. And, indeed, as
the students worked on the problem, they remarked that they were “see-
ing circles everywhere.” (The following discussion is inspired by Gold-
enberg, Lewis, and O’Keefe [1992].)
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Fig. 7.38.

Dynamic representations of right tri-
angles (from Goldenberg, Lewis, and
O’Keefe [1992, p. 257])

(&) Atrace of the locus of the (b) Atrace of the locus of
vertices of right angles with midpoints of hypotenuses of
a common hypotenuse fixed length in triangles with

a common right angle

One group decides to look at the set of all the right triangles they can
find, given a fixed hypotenuse. A group member starts by construct-
ing a right triangle with the given hypotenuse and then dragging the
right angle (fig. 7.38a). Another group decides to fix the position of
the right angle and look at the set of right triangles whose hy-
potenuses are the given length (fig. 7.38b). They observe that the
plot of the midpoints of the hypotenuses of the right triangles ap-
pears to trace out the arc of a circle. At first the students are ready to
dismiss the circular pattern as a coincidence. But Mr. Robinson, see-
ing the potential for making a connection, asks questions such as,
“Why do you think you get that pattern?” and “Does the circle in
your pattern have anything to do with the circle in Jennifer’s group’s
solution?” As the groups begin to understand Mr. Robinson’s ques-
tions, they begin to see the connections among the circles in their
new drawings, the definition of a circle, and the fact that their prob-
lem deals with points that are equally distant from a third point.

Mr. Robinson adds a final challenge for homework: can the students
connect this problem (or problems related to it) to real-world situa-
tions or to other mathematics? The students create posters illustrat-
ing the mathematical connections they see. Most of the posters depict
situations similar to the original problem in which something, for
some reason, needs to be positioned the same distance from the ver-
tices of a right triangle. One group, however, creates an experiment
that they demonstrate for the class in one of the dark, windowless
rooms in the building. They put on the floor a large sheet of white
chart paper with a right triangle drawn on it, place candles (all of the
same height) at each vertex, and stand an object shorter than the can-
dles inside the triangle. The class watches the shadows of the object
change as one of the group members moves it around inside the tri-
angle. The three shadows are of equal length only when the object is
placed at the midpoint of the hypotenuse—a phenomenon that de-
lights both Mr. Robinson and his students. This activity concludes
the discussion of right triangles, but it is far from the end of the class’s
work. Mr. Robinson reminds the students of the problem that started
their discussion and asks them how the problem might be extended.
“After all,” he says, “not all backyards have right angles or are trian-
gular in shape.” This comment sets the stage for abstracting and gen-
eralizing some of their work—and for making more connections.
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What should be the teacher’s role in developing
connections in grades 9 through 127?

The story of Mr. Robinson’s classroom indicates many of the ways in
which teachers can help students seek and make use of mathematical
connections. Problem selection is especially important because students
are unlikely to learn to make connections unless they are working on
problems or situations that have the potential for suggesting such link-
ages. Teachers need to take special initiatives to find such integrative
problems when instructional materials focus largely on content areas
and when curricular arrangements separate the study of content areas
such as geometry, algebra, and statistics. Even when curricula offer
problems that cut across traditional content boundaries, teachers will
need to develop expertise in making mathematical connections and in
helping students develop their own capacity for doing so.

One essential aspect of helping students make connections is estab-
lishing a classroom climate that encourages students to pursue mathe-
matical ideas in addition to solving the problem at hand. Mr. Robinson
started with a problem that allowed for multiple approaches and solu-
tions. While the students worked the problem, they were encouraged to
pursue various leads. Incorrect statements weren’t simply judged wrong
and dismissed; Mr. Robinson helped the students find the kernels of
correct ideas in what they had said, and those ideas sometimes led to
new solutions and connections. The students were encouraged to re-
flect on and compare their solutions as a means of making connections.
When they had done just about everything they were able to do with
the given problem, they were encouraged to generalize what they had
done. Rich problems, a climate that supports mathematical thinking,
and access to a wide variety of mathematical tools all contribute to stu-
dents’ ability to see mathematics as a connected whole.
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Rich problems, a climate
that supports
mathematical thinking,
and access to
mathematical tools
contribute to students’

seez'ng CONNeEctions.
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Representation

Instructional programs from
prekindergarten through grade 12
should enable all students to—

Create and use representations to
organize, record, and communicate
mathematical ideas

Select, apply, and translate among
mathematical representations to
solve problems

Use representations to model and
interpret physical, social, and
mathematical phenomena

360

Grades

9-12

If mathematics is the “science of patterns” (Steen 1988), representa-
tions are the means by which those patterns are recorded and analyzed.
As students become mathematically sophisticated, they develop an in-
creasingly large repertoire of mathematical representations and the
knowledge of how to use them productively. This knowledge includes
choosing specific representations in order to gain particular insights or
achieve particular ends.

The importance of representations can be seen in every section of
this chapter. If large or small numbers are expressed in scientific nota-
tion, their magnitudes are easier to compare and they can more readily
be used in computations. Representation is pervasive in algebra. Graphs
convey particular kinds of information visually, whereas symbolic ex-
pressions may be easier to manipulate, analyze, and transform. Mathe-
matical modeling requires representations, as illustrated in the “drug
dosage” problem and in the “pipe offset” problem. The use of matrices
to represent transformations in the plane illustrates how geometric op-
erations can be represented visually yet also be amenable to symbolic
representation and manipulation in a way that helps students under-
stand them. The various methods for representing data sets further
demonstrate the centrality of this topic.

A wide variety of representations can be seen in the examples in this
chapter. By using various representations for the “counting rectangles”
problem in the “Problem Solving” section, students could find different
solutions and compare them. The use of algebraic symbolism to explain
a striking graphical phenomenon is central to the “string traversing
tiles” task in the “Communication” section. Representations facilitate
reasoning and are the tools of proof: they are used to examine statistical
relationships and to establish the validity of a builder’s shortcut. They
are at the core of communication and support the development of un-
derstanding in Marta’s and Nancy’s work on the “string traversing tiles”
problem. Although at one level the story of Mr. Robinson’s class is about
connections, at another level it is about representation: one group of stu-
dents places coordinates that “make things eeeasy,” the class gains in-
sights from dynamic representations of geometric objects, and the stu-
dents produce proofs in coordinate and Euclidean geometry. A major
lesson of that story is that different representations support different
ways of thinking about and manipulating mathematical objects. An ob-
ject can be better understood when viewed through multiple lenses.

Principles and Standards for School Mathematics
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In grades 9-12, students’ knowledge and use of representations %—
should expand in scope and complexity. As they study new content, for a
example, students will encounter many new representations for mathe- -
matical concepts. They will need to be able to convert flexibly among ) @
these representations. Much of the power of mathematics comes from Dlﬁqﬁ/‘ ent 3
being able to view and operate on objects from different perspectives. ) —
In elementary school, students most often use representations to rea- representations Support v
son about objects and actions they can perceive directly. In the middle Ji 3
grades, students increasingly create and use mathematical representa- Zﬁ(é rent ways Of %
tions for objects that are not perceived directly, such as rational num- 7 —
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f(@) = ax’. The fact that these situations can be represented by the same g’?
class of functions implies that they are alike in some fundamental math- 5
ematical way. Students are ready in high school to see similarity in the 2
underlying structure of mathematical objects that appear contextually a
different but whose representations look quite similar. %
High school students should be able to create and interpret models =
of more-complex phenomena, drawn from a wider range of contexts, <
by identifying essential features of a situation and by finding represen- -
tations that capture mathematical relationships among those features. S
They should recognize, for example, that phenomena with periodic )
features often are best modeled by trigonometric functions and that 0
population growth tends to be exponential, or logistic. They will learn <
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to describe some real-world phenomena with iterative and recursive
representations.

Consider the graph of the concentration of CO, in the atmosphere
as a function of time and latitude during the period from 1986 through
1991 (see fig. 7.39) (Sarmiento 1993). Teachers might use an example
such as this to help students understand and interpret several aspects of
representation. Students could discuss the trends in the change in con-
centration of CO, as a function of time as well as latitude. Doing so
would draw on their knowledge about classes of functions and their
ability to interpret three-dimensional graphs. They should be able to
see a roughly linear increase across time, coupled with a sinusoidal fluc-
tuation with the seasons. Focusing on the change in the character of the
graph as a function of latitude, students should note that the amplitude
of the sinusoidal function lessens from north to south. Students can test
whether the trends they observe in the graph correspond to recent the-
oretical work on CO; concentration in the atmosphere. For example,
the author of the article attributes the sinusoidal fluctuation to seasonal
variations in the amount of photosynthesis taking place in the terrestrial
biosphere. Students could discuss the differences in amplitude across
seasons in the Northern and Southern Hemispheres.

Fig. 7.39.

A three-dimensional graph of the con-
centration of CO, in the atmosphere
as a function of time and latitude
(Adapted from Sarmiento [1993])
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Electronic technologies provide access to problems and methods that
until recently were difficult to explore meaningfully in high school. In
order to use the technologies effectively, students will need to become
familiar with the representations commonly used in technological set-
tings. For example, solving equations or multiplying matrices using a
computer algebra system calls for learning how to input and interpret
information in formats used by the system. Many software tools that
students might use include special icons and symbols that carry particu-
lar meaning or are needed to operate the tool; students will need to
learn about these representations and distinguish them from the mathe-
matical objects they are manipulating.

What should be the teacher’s role in developing
representation in grades 9 through 127

An important part of learning mathematics is learning to use the lan-
guage, conventions, and representations of mathematics. Teachers
should introduce students to conventional mathematical representations

Principles and Standards for School Mathematics



and help them use those representations effectively by building on the
students’ personal and idiosyncratic representations when necessary. It is
important for teachers to highlight ways in which different representa-
tions of the same objects can convey different information and to em-
phasize the importance of selecting representations suited to the particu-
lar mathematical tasks at hand (Yerushalmy and Schwartz 1993;
Moschkovich, Schoenfeld, and Arcavi 1993). For example, tables of val-
ues are often useful for quick reference, but they provide little informa-
tion about the nature of the function represented. Consider the table in
the “Algebra” section in this chapter that gives the number of minutes of
daylight in Chicago every other day for the year 2000. The values in the
table suggest that the function is initially increasing and then becomes
decreasing. Knowledge of the context of a graph of those values suggests
that the behavior is actually periodic. Similarly, algebraic and graphical
representations of functions may provide different information. Some
global properties of functions, such as asymptotic behavior or the rate of
growth of a function, are often most readily apparent from graphs. But
information about specific aspects of a function—the exact value of (17
or exact values of x where f(x) has a maximum or a minimum—may best
be determined using an algebraic representation of the function. Sup-
pose g(x) is given by the equation g(x) = f(x) + 1, for all x. The analytic
definitions of f(x) and g(x) may offer the most-effective ways of comput-
ing specific values of f(x) and g(x), but graphing the function reveals that
the “shape” of g(x) is precisely the same as that of f(x)—that the graph of
g(x) is obtained by translating the graph of f(x) one unit upward.

As in all instruction, what matters is what the student sees, hears, and
understands. Often, students interpret what teachers may consider
wonderfully lucid presentations in ways that are very different from
those their teachers intended (Confrey 1990; Smith, diSessa, and
Roschelle 1993). Or they may invent representations of content that are
idiosyncratic and have personal meaning but do not look at all like con-
ventional mathematical representations (Confrey, 1991; Hall et al.
1989). Part of the teacher’ role is to help students connect their per-
sonal images to more-conventional representations. One very useful
window into students’ thinking is student-generated representations.
"To illustrate this point, consider the following problem (adapted from
Hughes-Hallett et al. [1994, p. 6]) that might be presented to a tenth-
grade class:

A flight from SeaTac Airport near Seattle, Washington, to LAX Airport in
Los Angeles has to circle LAX several times before being allowed to land.
Plot a graph of the distance of the plane from Seattle against time from
the moment of takeoff until landing.

Students could work individually or in pairs to produce distance-ver-
sus-time graphs for this problem, and teachers could ask them to pre-
sent and defend those graphs to their classmates. Graphs produced by
this class, or perhaps by students in other classes, could be handed out
for careful critique and comment. When they perform critiques, stu-
dents get a considerable amount of practice in communicating mathe-
matics as well as in constructing and improving on representations, and
the teacher gets information that can be helpful in assessment. One
representation of the flight that a student might produce is shown in
tigure 7.40.

Standards for Grades 9—12: Representation

Part of the teacher’s role
is to help students
connect their personal
1mages to more-
conventional

representations.
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Fig. 7.40.

A representation that a student might
produce of an airplane’s distance
from its take-off point against the
time from takeoff to landing

> fime
e lovdd

This representation indicates a number of interesting and not un-
common misunderstandings, in which literal features of the story (the
plane flying at constant height or circling around the airport) are
converted inappropriately into features of the graph (Dugdale 1993;
Leinhardt, Zaslavsky, and Stein 1990). Representations of this type can
provoke interesting classroom conversations, revealing what the stu-
dents really understand about graphing. This revelation puts the
teacher in a better position to move the class toward a more nearly ac-
curate representation, as sketched in figure 7.41.

Fig. 7.41.

A more nearly accurate representa-
tion of the airplane’s distance from
its take-off point against the time
from takeoff to landing
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Mathematics is one of humankind’s greatest cultural achievements. It
is the “language of science,” providing a means by which the world
around us can be represented and understood. The mathematical repre-
sentations that high school students learn afford them the opportunity
to understand the power and beauty of mathematics and equip them to
use representations in their personal lives, in the workplace, and in

further study.
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Making the vision

of mathematics
teaching and learning
a reality requires a
strong system of
support at both the local

and the national levels.



CHAPTER

Working Together
to Achieve
the Vision

Imagine a classroom in which the Principles and Standards described in this
volume have come to life. Students of varied backgrounds and abilities are
working with their teachers to learn important mathematical ideas. Expecta-
tions are high for all students, including those who need extra support to learn
mathematics well. Students are engaged by the mathematics they are learn-
ing, study it every year they are in school, and accept responsibility for their
own mathematics learning. The classroom environment is equitable, challeng-
ing, and technologically equipped for the twenty-first century.

"This vision of mathematics education—introduced in chapter 1, given
focus in the Principles described in chapter 2, and more fully elaborated in
the discussions of the Standards in chapters 3—7—is enticing. But what
would it take to realize this vision? Let us look beyond the classroom to a
broader context:

Imagine that all mathematics teachers continue to learn new mathematics con-
tent and keep current on education research. They collaborate on problems of
mathematics teaching and regularly visit one another’s classrooms to learn
from, and critique, colleagues’ teaching. In every school and district, mathe-
matics teacher-leaders are available, serving as expert mentors to their col-
leagues, recornmending resources, orchestrating interaction among teachers,
and advising administrators. Education administrators and policymakers at all
levels understand the nature of mathematical thinking and learning, help cre-
ate professional and instructional climates that support students’ and teachers’
growth, understand the importance of mathematics learning, and provide the
time and resources for teachers to teach and students to learn mathematics well.
Institutions of higher learning collaborate with schools to study mathematics
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The Equity
Principle

Excellence in mathematics
education requires equity—
high expectations and
strong support for all
students.
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education and to improve teacher preparation and professional development.
Professional mathematicians take an interest in, and contribute construc-
tively to, setting the content goals for mathematics in grades K—12 and for
developing teachers’ mathematical knowledge. Professional organizations,
such as the National Council of Teachers of Mathematics, provide leader-
ship, resources, and professional development opportunities to improve
mathematics education. And families, politicians, business and community
leaders, and other stakeholders in the system are informed about education
issues and serve as valuable resources for schools and children.

Making the vision of mathematics teaching and learning a reality re-
quires a strong system of support at both the local and the national lev-
els. The National Council of Teachers of Mathematics proposes that
the Principles and Standards—grounded in decades of research and
practice and refined in an extensive, collaborative process of review and
revision—serve as a basis for realizing the vision.

Putting the Principles into Action

The Principles in chapter 2 offer perspectives that can guide decision
makers in mathematics education. If essential supports of good mathe-
matics classrooms are missing, not all students can learn the mathe-
matics they need. Teachers need to work in environments where they
can act, and continue to develop, as professionals. Mathematics teach-
ing and learning should take place in a broader context that embraces
and supports high-quality mathematics instruction. The following sec-
tions highlight each of the Principles in turn, showing how they can
shape answers to important questions in mathematics education.

How can all students have access to high-quality
mathematics education?

A major area of policy that affects students’ access to mathematics
education is “tracking,” which is the long-term, often permanent,
placement of students in classes, courses, or groups that offer differ-
ent curricula according to the students’ perceived mathematical abili-
ties. Historically, tracking has consistently resulted in a select group
of students being enrolled in mathematics courses that challenge and
enrich them while others—often poor or minority students—are
placed in mathematics classes that concentrate on remediation or do
not offer significant mathematical substance (Wheelock 1992). For
example, many middle-grades and high school students have been ex-
cluded from experiences in which they could learn significant
amounts of algebra, instead spending much of their time reviewing
the mathematics content studied in the elementary grades. As a re-
sult, these students are unable to experience a full program of high
school mathematics across the range of content areas. Principles and
Standards takes a strong stance: All students should have a common
foundation of challenging mathematics, whether those students will
enter the workplace after high school or pursue further study in
mathematics and science.
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Taking this stance necessitates addressing the unique mathematical
needs of all students. Students with exceptional promise in mathematics
and deep interest in advanced mathematical study need appropriate op-
portunities to pursue their interests. Students with special learning
needs in mathematics must be supported both by their classroom teach-
ers and by special education staff. Special-needs educators responsible
for mathematics instruction should participate in mathematics profes-
sional development, which will allow them to collaborate with class-
room teachers in assessing and analyzing students’ work in order to
plan instruction.

"Teachers and school and district leaders face complex decisions about
how best to structure different curricular options. One traditional way
for students to learn additional mathematics in which they have a par-
ticular interest is differential pacing—allowing some students to move
rapidly through the mathematical content expected of all so that they
can go on to additional areas. However, some alternatives to differential
pacing may prove advantageous. For example, curricula can be offered
in which students can explore mathematics more deeply rather than
more rapidly. This model allows them to develop deep insights into im-
portant concepts that prepare them well for later experiences instead of
experiencing a more cursory treatment of a broader range of topics. Or
schools can offer supplementary mathematics opportunities in areas not
studied by all students or in extracurricular activities such as mathe-
matics clubs or competitions.

Schools face difficult decisions about grouping—whether students
should be offered mathematics instruction in homogeneous or hetero-
geneous groups. Students can effectively learn mathematics in hetero-
geneous groups if structures are developed to provide appropriate, dif-
ferentiated support for a range of students. Structures that exclude
certain groups of students from a challenging, comprehensive mathe-
matics program should be dismantled. All such efforts should be moni-
tored and evaluated to ensure that students are well served.

Are good instructional materials chosen, used, and
accepted?

Choices of mathematics instructional materials can be controversial.
"Teachers should be prepared to work with new curricular materials, and
they need considerable time to “live with” curricula in order to discover
their strengths and weaknesses. Only then can they develop the kinds of
knowledge necessary to make materials work well in particular contexts.
The selection of curriculum and materials, therefore, needs to be a
long-term collaborative process involving teachers, teacher-leaders, and
administrators. Extensive field-testing should be conducted, with infor-
mation and interactions at the district level so that choices are made
wisely and support structures are put in place.

If instructional materials are not consistent with the expectations of
families and community members or do not seem reasonable to them,
serious difficulties can arise. For that reason, teachers and administra-
tors should help families understand the goals and content of curricular
materials, and community members should be consulted and informed
about decisions regarding curricula and materials. Choices of instruc-
tional materials should be based on a community’s agreed-on goals for
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mathematics education. Principles and Standards, together with province,
state, and local frameworks, offers proposals for such goals.

Developers of instructional materials and frameworks should draw
on research in their efforts to implement the ideas of standards. We
urge them to use Principles and Standards as a guide when making the
many decisions involved in creating curricula. Similarly, through the
evaluation and study of curricular efforts and through discussions of the
ideas in this document, the mathematics education community can con-
tinue to develop a base of knowledge to guide the direction of mathe-
matics education in prekindergarten through grade 12.

How can teachers learn what they need to know?

Teachers need to know and use “mathematics for teaching” that
combines mathematical knowledge and pedagogical knowledge. They
must be information providers, planners, consultants, and explorers of
uncharted mathematical territory. They must adjust their practices and
extend their knowledge to reflect changing curricula and technologies
and to incorporate new knowledge about how students learn mathe-
matics. They also must be able to describe and explain why they are
aiming for particular goals.

Preservice preparation is the foundation for mathematics teaching,
but it gives teachers only a small part of what they will need to know
and understand throughout their careers. No matter how well prepared
teachers are when they enter the profession, they need sustained, ongo-
ing professional development in order to offer students a high-quality
mathematics education. They must continue to learn new or additional
mathematics content, study how students learn mathematics, analyze is-
sues in teaching mathematics, and use new materials and technology.
Teachers must develop their own professional knowledge using re-
search, the knowledge base of the profession, and their own experiences
as resources. Preservice education, therefore, needs to prepare teachers
to learn from their own teaching, from their students, from curriculum
materials, from colleagues, and from other experts.

Unfortunately, the preparation today’s teachers have received is in
many instances inadequate for the needs of tomorrow. The reality is
simple: unless teachers are able to take part in ongoing, sustained pro-
fessional development, they will be handicapped in providing high-
quality mathematics education. The current practice of offering occa-
sional workshops and in-service days does not and will not suffice.

Most mathematics teachers work in relative isolation, with little sup-
port for innovation and few incentives to improve their practice. Yet
much of teachers’ best learning occurs when they examine their teach-
ing practices with colleagues. Research indicates that teachers are better
able to help their students learn mathematics when they have opportu-
nities to work together to improve their practice, time for personal re-
flection, and strong support from colleagues and other qualified profes-
sionals (see, e.g., Brown and Smith [1997]; Putnam and Borko [2000];
Margaret Smith [forthcoming]). The educational environment must be
characterized by trust and respect for teachers and by patience as they
work to develop, analyze, and refine their practice. Too often we place
the responsibility for change solely on the shoulders of teachers and
then blame them when things do not work as expected. We need
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instead to address issues in a systemic way, providing teachers with the
resources they need for professional growth.

Such shifts in the system are feasible. The typical structures of teach-
ers’ workdays often inhibit community building, but structures can be
changed. In some cultures, shared discussions of students and teaching
are the norm. In Japan and China, the workdays of teachers include
time for meeting together to analyze recent lessons and to plan for up-
coming lessons (Ma 1999; Stigler and Hiebert 1999). During this “les-
son study,” teachers plan the lesson, teach the lesson with colleagues
watching, revise the lesson collaboratively, teach the revised lesson,
evaluate and reflect again, and share the results in written form. Part of
the planning includes predicting what groups of students will do when
presented with particular problems and tasks. The ongoing analysis of
practice is thus built into the fabric of teaching, not treated as an added
task that teachers must organize themselves. Although this level of pro-
fessional collaboration may be hard for U.S. and Canadian teachers to
imagine within the constraints of the prevailing professional culture and
system, it illustrates the potential power of learning communities to im-
prove mathematics teaching and learning. Finding ways to establish
such communities should be a primary goal for schools and districts
that are serious about improving mathematics education.

Do all students have time and the opportunity to learn?

Learning mathematics with understanding requires consistent access
to high-quality mathematics instruction. In the elementary grades, stu-
dents should study mathematics for at least an hour a day under the
guidance of teachers who enjoy mathematics and are prepared to teach
it well. Achieving this objective takes thoughtful administrative
arrangements, such as orchestrating shared teaching responsibilities or
using mathematics specialists.

Every middle-grades and high school student should be required to
study the equivalent of a full year of mathematics in each grade. Ways of
organizing programs will vary according to local goals and situations.
Some schools are using such organizational alternatives as block schedul-
ing. The impact of such alternatives on students’ learning needs further
study. It is not clear, for example, whether long intervals between periods
of intensive study benefit or detract from students’ learning or whether
mathematics-intensive workplace activity can support students’ mathemat-
ical engagement and growth. All middle-grades and high school students
should be expected to spend a substantial amount of time every day work-
ing on mathematics outside of class, in activities ranging from typical
homework assignments and projects to problem solving in the workplace.

A significant challenge to realizing the vision portrayed in Principles
and Standards is disengagement. Too many students disengage from
school mathematics, which creates a serious problem not only for their
teachers but also for a society that increasingly depends on a quantita-
tively literate citizenry. Students may become uninvolved for various
reasons. Many, for example, find it difficult to sustain the motivation
and effort required to learn what can be a challenging school subject.
They may find the subject as taught to be uninteresting and irrelevant.

Disengagement is too often reinforced in both overt and subtle ways
by the attitudes and actions of adults who have influence with students.
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Some parents and other authority figures, as well as societal influences
like the media, convey the message that not everyone is expected to be
successful in mathematics and thus that disengagement from school
mathematics is acceptable. Such societal tolerance makes it less likely that
all students will be motivated to sustain the effort needed to learn mathe-
matics, which in turn makes the job of their teachers even more challeng-
ing. Some teachers also believe that many students cannot learn mathe-
matics, which supports those students in their beliefs that they cannot
learn mathematics, which then leads to further disengagement. Thus, a
vicious cycle takes hold. It affects school mathematics in profound ways
and is especially prevalent in the middle grades and high school.

Although the challenge presented by disengagement is formidable, it
is not insurmountable. Teachers need to uphold high expectations that
all children should learn with understanding, including children of mi-
norities or from poor communities. Many teachers have found that if
they teach mathematics in ways similar to those advanced in Principles
and Standards—for example, by approaching traditional topics in ways
that emphasize conceptual understanding and problem solving—many
apparently uninterested students can become quite engaged.

Are assessments aligned with instructional goals?

High-stakes assessments—{rom nationally normed achievement tests to
state, province, or locally developed measures of students’ performance—
are a particular concern for educators. If they are not aligned with school
and community goals for mathematics education and with the curriculum,
teachers and students are left in a precarious position. If teachers are com-
mitted to pursuing goals and practices consistent with those in Principles
and Standards, satisfying the sometimes contradictory requirements of the
local, state, or province assessment system is challenging. It is not realistic
for teachers simply to ignore the pressure of these tests. Students may be
penalized if they do not perform well, staff or school evaluations may de-
pend on demonstrating progress, and decisions about resource allocation
and salaries may be tied to test scores. Yet “teaching to the test”—a politi-
cal reality when the consequences of test scores are significant—can un-
dermine the integrity of instruction. To put teachers in the position of de-
ciding between what they believe best enhances their students’ learning
and what is required to survive in the educational system puts them in an
untenable position. High-stakes assessments must be closely linked to the
goals teachers are being asked to achieve; where they are not, teachers
must be supported in the decisions they make.

The assessment of students’ understanding can be enhanced by the
use of multiple forms of assessment, such as portfolios, group projects,
and writing questions. However, students and parents alike may find
these forms unfamiliar in the mathematics classroom. Teachers need
support from administrators in helping students and parents understand
the utility and purpose of such approaches in improving mathematics
instruction.

Is technology supporting learning?

"To make technology an essential part of classrooms, the techno-
logical tools must be selected and used in ways that are compatible with
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the instructional goals. When technological tools are considered essen-
tial instructional materials for all students, then decisions about re-
sources must reflect this view, despite the costs of purchases and up-
grades. Schools, districts, or provinces that integrate technology in
mathematics teaching and learning face challenging issues of equity.
The need for high-quality technology is as great in urban and rural set-
tings as in suburban schools—perhaps greater.

Decisions to incorporate new technology also require that teachers
be prepared and supported in using it to serve instructional goals.
Teachers must themselves experience how technology can enhance the
learning of significant mathematics and explore models for incorporat-
ing it in their classroom practice. Moreover, technology must be em-
bedded in the mathematics program rather than be treated as just an-
other flashy add-on. Without coherent, comprehensive implementation
plans, the incorporation of new technology is likely to fall short in im-
proving mathematics teaching and learning.

Roles and Responsibilities

The sections that follow discuss the kinds of commitments and ac-
tions that various communities must make to realize the vision of Prin-
ciples and Standards. The role of teachers, of course, is central. The
choices that mathematics teachers make every day determine the qual-
ity and effectiveness of their students’ mathematics education. But
teachers alone do not make all the decisions—they are part of a com-
plex instructional system. Others—students themselves; mathematics
teacher-leaders; school, district, and state or province administrators;
higher-education faculty; families, other caregivers, and community
members; and professional organizations and policymakers—have re-
sources, influence, and responsibilities that can enable teachers and
their students to be successful.

Mathematics Teachers

Mathematics teachers must develop and maintain the mathematical
and pedagogical knowledge they need to teach their students well. One
way to do this is to collaborate with their colleagues and to create their
own learning opportunities where none exist. They should also seek out
high-quality professional development opportunities that fit their learn-
ing needs. By pursuing sources of information, building communities of
colleagues, and participating in professional development, teachers can
continue to grow as professionals.

Mathematics teachers generally are responsible for what happens in
their own classrooms and can try to ensure that their classrooms support
learning by all students. For example, whether or not their school has
implemented tracking, teachers must challenge and hold high expecta-
tions for all their students, not just those they believe are “gifted.” Ele-
mentary school students need at least an hour of mathematics instruc-
tion each day. The decisions teachers make in the classroom about how
to offer all students experiences with important mathematics and how to
accommodate the wide-ranging interests, talents, and experiences of
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students are essential to giving all students access to mathematics. Al-
though many matters bearing on their classrooms are beyond teachers’
sole control, they need to take the initiative in discussing trends and op-
portunities in mathematics education with administrators.

"Teachers must help students be confident, engaged mathematics
learners. In the elementary grades, convincing students that they can do
Teachers must }Jé’lp mathematics and helping them enjoy it are important goals. Typically,
student disengagement has been a serious problem in the middle grades
students be ¢ 072ﬁd€ nt, and high school. Teachers at those levels should work to keep students
involved in relevant classroom activities, assign projects that make con-
nections between mathematics and students’ daily lives, and allow stu-
dents multiple avenues to display what they have learned. Learning ex-
periences based in the workplace have also proved effective in
motivating students who are at risk of becoming disengaged from
school.

Mathematics teachers can foster reinforcement of their efforts by
families and other community members by maintaining dialogue aimed
at the improvement of mathematics education. Communicating about
mathematics goals, students’ learning, teaching, and programs helps
families and other caregivers understand the kind of mathematics learn-
ing in which children are engaged. Giving them opportunities to ask
questions, express concerns, and experience classroom activities can be
very useful in shaping improvements. Many groups of teachers organize
“Math Nights” at least once a year. At such events, usually held during
the evening for the convenience of parents, students and their parents
work together on engaging mathematics activities. Newsletters, home-
work assignments that involve family collaboration, and other means
can help maintain communication between home and school. To do all
of this well, teachers need to understand their mathematical goals and
their perspectives on mathematics education and be able to articulate
them in compelling ways.

Mathematics teachers ultimately control the range of mathematical
ideas made available to their students. They have the responsibility to
ensure that a full range of mathematical content and processes, such as
those described in this document, are taught and that mathematical em-
phases fit together into a coherent whole. They can do so by using the
available textbooks, support materials, technology, and other instruc-
tional resources effectively and tailoring these resources to their particu-
lar situations so that their goals for mathematics instruction and their
students’ needs are met. Teachers need to seek out support and profes-
sional development as they implement current or new curricula. They
should constantly evaluate curricular materials and offer suggestions to
teacher-leaders and administrators, and they should find ways to be in-
volved in choosing the instructional materials for their school or district.

Integrating assessment into instruction and using a variety of sources
of evidence to evaluate the learning of each student is challenging. It
may be especially difficult in the face of mandated high-stakes assess-
ments. Although teachers may at times feel trapped between their goals
for their students’ mathematics learning and those of high-stakes tests,
they are not powerless. If teachers recognize that required tests are not
aligned with meaningful instructional goals, they should voice their
concerns to their teacher-leaders and administrators and seek ways to
participate in decisions about testing.

engﬂged mathematics

learners.
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Mathematics Students

Learning mathematics is stimulating, rewarding, and at times diffi-
cult. Mathematics students, particularly in the middle grades and high
school, can do their part by engaging seriously with the material and
striving to make mathematical connections that will support their learn-
ing. If students are committed to communicating their understandings
clearly to their teachers, then teachers are better able to plan instruc-
tion and respond to students’ difficulties. Productive communication
requires that students record and revise their thinking and learn to ask
good questions as part of learning mathematics.

Beyond the classroom, students need to build time into their days to
work on mathematics. They need to learn how to use resources such as
the Internet to pursue their mathematical questions and interests. As
students begin to identify potential careers, they can take the initiative in
researching the mathematics requirements for those careers and investi-
gate whether their school programs offer the necessary preparation.

Mathematics Teacher-Leaders

There is an urgent and growing need for mathematics teacher-
leaders—specialists positioned between classroom teachers and admin-
istrators who can assist with the improvement of mathematics educa-
tion. The kinds of roles and influences that such leaders can have, as
well as the nature of their position and responsibility, will vary widely.
In recent years, schools have increasingly turned to teachers in the sys-
tem as potential leaders. Sometimes leaders are teachers on special as-
signment, released from the classroom for an extended period to work
in one or several school buildings. In other situations, leaders are re-
leased from a portion of their classroom teaching so that they can work
directly with other teachers. No matter what the particular arrange-
ment may be, mathematics teacher-leaders should take responsibility
for focusing on mathematics through their work with teachers, admin-
istrators, and families and other community members.

Teacher-leaders can have a significant influence by assisting teachers
in building their mathematical and pedagogical knowledge. Leaders
face the challenge of changing the emphasis of the conversation among
teachers from “activities that work” to the analysis of practice. Teacher-
leaders in some settings work with their colleagues to design profes-
sional development plans for individual teachers, for a school, or for a
larger system. They can arrange collaborative investigations or discus-
sion groups with teachers at a school site, encourage participation in
workshops at the school or district level, promote attendance at profes-
sional conferences, organize the study of professional resources such as
Principles and Standards and articles in professional journals, recommend
Internet sites that discuss mathematics teaching, and provide informa-
tion about in-service programs or graduate courses. Teachers can bene-
fit greatly from the knowledge and support of peers and mentors as
they move in the directions recommended in Principles and Standards.
"Teacher-leaders’ support on a day-to-day basis—ranging from conver-
sations in the hall to in-classroom coaching to regular grade-level and
departmental seminars focused on how students learn mathematics—
can be crucial to a teacher’s work life.
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Teacher-leaders should have the knowledge and expertise to play a
role in the design of curriculum frameworks and the selection of in-
structional materials, and they should ensure that teachers are involved
in these processes, too. Schools and districts can also rely on mathe-
matics teacher-leaders to organize and lead the piloting and implemen-
tation of new instructional materials. They might help teachers in a
school begin working through the materials themselves, reading and
discussing any commentary about student learning found in the materi-
als, analyzing students’ work, and designing and critiquing lessons. In
this way, the materials can serve as a means for teachers to learn.

"Teacher-leaders also have a role in working with administrators and
policymakers to help guide their decisions about the improvement of
mathematics education. They can help ensure that teachers and adminis-
trators develop and share a common perspective about goals for mathe-
matics teaching and learning. Doing so involves keeping everyone in-
formed of new directions and emphases in mathematics education and
facilitating substantive discussions and planning sessions aimed at reaching
common goals. Finally, like all teachers, mathematics teacher-leaders must
themselves engage in ongoing learning and professional development.

School, District, and State or Province Administrators

Administrators at every level have responsibilities for shaping the in-
structional mission in their jurisdictions, providing for the professional
development of teachers, designing and implementing policies, and al-
locating resources. To deploy their influence well on behalf of mathe-
matics education, administrators who understand the goals of mathe-
matics instruction—including those described in Principles and
Standards—can work to create institutions in which teachers have access
to human and material resources that will help them attain those goals.
In particular, administrators can identify individuals or teams of teach-
ers as leaders in establishing mathematics communities, and they can
ensure that such learning communities develop, flourish, and grow be-
yond a few teachers. When administrators themselves become part of
the mathematics learning community, they develop deeper understand-
ings of the goals of mathematics instruction. They can understand bet-
ter what they are seeing in mathematics classrooms (Nelson 1999) and
can make more-informed judgments about the curricular, technologi-
cal, and pedagogical resources teachers need.

If they are truly committed to the improvement of mathematics edu-
cation, administrators at all levels should ensure that mathematics ex-
pertise and leadership are developed in their schools or systems. Ad-
ministrators can influence the quality of mathematics education by
supporting the professional growth of mathematics teachers. They can
arrange for meaningful professional development workshops, provide
libraries and Web access to instructional and other materials, and foster
cross-school conversations about goals and instructional practices. Ad-
ministrators can help arrange teachers’ work schedules so that mean-
ingful collaboration with colleagues is part of the school day. They can
shape work environments so that they are conducive to productive pro-
fessional interactions, they can include such interactions as part of
teachers’ work, and they can establish a program of mathematics
teacher-leaders within the school or system.
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Perhaps the most important sphere of influence for administrators is
the area of structures and policies. Through their decisions about hir-
ing, teaching assignments, evaluation, and mentoring for new teachers,
administrators have powerful opportunities to strengthen the focus on
mathematics. They also have a role in guaranteeing equitable access for
students and in arranging time and space for effective mathematics in-
struction. They can work to align curricular materials, technology, and
assessments at all levels with agreed-on goals for mathematics educa-
tion, such as those represented in Principles and Standards.

Administrators can support the improvement of mathematics educa-
tion by establishing effective processes for the analysis and selection of
instructional materials. These processes, whether at the classroom,
school, or system level, should involve wide consultation with teachers
and teacher-leaders and a deep and careful analysis of the materials.
Many districts pilot-test one or more programs before making a final
decision. No matter how decisions about the selection of instructional
materials are made, they should always be guided by school, state or
province, and national goals for mathematics instruction. Furthermore,
the adoption of new instructional materials is only a beginning. No
matter how well curricular materials may be designed, they are unlikely
to lead to the continuing improvement of instruction unless plans for
implementation and professional development are formulated along
with the plan for adoption.

Finally, to make long-term progress in improving students’ learning,
administrators and policymakers must carefully consider the impact of
high-stakes assessments on the instructional climate in schools, and they

must understand what can be learned from assessments and what cannot.

If a test focuses primarily on the acquisition of superficial skills rather
than on the deep mathematical understandings described in this docu-
ment, its use in making decisions that promote constructive change will
be limited and perhaps even counterproductive. Decisions about placing
students in different instructional situations and evaluations of teachers’
effectiveness should never be based on a single test score, especially
when that test has been designed to measure how well students carry out
routine procedures. Implementing and sustaining assessment policies
and practices that support high-quality mathematics education is a diffi-
cult but essential part of administrators’ responsibilities.

Higher-Education Faculty

Faculty in two-year and four-year colleges and universities have a
significant impact on school mathematics, primarily through their work
with students who will become teachers. They have considerable influ-
ence on whether teachers enter the profession with the strong knowl-
edge of the mathematics needed to teach pre-K—12 mathematics, of
student learning, and of mathematics teaching. They can also model
the effective practices they believe teachers should employ.

The first few years in teachers’ careers are critical to their persistence
in mathematics teaching and to their dispositions toward continued
professional growth and learning. The in-service education and profes-
sional development of teachers, especially in content knowledge, are
not the exclusive mission of any single type of institution, so a signifi-
cant leadership role is available for higher education. Teachers need
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in-service and graduate education that help them grow mathematically
and as practitioners.

Faculty members in institutions of higher education should be partners
in the development of school-based mathematics communities. Teacher
educators, mathematicians, and practicing teachers working together can
create a rich intellectual environment that will promote veteran teachers’
growth and demonstrate to new teachers the value of learning communi-
ties. Mathematics education researchers and teacher educators can col-
laborate with classroom teachers to investigate research questions based
in classroom practice or to look at mathematics as it occurs in classrooms.
In such contexts, higher-education faculty can serve as resources to
mathematics teachers at all levels and also learn from them.

In recent decades, research in mathematics education has coalesced
as a powerful field of intellectual study. The efforts of education and
mathematics faculty can result in increased knowledge and the im-
proved preparation of teachers, teacher-leaders, administrators, and re-
searchers. Such ongoing efforts, in collaboration with school personnel,
are a major aspect of improving mathematics teaching and learning.

Families, Other Caregivers, and Community Members

Teachers and administrators should invite families, other caregivers,
and community members to participate in examining and improving
mathematics education. All partners in this enterprise need to under-
stand the changing goals and priorities of school mathematics, as ex-
pressed in the Principles in chapter 2. Families need to know what op-
tions are available for their children and why an extensive and rigorous
mathematics education is important. When parents understand and
support the schools’ mathematics program, they can be invaluable in
convincing their daughters and sons of the need to learn mathematics
and to take schooling seriously. Families become advocates for educa-
tion standards when they understand the importance of a high-quality
mathematics education for their children.

Families can establish learning environments at home that enhance the
work initiated at school. Respect shown to and for teachers is often car-
ried over from parent to child. By providing a quiet place for a child to
read and attend to homework and by monitoring students’ work, families
can signal that they believe mathematics is important. Such attention and
appreciation of mathematics is not lost on students.

If families and other members of the public do not understand the in-
tent of, and rationale for, improvements in mathematics education, they
can halt even the most carefully planned initiatives. Principles and Stan-
dards was written with the hope that the conversations it engenders will
ultimately generate a widespread commitment to improving mathe-
matics education. As part of this effort, it is the responsibility of the edu-
cation community to inform the general public and its elected represen-
tatives about the goals and priorities in mathematics education, thereby
empowering them to participate knowledgeably in its improvement.

Professional Organizations and Policymakers

Professional organizations can provide national and regional leadership
and expertise in support of the continuing improvement of mathematics
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education. The National Council of Teachers of Mathematics NCTM),
using Principles and Standards as a focus, will offer its members many
means of professional development, including conferences, classroom re-
sources, research publications, and Web-based materials. NCTM is also
engaged in a variety of efforts to educate the public and to support parents
and other caregivers as they encourage their children in mathematics. (See
the NCTM Web site at www.nctm.org for details.) Professional organiza-
tions like the NCTM are positioned to promote policies that support
high-quality mathematics education. For instance, they can work to estab-
lish certification and accreditation requirements that include high expecta-
tions for teachers’ knowledge of content, teaching, and students. Through
their members, publications, and meetings, professional organizations can
focus attention on mathematics education issues.

High-quality mathematics education is vital to the health of mathe-
matics as a discipline, and mathematical professional societies have a
clear stake in this enterprise. Mathematics education serves as the
pipeline for future mathematicians, statisticians, and mathematics
teachers as well as scientists, engineers, and all professionals who use
mathematics. The public needs to be well informed about, not intimi-
dated by, mathematics if it is to support ongoing research, develop-
ment, and funding in mathematics and related fields. The nature of un-
dergraduate mathematics programs is closely intertwined with K-12
mathematics education, and efforts to improve mathematics teaching
and learning from kindergarten through graduate school can be coordi-
nated across professional organizations. Issues about the mathematical
preparation of teachers are currently being addressed by the Confer-
ence Board of the Mathematical Sciences (CBMYS) in its “Mathematical
Education of Teachers” project (CBMS 2000). All professional organi-
zations concerned with the mathematical sciences can help improve
mathematics education through coordinated, collaborative efforts.

Policymakers at national and local levels are in a unique position to
view the broad range of influences on mathematics education and to make
decisions that promote improvements in the field. They can allocate the
funding and resources needed to continue the study and implementation
of improvements. They can also examine teacher-certification standards
and accreditation requirements to ensure that teachers have the strong
and deep content knowledge needed today. In the same way that standards
need ongoing examination and revision, so do local, state, and provincial
curricular frameworks and standards. With Principles and Standards avail-
able as a resource to identify key issues in contemporary mathematics edu-
cation, policymakers can ensure that that process occurs and can promote
programmatic activity that is designed to further address those issues.

Using Principles and Standards Effectively

Principles and Standards for School Mathematics has both an immediate
and a long-term role in realizing the vision of improved mathematics
education. First, it sets out a carefully developed and ambitious but at-
tainable set of expectations for school mathematics. Educators, families,
policymakers, and others can use the ideas contained in this volume to
guide the decisions they make about mathematics education, from
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classroom practice to establishing local and state education standards
and frameworks. The interest generated by NCTM’s original Curricu-
lum and Evaluation Standards for School Mathematics (1989) demonstrates
the extent to which various groups with a stake in mathematics educa-
tion are committed to its improvement. Principles and Standards is in-
tended to build on and extend that commitment. It represents a collec-
tive judgment, based on research, practice, and an extended consultative
process, about what students need to learn in order to be prepared for
the future.

Principles and Standards is also a tool for better understanding the is-
sues and challenges involved in improving mathematics education. It
offers information and ideas that those with responsibility for mathe-
matics education—whether at the local, state or provincial, or national
level—need in order to engage in constructive dialogues about mathe-
matics teaching, curricula, and assessment. Any vision of school mathe-
matics teaching and learning needs ongoing examination; it needs to be
refined continually in light of the greater understanding achieved
through practice, research, and evidence-based critiques. The process
that NCTM put in place for developing Principles and Standards reflects
a commitment to ongoing discussion and reflection. This document,
therefore, should be seen as part of a work in progress that can help
guide decision makers in developing excellent mathematics programs,
not as a prescription to be rigidly imposed on others. (See Kilpatrick
and Silver [2000] and Ferrini-Mundy [2000] for additional discussion.)

Conclusion

Achieving high standards in mathematics education calls for clear
goals. It calls for the active participation of teachers, administrators,
policymakers, higher-education faculty, curriculum developers, re-
searchers, families, students, and community members.

Principles and Standards is provided as a catalyst for the continued im-
provement of mathematics education. It represents our best current un-
derstanding of mathematics teaching and learning and the contextual
factors that shape them. It was created with the input and collaboration
of members of all the communities mentioned above. It articulates high
but attainable standards.

Realizing the vision of mathematics education described in this docu-
ment requires the continued creation of high-quality instructional ma-
terials and technology. It requires enhanced preparation for teachers
and increased opportunities for professional growth. It requires the cre-
ation of assessments aligned with curricular goals. Realizing the vision
depends on the participation of all the constituencies mentioned above
in reflecting on, supporting, and improving educational practice. We
should not underestimate the difficulty of the task, but it can be done.
Now is the time to undertake the collaborative efforts that will make
the vision come alive. We owe our children nothing less.
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APPENDIX

Table of Standards
and Expectations



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Understand numbers, ways of representing
numbers, relationships among numbers,
and number systems

Understand meanings of operations and
how they relate to one another

Compute fluently and make reasonable
estimates

(Grades 3-5

In prekindergarten through grade 2 all students should—

* count with understanding and recognize “how many” in sets of
objects;

* use multiple models to develop initial understandings of place
value and the base-ten number system;

» develop understanding of the relative position and magnitude of
whole numbers and of ordinal and cardinal numbers and their
connections;

» develop a sense of whole numbers and represent and use them in
flexible ways, including relating, composing, and decomposing
numbers;

* connect number words and numerals to the quantities they
represent, using various physical models and representations;

* understand and represent commonly used fractions, such as 1/4,
1/3, and 1/2.

* understand various meanings of addition and subtraction of whole
numbers and the relationship between the two operations;
» understand the effects of adding and subtracting whole numbers;

» understand situations that entail multiplication and division, such as

equal groupings of objects and sharing equally.

» develop and use strategies for whole-number computations, with a
focus on addition and subtraction;

» develop fluency with basic number combinations for addition and
subtraction;

* use a variety of methods and tools to compute, including objects,
mental computation, estimation, paper and pencil, and calculators.
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In grades 3-5 all students should—

* understand the place-value structure of the base-ten number
system and be able to represent and compare whole numbers and
decimals;

* recognize equivalent representations for the same number and
generate them by decomposing and composing numbers;

* develop understanding of fractions as parts of unit wholes, as parts
of a collection, as locations on number lines, and as divisions of
whole numbers;

* use models, benchmarks, and equivalent forms to judge the size of
fractions;

* recognize and generate equivalent forms of commonly used
fractions, decimals, and percents;

» explore numbers less than 0 by extending the number line and
through familiar applications;

» describe classes of numbers according to characteristics such as
the nature of their factors.

» understand various meanings of multiplication and division;

» understand the effects of multiplying and dividing whole numbers;

* identify and use relationships between operations, such as division
as the inverse of multiplication, to solve problems;

« understand and use properties of operations, such as the
distributivity of multiplication over addition.

» develop fluency with basic number combinations for multiplication
and division and use these combinations to mentally compute
related problems, such as 30 x 50;

» develop fluency in adding, subtracting, multiplying, and dividing
whole numbers;

» develop and use strategies to estimate the results of whole-number
computations and to judge the reasonableness of such results;

» develop and use strategies to estimate computations involving
fractions and decimals in situations relevant to students’ experience;

 use visual models, benchmarks, and equivalent forms to add and
subtract commonly used fractions and decimals;

» select appropriate methods and tools for computing with whole
numbers from among mental computation, estimation, calculators,
and paper and pencil according to the context and nature of the
computation and use the selected method or tool.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Understand numbers, ways of representing
numbers, relationships among numbers,
and number systems

Understand meanings of operations and
how they relate to one another

Compute fluently and make reasonable
estimates

In grades 6-8 all students should—

work flexibly with fractions, decimals, and percents to solve
problems;

compare and order fractions, decimals, and percents efficiently and
find their approximate locations on a number line;

develop meaning for percents greater than 100 and less than 1;
understand and use ratios and proportions to represent quantita-
tive relationships;

develop an understanding of large numbers and recognize and
appropriately use exponential, scientific, and calculator notation;
use factors, multiples, prime factorization, and relatively prime
numbers to solve problems;

develop meaning for integers and represent and compare
quantities with them.

understand the meaning and effects of arithmetic operations with
fractions, decimals, and integers;

use the associative and commutative properties of addition and
multiplication and the distributive property of multiplication over
addition to simplify computations with integers, fractions, and
decimals;

understand and use the inverse relationships of addition and
subtraction, multiplication and division, and squaring and finding
square roots to simplify computations and solve problems.

select appropriate methods and tools for computing with fractions
and decimals from among mental computation, estimation,
calculators or computers, and paper and pencil, depending on the
situation, and apply the selected methods;

develop and analyze algorithms for computing with fractions,
decimals, and integers and develop fluency in their use;

develop and use strategies to estimate the results of rational-
number computations and judge the reasonableness of the results;
develop, analyze, and explain methods for solving problems
involving proportions, such as scaling and finding equivalent ratios.
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Grades 6-8 Grades 9-12

In grades 9—-12 all students should—

develop a deeper understanding of very large and very small
numbers and of various representations of them;

compare and contrast the properties of numbers and number
systems, including the rational and real numbers, and understand
complex numbers as solutions to quadratic equations that do not
have real solutions;

understand vectors and matrices as systems that have some of the
properties of the real-number system;

use number-theory arguments to justify relationships involving
whole numbers.

judge the effects of such operations as multiplication, division, and
computing powers and roots on the magnitudes of quantities;
develop an understanding of properties of, and representations for,
the addition and multiplication of vectors and matrices;

develop an understanding of permutations and combinations as
counting techniques.

develop fluency in operations with real numbers, vectors, and
matrices, using mental computation or paper-and-pencil calculations
for simple cases and technology for more-complicated cases.

judge the reasonableness of numerical computations and their
results.



(Grades 3-5

Instructional programs from prekindergarten
through grade 12 should enable all students to—

In prekindergarten through grade 2 all students should—

Understand patterns, relations, and  sort, classify, and order objects by size, number, and other
functions properties;

* recognize, describe, and extend patterns such as sequences of
sounds and shapes or simple numeric patterns and translate from
one representation to another;

» analyze how both repeating and growing patterns are generated.

Represent and analyze mathematical « illustrate general principles and properties of operations, such as
situations and structures using algebraic commutativity, using specific numbers;
symbols * use concrete, pictorial, and verbal representations to develop an

understanding of invented and conventional symbolic notations.

Use mathematical models to represent * model situations that involve the addition and subtraction of whole
and understand quantitative relationships numbers, using objects, pictures, and symbols.
Analyze change in various contexts » describe qualitative change, such as a student’s growing taller;

» describe quantitative change, such as a student’s growing two
inches in one year.
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In grades 3-5 all students should—

describe, extend, and make generalizations about geometric and
numeric patterns;

represent and analyze patterns and functions, using words, tables,
and graphs.

identify such properties as commutativity, associativity, and
distributivity and use them to compute with whole numbers;
represent the idea of a variable as an unknown quantity using a
letter or a symbol;

express mathematical relationships using equations.

model problem situations with objects and use representations
such as graphs, tables, and equations to draw conclusions.

investigate how a change in one variable relates to a change in a
second variable;

identify and describe situations with constant or varying rates of
change and compare them.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

In grades 6-8 all students should—

Understand patterns, relations, and * represent, analyze, and generalize a variety of patterns with tables,
functions graphs, words, and, when possible, symbolic rules;
 relate and compare different forms of representation for a
relationship;

* identify functions as linear or nonlinear and contrast their properties
from tables, graphs, or equations.

Represent and analyze mathematical * develop an initial conceptual understanding of different uses of

situations and structures using algebraic variables;

symbols  explore relationships between symbolic expressions and graphs of
lines, paying particular attention to the meaning of intercept and
slope;

» use symbolic algebra to represent situations and to solve prob-
lems, especially those that involve linear relationships;

* recognize and generate equivalent forms for simple algebraic
expressions and solve linear equations.

Use mathematical models to represent * model and solve contextualized problems using various representa-
and understand quantitative relationships tions, such as graphs, tables, and equations.
Analyze change in various contexts * use graphs to analyze the nature of changes in quantities in linear

relationships.
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Grades 6-8 Grades 9-12

In grades 9—-12 all students should—

generalize patterns using explicitly defined and recursively defined
functions;

understand relations and functions and select, convert flexibly
among, and use various representations for them;

analyze functions of one variable by investigating rates of change,
intercepts, zeros, asymptotes, and local and global behavior;
understand and perform transformations such as arithmetically
combining, composing, and inverting commonly used functions,
using technology to perform such operations on more-complicated
symbolic expressions;

understand and compare the properties of classes of functions,
including exponential, polynomial, rational, logarithmic, and periodic
functions;

interpret representations of functions of two variables.

understand the meaning of equivalent forms of expressions, equa-
tions, inequalities, and relations;

write equivalent forms of equations, inequalities, and systems of
equations and solve them with fluency—mentally or with paper and
pencil in simple cases and using technology in all cases;

use symbolic algebra to represent and explain mathematical
relationships;

use a variety of symbolic representations, including recursive and
parametric equations, for functions and relations;

judge the meaning, utility, and reasonableness of the results of
symbol manipulations, including those carried out by technology.

identify essential quantitative relationships in a situation and
determine the class or classes of functions that might model the
relationships;

use symbolic expressions, including iterative and recursive forms,
to represent relationships arising from various contexts;

draw reasonable conclusions about a situation being modeled.

approximate and interpret rates of change from graphical and
numerical data.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Analyze characteristics and properties of
two- and three-dimensional geometric
shapes and develop mathematical
arguments about geometric relationships

Specify locations and describe spatial
relationships using coordinate geometry
and other representational systems

Apply transformations and use symmetry
to analyze mathematical situations

Use visualization, spatial reasoning, and
geometric modeling to solve problems

(Grades 3-5

In prekindergarten through grade 2 all students should—

* recognize, name, build, draw, compare, and sort two- and three-
dimensional shapes;

« describe attributes and parts of two- and three-dimensional
shapes;

* investigate and predict the results of putting together and taking
apart two- and three-dimensional shapes.

» describe, name, and interpret relative positions in space and apply
ideas about relative position;

» describe, name, and interpret direction and distance in navigating
space and apply ideas about direction and distance;

« find and name locations with simple relationships such as “near to”
and in coordinate systems such as maps.

* recognize and apply slides, flips, and turns;
* recognize and create shapes that have symmetry.

» create mental images of geometric shapes using spatial memory
and spatial visualization;

* recognize and represent shapes from different perspectives;

* relate ideas in geometry to ideas in number and measurement;

* recognize geometric shapes and structures in the environment and
specify their location
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In grades 3-5 all students should—

* identify, compare, and analyze attributes of two- and three-
dimensional shapes and develop vocabulary to describe the attributes;

* classify two- and three-dimensional shapes according to their prop-
erties and develop definitions of classes of shapes such as trian-
gles and pyramids;

* investigate, describe, and reason about the results of subdividing,
combining, and transforming shapes;

» explore congruence and similarity;

* make and test conjectures about geometric properties and relation-
ships and develop logical arguments to justify conclusions.

 describe location and movement using common language and
geometric vocabulary;

* make and use coordinate systems to specify locations and to
describe paths;

« find the distance between points along horizontal and vertical lines
of a coordinate system.

» predict and describe the results of sliding, flipping, and turning
two-dimensional shapes;

» describe a motion or a series of motions that will show that two
shapes are congruent;

* identify and describe line and rotational symmetry in two- and
three-dimensional shapes and designs.

* build and draw geometric objects;

» create and describe mental images of objects, patterns, and paths;

* identify and build a three-dimensional object from two-dimensional
representations of that object;

* identify and build a two-dimensional representation of a three-
dimensional object;

* use geometric models to solve problems in other areas of mathe-
matics, such as number and measurement;

* recognize geometric ideas and relationships and apply them to
other disciplines and to problems that arise in the classroom or in
everyday life.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Analyze characteristics and properties of
two- and three-dimensional geometric
shapes and develop mathematical
arguments about geometric relationships

Specify locations and describe spatial
relationships using coordinate geometry
and other representational systems

Apply transformations and use symmetry
to analyze mathematical situations

Use visualization, spatial reasoning, and
geometric modeling to solve problems

precisely describe, classify, and understand relationships among
types of two- and three-dimensional objects using their defining
properties;

understand relationships among the angles, side lengths, perimeters,
areas, and volumes of similar objects;

create and critique inductive and deductive arguments concerning
geometric ideas and relationships, such as congruence, similarity,
and the Pythagorean relationship.

use coordinate geometry to represent and examine the properties
of geometric shapes;

use coordinate geometry to examine special geometric shapes,
such as regular polygons or those with pairs of parallel or
perpendicular sides.

describe sizes, positions, and orientations of shapes under
informal transformations such as flips, turns, slides, and scaling;
examine the congruence, similarity, and line or rotational symmetry
of objects using transformations.

draw geometric objects with specified properties, such as side
lengths or angle measures;

use two-dimensional representations of three-dimensional objects
to visualize and solve problems such as those involving surface
area and volume;

use visual tools such as networks to represent and solve problems;
use geometric models to represent and explain numerical and
algebraic relationships;

recognize and apply geometric ideas and relationships in areas
outside the mathematics classroom, such as art, science, and
everyday life.
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Grades 6-8 Grades 9-12

In grades 6-8 all students should— In grades 9—-12 all students should—

analyze properties and determine attributes of two- and three-
dimensional objects;

explore relationships (including congruence and similarity) among
classes of two- and three-dimensional geometric objects, make
and test conjectures about them, and solve problems involving
them;

establish the validity of geometric conjectures using deduction,
prove theorems, and critique arguments made by others;

use trigonometric relationships to determine lengths and angle
measures.

use Cartesian coordinates and other coordinate systems, such as
navigational, polar, or spherical systems, to analyze geometric
situations;

investigate conjectures and solve problems involving two- and
three-dimensional objects represented with Cartesian coordinates.

understand and represent translations, reflections, rotations, and
dilations of objects in the plane by using sketches, coordinates,
vectors, function notation, and matrices;

use various representations to help understand the effects of
simple transformations and their compositions.

draw and construct representations of two- and three-dimensional
geometric objects using a variety of tools;

visualize three-dimensional objects from different perspectives and
analyze their cross sections;

use vertex-edge graphs to model and solve problems;

use geometric models to gain insights into, and answer questions
in, other areas of mathematics;

use geometric ideas to solve problems in, and gain insights into,
other disciplines and other areas of interest such as art and
architecture.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Understand measurable attributes of
objects and the units, systems, and
processes of measurement

Apply appropriate techniques, tools, and
formulas to determine measurements

(Grades 3-5

In prekindergarten through grade 2 all students should—

* recognize the attributes of length, volume, weight, area, and time;

» compare and order objects according to these attributes;

» understand how to measure using nonstandard and standard units;
 select an appropriate unit and tool for the attribute being measured.

* measure with multiple copies of units of the same size, such as
paper clips laid end to end;

* use repetition of a single unit to measure something larger than
the unit, for instance, measuring the length of a room with a single
meterstick;

¢ use tools to measure;

» develop common referents for measures to make comparisons and
estimates.
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In grades 3-5 all students should—

* understand such attributes as length, area, weight, volume, and
size of angle and select the appropriate type of unit for measuring
each attribute;

* understand the need for measuring with standard units and
become familiar with standard units in the customary and metric
systems;

* carry out simple unit conversions, such as from centimeters to
meters, within a system of measurement;

* understand that measurements are approximations and understand
how differences in units affect precision;

* explore what happens to measurements of a two-dimensional
shape such as its perimeter and area when the shape is changed
in some way.

* develop strategies for estimating the perimeters, areas, and
volumes of irregular shapes;

* select and apply appropriate standard units and tools to measure
length, area, volume, weight, time, temperature, and the size of angles;

* select and use benchmarks to estimate measurements;

» develop, understand, and use formulas to find the area of rectan-
gles and related triangles and parallelograms;

* develop strategies to determine the surface areas and volumes of
rectangular solids.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Understand measurable attributes of
objects and the units, systems, and
processes of measurement

Apply appropriate techniques, tools, and
formulas to determine measurements

Grades 6-8 Grades 9-12

In grades 6-8 all students should—

* understand both metric and customary systems of measurement;

» understand relationships among units and convert from one unit to
another within the same system;

* understand, select, and use units of appropriate size and type to
measure angles, perimeter, area, surface area, and volume.

* use common benchmarks to select appropriate methods for
estimating measurements;

» select and apply techniques and tools to accurately find length,
area, volume, and angle measures to appropriate levels of
precision;

* develop and use formulas to determine the circumference of circles
and the area of triangles, parallelograms, trapezoids, and circles
and develop strategies to find the area of more-complex shapes;

» develop strategies to determine the surface area and volume of
selected prisms, pyramids, and cylinders;

» solve problems involving scale factors, using ratio and proportion;

* solve simple problems involving rates and derived measurements
for such attributes as velocity and density.
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In grades 9—-12 all students should—

* make decisions about units and scales that are appropriate for
problem situations involving measurement.

* analyze precision, accuracy, and approximate error in measurement
situations;

¢ understand and use formulas for the area, surface area, and volume
of geometric figures, including cones, spheres, and cylinders;

* apply informal concepts of successive approximation, upper and
lower bounds, and limit in measurement situations;

 use unit analysis to check measurement computations.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Formulate questions that can be addressed
with data and collect, organize, and
display relevant data to answer them

Select and use appropriate statistical
methods to analyze data

Develop and evaluate inferences and
predictions that are based on data

Understand and apply basic concepts of
probability

(Grades 3-5

In prekindergarten through grade 2 all students should—

* pose questions and gather data about themselves and their
surroundings;

» sort and classify objects according to their attributes and organize
data about the objects;

* represent data using concrete objects, pictures, and graphs.

» describe parts of the data and the set of data as a whole to
determine what the data show.

 discuss events related to students’ experiences as likely or unlikely.
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In grades 3-5 all students should—

* design investigations to address a question and consider how
data-collection methods affect the nature of the data set;

* collect data using observations, surveys, and experiments;

* represent data using tables and graphs such as line plots, bar
graphs, and line graphs;

* recognize the differences in representing categorical and numerical
data.

» describe the shape and important features of a set of data and
compare related data sets, with an emphasis on how the data are
distributed;

» use measures of center, focusing on the median, and understand
what each does and does not indicate about the data set;

* compare different representations of the same data and evaluate
how well each representation shows important aspects of the data.

» propose and justify conclusions and predictions that are based on
data and design studies to further investigate the conclusions or
predictions.

» describe events as likely or unlikely and discuss the degree of
likelihood using such words as certain, equally likely, and impossible;

* predict the probability of outcomes of simple experiments and test
the predictions;

« understand that the measure of the likelihood of an event can be
represented by a number from O to 1.



Instructional programs from prekindergarten
through grade 12 should enable all students to—

Formulate questions that can be addressed
with data and collect, organize, and dis-
play relevant data to answer them

Select and use appropriate statistical
methods to analyze data

Develop and evaluate inferences and pre-
dictions that are based on data

Understand and apply basic concepts of
probability

In grades 6-8 all students should—

formulate questions, design studies, and collect data about a char-
acteristic shared by two populations or different characteristics
within one population;

select, create, and use appropriate graphical representations of
data, including histograms, box plots, and scatterplots.

find, use, and interpret measures of center and spread, including
mean and interquartile range;

discuss and understand the correspondence between data sets
and their graphical representations, especially histograms, stem-
and-leaf plots, box plots, and scatterplots.

use observations about differences between two or more samples
to make conjectures about the populations from which the samples
were taken;

make conjectures about possible relationships between two char-
acteristics of a sample on the basis of scatterplots of the data and
approximate lines of fit;

use conjectures to formulate new questions and plan new studies
to answer them.

understand and use appropriate terminology to describe comple-
mentary and mutually exclusive events;

use proportionality and a basic understanding of probability to
make and test conjectures about the results of experiments and
simulations;

compute probabilities for simple compound events, using such
methods as organized lists, tree diagrams, and area models.
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Grades 6-8 Grades 9-12

In grades 9—-12 all students should—

understand the differences among various kinds of studies and
which types of inferences can legitimately be drawn from each;
know the characteristics of well-designed studies, including the
role of randomization in surveys and experiments;

understand the meaning of measurement data and categorical
data, of univariate and bivariate data, and of the term variable;
understand histograms, parallel box plots, and scatterplots and use
them to display data;

compute basic statistics and understand the distinction between a
statistic and a parameter.

for univariate measurement data, be able to display the distribution,
describe its shape, and select and calculate summary statistics;
for bivariate measurement data, be able to display a scatterplot,
describe its shape, and determine regression coefficients, regression
equations, and correlation coefficients using technological tools;
display and discuss bivariate data where at least one variable is
categorical;

recognize how linear transformations of univariate data affect
shape, center, and spread;

identify trends in bivariate data and find functions that model the
data or transform the data so that they can be modeled.

use simulations to explore the variability of sample statistics from a
known population and to construct sampling distributions;
understand how sample statistics reflect the values of population
parameters and use sampling distributions as the basis for informal
inference;

evaluate published reports that are based on data by examining the
design of the study, the appropriateness of the data analysis, and
the validity of conclusions;

understand how basic statistical techniques are used to monitor
process characteristics in the workplace.

understand the concepts of sample space and probability distribu-
tion and construct sample spaces and distributions in simple cases;
use simulations to construct empirical probability distributions;
compute and interpret the expected value of random variables in
simple cases;

understand the concepts of conditional probability and independent
events;

understand how to compute the probability of a compound event.



Instructional programs from prekindergarten ¢ Build new mathematical knowledge through problem solving
through grade 12 should enable all students to— ¢ Solve problems that arise in mathematics and in other contexts
* Apply and adapt a variety of appropriate strategies to solve problems

* Monitor and reflect on the process of mathematical problem solving

Instructional programs from prekindergarten * Recognize reasoning and proof as fundamental aspects of mathematics
through grade 12 should enable all students to— * Make and investigate mathematical conjectures
* Develop and evaluate mathematical arguments and proofs

¢ Select and use various types of reasoning and methods of proof

Instructional programs from prekindergarten ¢ Organize and consolidate their mathematical thinking through communication

through grade 12 should enable all students to— ¢ Communicate their mathematical thinking coherently and clearly to peers,
teachers, and others

¢ Analyze and evaluate the mathematical thinking and strategies of others

* Use the language of mathematics to express mathematical ideas precisely

Instructional programs from prekindergarten * Recognize and use connections among mathematical ideas

through grade 12 should enable all students to—

Understand how mathematical ideas interconnect and build on one another to
produce a coherent whole

* Recognize and apply mathematics in contexts outside of mathematics

¢ Create and use representations to organize, record, and communicate

Instructional programs from prekindergarten 1 use
mathematical ideas

through grade 12 should enable all students to—

Select, apply, and translate among mathematical representations to solve problems

® Use representations to model and interpret physical, social, and mathematical
phenomena
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